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Abstract

Population genetic studies have found evidence for dramatic population growth in recent human history. It is unclear how
this recent population growth, combined with the effects of negative natural selection, has affected patterns of deleterious
variation, as well as the number, frequency, and effect sizes of mutations that contribute risk to complex traits. Because
researchers are performing exome sequencing studies aimed at uncovering the role of low-frequency variants in the risk of
complex traits, this topic is of critical importance. Here I use simulations under population genetic models where a
proportion of the heritability of the trait is accounted for by mutations in a subset of the exome. I show that recent
population growth increases the proportion of nonsynonymous variants segregating in the population, but does not affect
the genetic load relative to a population that did not expand. Under a model where a mutation’s effect on a trait is
correlated with its effect on fitness, rare variants explain a greater portion of the additive genetic variance of the trait in a
population that has recently expanded than in a population that did not recently expand. Further, when using a single-
marker test, for a given false-positive rate and sample size, recent population growth decreases the expected number of
significant associations with the trait relative to the number detected in a population that did not expand. However, in a
model where there is no correlation between a mutation’s effect on fitness and the effect on the trait, common variants
account for much of the additive genetic variance, regardless of demography. Moreover, here demography does not affect
the number of significant associations detected. These findings suggest recent population history may be an important
factor influencing the power of association tests and in accounting for the missing heritability of certain complex traits.
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Introduction

Genome-wide association studies (GWAS) have successfully

detected associations between hundreds of common single

nucleotide polymorphisms (SNPs) and complex traits in humans

[1,2]. While this catalog of genes has revealed important biological

insights, for most traits the discovered associations can account

only for a small fraction of the heritability measured from family-

based studies [3]. This difference in the heritability observed in

familial studies and the heritability explained by associated SNPs

has been termed ‘‘missing heritability,’’ and there is tremendous

interest in the human genetics community to find it [3–5].

One possibility that has received particular attention is that the

missing heritability lies in rare variants that have large effect sizes

[3]. Because a risk variant is rare in the population, an association

between the variant and the phenotypes of interest may not have

been detected using traditional GWAS. Instead, at present, such

variants must be assayed through direct sequencing. Due to

technological advances (e.g. next-generation sequencing) [6,7],

combined with newer analytical methods designed for analyzing

full sequence data [8–11], exome and full genome-sequencing

studies are now being implemented in human genetics. The

progression to sequencing data has already proved fruitful for the

identification of causal mutations for several Mendelian diseases

[6,12–16]. Full sequence data [17,18] is starting to reveal a richer

picture of low-frequency genetic variation (minor allele frequency

,0.5%), which may, in turn, increase the community’s ability to

implicate rare variants in risk of complex disease [4,19–25].

Further, such studies should allow researchers to empirically

determine the extent to which rare variants account for the

missing heritability of complex traits [26–30]. However, before

these new technological and methodological advances can reach

their full potential, a more thorough understanding of low-

frequency genetic variation in multiple human populations is

essential.

To learn about patterns of rare genetic variation, several studies

have sequenced hundreds of genes or complete exomes in

thousands of individuals [31–34]. These studies have made two

important discoveries. First, they have found a larger number of

rare variants than was expected under previous models of human

population history. It has been argued that this excess of rare

variants can be explained by the recent explosion in human

population size [31,32,35–37]. Second, these studies have

documented a plethora of rare, nonsynonymous SNPs that are

likely evolutionarily deleterious and may be of medical relevance.

Comparatively less work has been done, however, to examine

the implications that recent population history has had on the

architecture of complex traits (but see the recent paper by Simons

et al. [38]). It is unclear whether population history, and recent

population growth in particular, affects the number, frequency,
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and effect sizes of mutations that contribute risk to complex traits.

Addressing this question is critical for finding the ‘‘missing

heritability’’ in different populations, as well as performing the

most powerful association studies to implicate specific variants in

disease risk. Over a decade ago, it was recognized that the power

to associate common variants with complex disease varied across

populations [39–41]. This was largely due to asymmetry in the

extent of linkage disequilibrium (LD) across populations as a result

of differences in demographic history [42–44]. While the issue of

LD is less relevant when considering rare variants, the topic of

population choice for association studies has received substantially

less attention when considering rare variants, despite its potential

importance.

Here I use population genetic models to investigate the effect of

recent population growth on patterns of deleterious genetic

variation, the architecture of complex traits, and the ability to

associate causal variants with the trait in models where a

proportion of the trait’s heritability is accounted for by mutations

in a subset of the exome. Specifically, I show that recent

population growth increases the input of deleterious mutations

into the population, directly causing a proportional excess of

deleterious genetic variation segregating in the population.

Second, if a mutation’s effect on reproductive fitness is correlated

with its effect on a complex trait (such as a disease), I show that

recent population growth increases the amount of the additive

genetic variance of the trait that is accounted for by low-frequency

variants relative to that in a population that did not expand

recently. Further, I demonstrate that recent population growth

leads to an increase in the number of alleles that contribute to the

trait relative to what is expected in a population that did not

recently expand. Finally, recent population growth decreases the

number of SNPs that are significantly associated with the trait,

relative to the number detected in a population that did not

recently expand. This work indicates that in certain circumstances,

recent population history will play an important role in

determining the genetic architecture of complex traits in a

particular population under study. As such, recent population

history is a factor that should be considered when designing and

interpreting re-sequencing studies for complex traits.

Methods

Models of population history
I explore several of models of population history (Fig. 1).

Because many studies have inferred a population bottleneck in

non-African human populations associated with the Out-of-Africa

migration process [45–50], the first model includes a brief, but

severe, reduction in population size (Fig. 1A). After the bottleneck,

the population returns to the same size as the ancestral population.

This model is referred to as ‘‘BN’’ throughout the rest of paper.

The second model of population history also includes the same

Out-of-Africa population bottleneck, but now includes an instan-

taneous, 100-fold population expansion in the last 80 generations,

or the last 2000 years, assuming 25 years/generation (Fig. 1B)

[51]. This recent explosion in effective population size is meant to

approximate the expansion detected in the archeological and

historical records as well as in studies of genetic variation

[31,35,36,52]. This model is referred to as ‘‘BN+growth’’

throughout the paper. Finally, for comparison purposes, I also

investigate a model where a population experienced an ancient 2-

fold expansion (Fig. 1C). Such a model is meant to reflect the

history of African populations [46,47,53] and is referred to as ‘‘Old

growth’’ in the paper.

Forward simulations
All results were obtained using the forward-in-time population

genetic program described in Lohmueller et al. [54], with minor

modifications. Briefly, the program assumes a Wright-Fisher

model of population history. Each generation, alleles change

frequency stochastically based on binomial sampling and deter-

ministically based on the standard selection equations. Also in each

generation, a Poisson distributed number of new mutations enter

the population at rate h=2, where h~4Nim. Here Ni is the

population size in the ith epoch of population history (see below)

and m is the per-chromosome per generation mutation rate across

all the coding sequence that was simulated. I set m~0:056 for

synonymous sites. For nonsynonymous sites, m is 2.5 times higher,

because of the larger number of sites that, when mutated, give rise

to a nonsynonymous mutation. Selection coefficients for new

mutations are drawn from a gamma distribution with the

parameters as inferred in Boyko et al. [46]. As done in the

Poisson Random Field framework, all mutations are assumed to be

independent of each other [55].

Step-wise population size changes are included in the model by

changing the population size (N) at particular time points. Size

changes affect the number of mutations that enter the population

during each individual epoch and the magnitude of genetic drift.

For computational efficiency, I divided the population size by 2

and rescaled all times to be two-fold smaller than under the

specified model. However, I keep the population scaled mutation

rate (h), and the population scaled selection coefficient (c~2Ns),

equal to the same values as for the larger population. This

rescaling is possible because, in the diffusion limit, patterns of

genetic variation only depend on the scaled parameters. Such a

rescaling is customary in other forward simulation programs

[56,57]. Samples of 1000 chromosomes are taken from the

population at different time points to calculate how diversity

statistics change over time.

Models of complex traits
To evaluate the effect of recent demographic history on the

architecture of complex traits, I simulate individuals who have a

quantitative trait. I assume that deleterious (nonsynonymous)

mutations in a given mutational target account for some of the

Author Summary

Many human populations have dramatically expanded
over the last several thousand years. I use population
genetic models to investigate how recent population
expansions affect patterns of mutations that reduce
reproductive fitness and contribute to the genetic basis
of complex traits (including common disease). I show that
recent population growth increases the proportion of
mutations found in the population that reduce fitness.
When mutations that have the greatest effect on repro-
ductive fitness also have the greatest effect on a complex
trait, more of the heritability of the trait is due to
mutations at very low-frequency in populations that have
recently expanded, as compared to populations that have
not. Also, under this model, for a given sample size and
false-positive rate, fewer variants show statistically signif-
icant associations with the trait in the population that has
expanded than in one that has not. Both of these findings
suggest that recent population growth may make it more
difficult to fully elucidate the genetic basis of complex
traits that are directly or indirectly correlated with
reproductive fitness.
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heritability of the trait. Such a model is implicitly assumed in

exome re-sequencing studies used to implicate rare variants in

disease risk. This quantitative trait could represent a trait that is

measured on a quantitative scale (e.g. lipid levels) or represent the

underlying risk to a dichotomous phenotype (e.g. diabetes). Below

I provide a description of the model and parameters.

I investigate models where mutations at a subset of nonsynon-

ymous sites can account for 5%, 10% or, 30% of the variance of

the phenotype (i.e. the heritability accounted for by these variants

is 5%, 10% or 30%). Thus, the models considered here assume

that some fraction of the total heritability of the trait is accounted

for by variants within the mutational target (i.e. a portion of the

exome) while the rest is accounted for by variants not modeled

here (i.e. noncoding portions of the genome). The mutational

target size, M, is the number of nonsynonymous sites in the

genome that, if mutated, would generate a variant that affects the

phenotype. Assuming a mutation rate of 161028 per site per

generation, I investigate mutational target sizes of 70 kb and

140 kb. To gain a sense of how these sites could be partitioned into

genes, the median length of coding regions of human genes is

1335 bp [58]. Thus, a random gene would have approximately

934 nonsynonymous sites (assuming 70% of the coding sites are

nonsynonymous). If all nonsynonymous sites within the gene

would, if mutated, produce a causal variant, then the mutational

target size of 70 kb would correspond to 75 distinct genes

accounting for the specified heritability, and the target size of

140 kb would correspond to 150 distinct causal genes accounting

for the heritability. If only half the nonsynonymous sites could be

mutated to causal variants, then the number of genes would

increase by a factor of 2. In practice, this model is implemented by

taking a subset of the nonsynonymous SNPs simulated as

described above and then assigning them effects on the trait.

To assign an effect on the trait to a given causal SNP, I follow

the model described by Eyre-Walker [59], with modifications

described below. Essentially, the ith SNP’s effect on a trait, ai, is

given by

ai~dsi
t(1zei)C,

where d= 1, si is the selective disadvantage for the ith SNP, t is the

relationship between the SNP’s effect on fitness and the trait. A

value of t= 1.0 indicates a linear relationship, where the mutations

that are most deleterious will also have the biggest effects on the

trait. A value of t= 0.0 indicates that a mutation’s effect on fitness

is independent of its effect on the trait. I set t= 0.5 and t= 0.0, to

model a situation where there is a relationship between fitness and

the trait, and another situation where the trait is independent of

fitness. Next, ei for the ith SNP is drawn from a normal distribution

with mean 0 and a standard deviation of 0.5. I did not vary this

standard deviation because Eyre-Walker showed that varying this

parameter had little effect on the overall results [59]. C is a

normalizing constant for the SNP effect sizes so that

VA~
X

i SNPs

2pi(1{pi)a
2
i &h2

C ,

where h2
C[f0:05,0:1,0:3g: Essentially, C is a scaling constant for

the SNP effect sizes so that the desired heritability is achieved

under each combination of parameters h2
C , t, and M. Importantly,

I find the average value of C across all simulation replicates in the

standard neutral model, and then I use this value of C for

simulations under the other demographic models. As such, a SNP

with a given effect on the trait (ai) under one demographic

scenario will have the same effect on the trait under a different

demographic scenario. This framework has the desirable property

that a SNP’s effect on a trait in a particular individual is

biologically determined and is not directly affected by the

demography of the population. Additionally, when setting up the

simulations in this manner, the actual h2 in a given simulation

replicate is the outcome of a stochastic process, rather than set to a

specific value. Nevertheless, in practice, there was little variation in

h2 across different demographic scenarios (Fig. S1). Incidentally,

different values of C are found when using different values of h2
C , t,

and M (Table S1). This is reasonable because these models are

biologically very different from each other.

I then assign trait values (Yj) to each simulated individual. This is

done using an additive model,

Yj~
X

i SNPs

zijaizej ,

where the summation is over all i causal variants, zij is the number

of copies of the risk allele (zi,j[ 0,1,2f g) carried at the ith SNP by

the jth individual, ai is the effect of the ith SNP, and ej is the

environmental variance, which is drawn from a normal distribu-

tion with mean 0 and variance 1{h2
C (see [60–62]). For some

Figure 1. Models of population size changes over time. (A) A model of European population history with a severe bottleneck starting 2000
generations ago (BN). (B) A similar model of European population history as shown in (A), except that here the population instantaneously expanded
100-fold 80 generations ago (BN+growth). (C) A model with a 2-fold ancient expansion (Old growth). This is a possible model for African population
history.
doi:10.1371/journal.pgen.1004379.g001
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analyses, I translate these quantitative traits into dichotomous

diseases. To do this, I assume the liability threshold model for

complex traits, where there is an underlying continuous distribu-

tion of risk in the population, and where cases are those individuals

whose risk (Yj) falls above a discrete threshold (L) [60,63,64]. L, or

the liability threshold, is set in each simulation replicate by

transforming the phenotypes (Yjs) to follow the standard normal

distribution and then picking the threshold such that 40% of the

individuals have liabilities greater than L. In this model, the disease

has a prevalence of 40%. 1000 case individuals are randomly

sampled from the individuals in this upper tail of the distribution.

1000 controls are selected from the lower 60% of the distribution.

Single-marker association tests are then performed for each SNP

using Fisher’s exact test. A test is considered significant if its P-

value is ,161025, unless otherwise stated.

Results

Recent growth and deleterious variation
First I assess the effect that different population histories (BN,

BN+growth, and Old Growth) have on neutral and deleterious

genetic variation. Fig. 2A and Fig. 2B show how the number of

synonymous and nonsynonymous SNPs, respectively, segregating

in a sample of 1000 chromosomes change over time as the

simulated populations change in size. The population bottleneck

2000 generations ago resulted in a decrease in the number of SNPs

segregating in the BN and BN+growth populations (orange and

green lines in Fig. 2A and Fig. 2B). When the populations

recovered from the bottleneck and increased in size, the number of

SNPs in the population also increased. This increase in the

number of SNPs after the recovery from the bottleneck is due to

two factors. First, the larger population size allows more new

mutations to enter the population. Second, genetic drift has a

weaker effect when the population size is large. As such, more

SNPs are maintained in the population. The recent explosion in

population size (dashed green lines in Fig. 2A and Fig. 2B; BN+
growth) rapidly results in a substantial increase in the number of

both synonymous and nonsynonymous SNPs segregating in the

population. This is due to the extreme increase in the population

mutation rate (typically referred to as h) due to the larger

population size. Ancient population growth also resulted in an

increase in the number of synonymous and nonsynonymous SNPs

segregating in the population, via the same mechanisms (purple

line in Fig. 2A and Fig 2B; Old growth).

Fig. 2C shows how the proportion of nonsynonymous SNPs

segregating in the population changes over time. When popula-

tions BN and BN+growth decreased in size during the bottleneck,

the proportion of nonsynonymous SNPs in the population also

dropped (orange and green lines in Fig. 2C). The reason for this is

that, when the population size decreases, rare variants are

preferentially lost over common variants. More nonsynonymous

than synonymous SNPs are rare, and, as such, the crash in

population size results in the loss of more nonsynonymous SNPs

than synonymous SNPs. After the population recovers from the

bottleneck, the proportion of nonsynonymous SNPs found in the

population increases (Fig. 2C). The reason for this increase is that,

due to the increase in population size, many new mutations enter

the population after the recovery from the bottleneck. Most of

these new mutations are nonsynonymous, due to there being more

possible nonsynonymous changes than synonymous changes in

coding regions. In fact, the proportion of nonsynonymous SNPs

segregating in the population immediately after the recovery of the

bottleneck is actually higher than that in the ancestral population

(Fig. S2). The very recent increase in size in the BN+growth

population also results in an increase in the proportion of

nonsynonymous SNPs (green line in Fig. 2C). 54.8% of the

SNPs in BN+growth are nonsynonymous (green line in Fig. 2C),

compared to 52.8% in the BN population (orange line in Fig. 2C).

It will take approximately 4Ne (where Ne is the current effective

population size) generations for the proportion of deleterious SNPs

to reach the equilibrium value for the larger population size (Text
S1). The population that underwent an ancient expansion (dotted

purple line in Fig. 2C) also experienced an initial increase in the

proportion of nonsynonymous SNPs segregating immediately after

the expansion. However, because the expansion occurred long

ago, selection has had sufficient time to remove many of the

nonsynonymous SNPs and bring the proportion of nonsynon-

ymous SNPs in the population below the value seen in the

bottlenecked populations, consistent with previous simulations and

empirical observations [54]. These results suggest that recent,

extreme changes in demographic history can have an impact on

patterns of deleterious mutations that are segregating in the

population. This pattern also holds with other magnitudes of

population growth (Text S1).

Next I examine the average fitness effect of nonsynonymous

SNPs segregating in a sample of 1000 chromosomes at different

time points in the simulations (Fig. 2D). During the bottleneck,

the average segregating SNP in the BN and BN+growth

populations is less deleterious than in the ancestral population

(orange and green lines in Fig. 2D). This is due to many rare,

deleterious SNPs being eliminated from the population as well as

fewer new deleterious SNPs entering the population when it is

small in size. After the population recovers from the bottleneck,

the average segregating SNP became more deleterious. In the first

few generations after the recovery, the average SNP is even more

deleterious than in the ancestral population. This is due to the

increase in the input of deleterious mutations immediately after the

recovery from the bottleneck. After a few generations however,

negative natural selection has eliminated many, though certainly

not all, of these deleterious SNPs from the population. In fact,

Fig. 2D shows that even in the present day, the average SNP is

more deleterious than that in the ancestral population. This same

effect applies even more strongly to the recent population growth

within the last 80 generations. Immediately, after growth, the

average SNP segregating in the BN+growth population was more

strongly deleterious (Fig. 2D) than what is expected in a

population that has not expanded. However, during the last 40

generations, selection has eliminated many of the most deleterious

SNPs from the population. In the present day, the average SNP in

the BN+growth population (green line) is slightly less deleterious

than in the BN population (orange line, also see Text S1),

consistent with the results of Gazave et al. [65]. This effect is less

pronounced with decreasing amounts of population growth (Text
S1).

The description of the average strength of selection on a SNP

described above does not take into account the frequency of the

deleterious SNP in the population. The genetic load, however,

does by weighting the selection coefficient by the SNP’s frequency

[66]. Genetic load is the reduction in mean fitness of the

population due to deleterious mutations [67]. I find that, unlike

the average selection coefficient, the genetic load is not affected by

the demographic history of the population (Fig. S3). Similar

results have recently been reported by Simons et al. [38]. Thus,

while the recent population growth increases the number of

deleterious SNPs segregating in the population, this increase in

load is offset by the fact that most of these new deleterious

mutations are kept at very low frequency in the population. Put

another way, while the load appears to be the same across

Deleterious Mutations, Demography, and Disease
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demographic models, the way in which the populations arrive at

that load differs across demographies. The BN+growth population

contains many rare deleterious mutations. The BN population

contains fewer deleterious mutations, but those that are there tend

to be at higher frequencies.

Models of a complex trait that are compatible with
empirical results

One important question is to what extent recent population

growth affects the architecture of complex traits and our ability to

map the genes responsible for disease risk. To investigate this issue,

I simulate quantitative phenotypes for individuals sampled from

the simulations under the three different demographic models. I

investigate two different models for the relationship between a

mutation’s effect on fitness (the selection coefficient), and its effect

on the trait [59]. First, I assume that a mutation’s effect on fitness

is related to its effect on the trait (t= 0.5). Here, those mutations

that are strongly deleterious have a greater effect on the trait.

Second, I investigate a model where a SNP’s effect on fitness is

independent of its effect on the trait (t= 0). I also investigate

different mutational target sizes (M = 70 kb and M = 140 kb) and

the amount of the heritability accounted for by variants occurring

within the mutational target (h2
C[f0:3,0:1,0:05g; see Methods; see

Discussion for further justification of these models).

Because the model parameters were chosen to reflect what

might be observed in exome resequencing data, I test the validity

of these parameter values by comparing the expected number of

single SNPs associated with a trait to what has been observed in

exome sequencing studies. A recent exome sequencing study for

type 2 diabetes with 1000 cases and 1000 controls (the same

sample size simulated here) reported zero single SNP associations

at a 161025 significance level [30]. This result is broadly

consistent with models where t= 0.5 and h2
C~0:1 h2

C~0:05

and models with t= 0 and h2
C~0:05 (Fig. S4). Next, an exome

Figure 2. Changes in genetic variation over time as a function of population size. Solid orange lines denote the bottlenecked population
that did not recently expand (BN). Dashed green lines denote a population that expanded 80 generations ago (BN+growth). Note that the lines from
the two populations overlap except in the last 80 generations. Dashed purple lines denote the population that underwent an ancient expansion (Old
growth). (A) Number of synonymous SNPs segregating in the sample. (B) Number of nonsynonymous SNPs segregating in the sample. (C) Proportion
of SNPs segregating in the sample that are nonsynonymous. (D) Absolute value of the average fitness effect of nonsynonymous SNPs segregating in
the sample. Samples of 1000 chromosomes were taken at different time points throughout the simulation. Results are averaged over 1000 simulation
replicates.
doi:10.1371/journal.pgen.1004379.g002
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sequencing study for schizophrenia with 2,536 cases and 2,543

controls [68] found only common variants with P,1025, which,

while not directly comparable to the sample size used in the

present study, is again consistent with models where t= 0.5 and

h2
C~0:1 or h2

C~0:05 and models with t= 0 and h2
C~0:05 (Fig.

S4). Finally, an exome sequencing study for lipids included 2,005

individuals and found two variants with P,1025 in a single-

marker analysis [69]. These results are compatible with a variety

of models simulated here (Fig. S4), though Lange et al.’s

quantitative association test should have more power than the

dichotomous one used here, making precise comparisons more

difficult.

Due to the limited number of exome sequencing studies

available, I also assess whether my models generate simulated

datasets that are compatible with observations from GWAS

studies. For simplicity, I make the assumption that the causal

variants themselves have been directly assayed or have been

imputed through LD with tag SNPs included in the GWAS. This

of course is unlikely to be true in practice, particularly for rare

variants [17,18,70]. Nevertheless, this comparison still serves as a

useful benchmark to exclude models that are obviously not

consistent with the observed GWAS data, with the caveat that

some models that appear inconsistent with the GWAS data may

actually fit better if LD and ascertainment bias are properly taken

into account.

First, it has been consistently shown that the top SNPs identified

through GWAS account for only a very limited amount of the

phenotypic variance (often ,10%) [3,71]. I assess the amount of

phenotypic variance (VP) explained by the top 50 SNPs that

account for the most variance (Table S2) within each simulation

replicate. Models where h2
C~0:3 and M = 70 kb or 140 kb predict

that the top 50 SNPs account for roughly 30% of the VP. This

amount appears to be too high to be compatible with most of the

GWAS results if one accepts the premise that GWAS would have

detected the variants that explain such a large proportion of the

phenotypic variance. However, a model with h2
C~0:05 predicts

that the top 50 SNPs will account for about 5% of the phenotypic

variance. Such a model cannot be rejected from the currently

available GWAS data.

Next, GWAS suggest that most risk loci for complex traits have

very small effect sizes and are difficult to detect in samples of only

1000 cases and controls [71]. Table S3 shows the expected

number of GWAS hits (P,561028) expected in each simulation

replicate in samples of 1000 cases and 1000 controls for the

different models of h2
C , M, and t. Models where h2

C~0:3 and

M = 70 kb or 140 kb predict that 1–4 significant GWAS hits

should be observed. This is too many to be compatible with the

observed data. Models with the mutational target accounting for

less of the heritability (h2
C~0:1 and h2

C~0:05) predict ,1

significant association. Thus, these models cannot be rejected

based on GWAS data.

In summary, it is unclear how much of the heritability of

complex traits in humans is accounted for by the exome and what

the appropriate mutational target size for common diseases should

be. Thus, I consider a variety of models examining different parts

of this parameter space. Some of these models cannot be rejected

on the basis of existing exome sequencing and GWAS data. Other

models may be more compatible with GWAS data if imperfect LD

between causal variants and genotyped variants was properly

taken into account. Overall, these models provide a framework

consistent with existing empirical data with which to investigate

the effect of recent population history and the genetic architecture

of complex traits.

Recent growth and the heritability of complex traits
Using the models of demography, selection, and genetic

architecture described above, I first examine the effect that

population history has on the heritability of the trait. I find that

population history has little effect on the heritability of the trait

(Fig. S1), regardless of the values of h2
C , t, and M used in the

simulations. This is evidenced by the fact that in all three

demographic scenarios investigated, the actual heritability esti-

mated from each simulation replicate is close to h2
C , the value set in

a constant size population. To further investigate the effect of

recent growth on heritability, I divide the causal variants

segregating at the end of the simulation into three categories.

The first category consists of those SNPs that arose either further

back in time than, or during the population bottleneck (‘‘Before

bottleneck’’ in Fig. 3). These mutations occurred .1960

generations ago. The second category consists of SNPs that arose

after the population had recovered from the bottleneck, but

further back in time than the recent population growth (‘‘After

bottleneck’’ in Fig. 3). These mutations arose between 1960 and

80 generations ago. The final category consists of SNPs that arose

within the last 80 generations (‘‘After growth’’ in Fig. 3). In the

BN+growth model, these are the mutations that arose after the

population expansion. Fig. 3A shows that the average heritability

accounted for by mutations that arose at these three different time

points is similar in both the BN+growth population (green boxes),

and the BN population (orange boxes). Interestingly, when a

mutation’s effect on fitness is correlated with its effect on the trait

(t~0:5), mutations that arose in the last 80 generations, as a class,

account for the greatest amount of the heritability (Fig. 3A).

Next, I investigate whether other features of genetic variation

that affect the heritability (e.g. number of SNPs, mean allele

frequency, mean effect size) are affected by recent population

history. I find that recent growth has had little effect on the

number of mutations that arose prior to the population bottleneck

and are still segregating in the sample, the mean allele frequency,

and the effect sizes of such mutations (Fig. 3B, Fig. 3C, and

Fig. 3D). However, there is a different pattern for mutations that

arose after the bottleneck, but more than 80 generations ago (those

in the ‘‘After bottleneck’’ category). Recent population growth

increases the number of such mutations (roughly 2-fold) relative to

that found in the population that did not expand (Fig. 3B).

Further, these mutations tend to be at lower frequency in the BN+
growth population compared to the BN population (Fig. 3C). The

only difference between the two models of population history on

variants that arose during this time period is that genetic drift is

weaker in the BN+growth population, compared to the BN

population. Thus, fewer weakly deleterious mutations are lost from

the BN+growth population, generating the pattern seen in

Fig. 3B. The mutations that are not lost from the population

tended to be at lower frequency in the larger population because

they also are less likely to drift to higher frequency in the expanded

population as compared to the non-expanded population. The

mutations that arose within the last 80 generations also are

affected by recent population history (those in the ‘‘After growth’’

category). As expected, recent population growth leads to a

dramatic increase in the number of such SNPs (Fig. 3B). Further,

the new mutations tend to be at lower frequency in the BN+
growth population than in the BN population (Fig. 3C). More

surprisingly, these SNPs tend to have weaker effect sizes on the

trait in the BN+growth population than in the BN population

(Fig. 3D). This observation can be explained by selection more

effectively removing moderately and strongly deleterious muta-

tions from the recently expanded population than from the non-

recently expanded populations [65]. Thus, while recent population
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history affects the number of mutations, frequencies, and effect

sizes of these mutations, it does so in such a way that the overall

heritability of the trait appears unaffected by population history.

Fig. S5 shows similar plots for the model where a mutation’s effect

on the trait is not correlated with its effect on fitness (t= 0).

Recent growth increases the contribution of rare variants
to the additive genetic variance

While population history does not affect the overall heritability

of the trait, it can have a profound impact on the additive genetic

variance (VA), and consequently, the heritability, attributable to

low-frequency vs. common variants (Fig. 4). When a mutation’s

effect on fitness is correlated with its effect on the trait (t= 0.5),

more than 50% of the additive genetic variance in the trait is

attributable to SNPs with frequency ,0.5% in the population

under all demographic scenarios, consistent with previous work

showing of the importance of low-frequency variants [59,72,73].

Crucially, the amount of the variance attributable to rare variants

(,0.1%) varies greatly due to demographic history. Roughly twice

as much of the genetic variance of the trait in the recently

expanded population (BN+ growth; green line in Fig. 4A) is

accounted for by SNPs with frequency ,0.05% than in the

population that underwent the bottleneck, but did not expand

(BN; orange line in Fig. 4A). The population that underwent

ancient growth falls intermediate to the other two cases (Old

growth; purple line in Fig. 4A). Similar results hold for other

Figure 3. Effect of recent population growth on the heritability attributable to mutations of different ages when t = 0.5. Orange
boxes denote the bottlenecked population that did not recently expand (BN). Green boxes denote a population that expanded 80 generations ago
(BN+growth). ‘‘Before bottleneck’’ refers to mutations that arose more than 1960 generations ago (before or during the bottleneck). ‘‘After
bottleneck’’ refers to mutations that arose after the population recovered from the bottleneck, but earlier than 80 generations ago. ‘‘After growth’’
refers to mutations that arose within the last 80 generations (after the population expanded). (A) Heritability attributed to mutations of different
ages. Note that recent population growth does not affect the median heritability attributable to mutations of different ages. (B) Number of SNPs
segregating in the present-day that arose during the different time intervals. (C) Mean allele frequency of SNPs that are segregating in the present-
day that arose during the different time intervals. (D) Mean effect size of SNPs that are segregating in the present-day that arose during the different
time intervals. Here h2

C~0:05 and M = 70 kb.
doi:10.1371/journal.pgen.1004379.g003
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heritabilities and mutational targets (Fig. S6A–C). The situation is

dramatically different if a SNP’s effect on the trait is uncorrelated

with its effect on fitness (t= 0; Fig. 4B). Here little of the variance

of the trait is accounted for by low-frequency variants, as seen by

Eyre-Walker [59]. Additionally, under this model, demographic

history does not make as substantial an impact on the amount of

the additive genetic variance explained by SNPs at different

frequencies, as suggested by Simons [38]. Again, similar results

hold for other heritabilities considered and mutational target sizes

(Fig. S6D–F). Thus, in some instances, recent population growth

can result in a substantial increase in the amount of the genetic

variance attributable to rare variants.

Recent growth increases genetic heterogeneity of
disease

Population history also has a profound impact on the number of

causal mutations in a sample of 1000 individuals who have been

selected from the upper 40th percentile of the distribution of the

quantitative trait (Fig. 5). These individuals can be thought of as

cases. Here recent growth (BN+growth) is predicted to result in a

substantial increase in the number of causal mutations compared

to a population that has not undergone such recent growth (BN;

orange vs. green boxes in Fig. 5A). In fact, a sample of 1000 cases

from the BN+growth population is predicted to have nearly twice

as many distinct causal mutations as a sample from the BN

population. An explanation for these patterns is that many new

deleterious causal mutations have arisen after the population has

expanded in size. Because they are new and rare, they are only

found in a small number of individuals. As such, each individual

has his/her own set of low-frequency risk mutations. When

aggregating this number across thousands of individuals, the total

number of causal mutations in the sample from the BN+growth

population is higher than in the BN population. Interestingly, the

number of distinct causal mutations is actually higher in the BN+
growth population than in the Old growth population (purple box

in Fig. 5A).

Figure 4. Cumulative distribution of the amount of the additive
genetic variance of a trait (VA; y-axis) explained by SNPs
segregating below a given frequency in the population (x-
axis). (A) A SNP’s effect on the trait is correlated with its effect on
fitness (t= 0.5). Note that the population that experienced recent
growth (green; BN+growth) has a higher proportion of VA accounted for
by low-frequency SNPs (,0.1% frequency) than the populations that
did not recently expand (orange and purple; BN and Old growth). (B) A
SNP’s effect on the trait is independent of its effect on fitness (t= 0).
Note that less of VA is accounted for by low-frequency variants than
when the trait is correlated with fitness (A). Here h2

C~0:05 and
M = 70 kb.
doi:10.1371/journal.pgen.1004379.g004

Figure 5. The number of causal variants in a sample of 1000
cases from each simulated population. (A) A SNP’s effect on the
trait is correlated with its effect on fitness (t= 0.5). Note that the
population that experienced recent growth (green; BN+growth) has a
higher number of causal variants than the population that did not
recently expand (orange; BN). (B) A SNP’s effect on the trait is
independent of its effect on fitness (t= 0). Here h2

C~0:05 and
M = 70 kb.
doi:10.1371/journal.pgen.1004379.g005
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A similar increase in the number of causal variants in the sample

from the recently expanded population relative to a non-expanded

population is seen even when a SNP’s effect on the trait is

uncorrelated with its effect on fitness (t= 0; Fig. 5B). This pattern

is due to the fact that there is the same number of rare causal

variants in the BN+growth population even when t= 0. However,

when t= 0, many of these rare causal mutations have smaller

effect sizes, and consequently, do not account for much of the

phenotypic variance of the trait.

To further explore this issue, I examine how much of the

phenotypic variance (VP) in the population can be accounted for

by the SNPs that explain the most VP (Fig. 6). When t= 0.5, the

top SNPs that explain most of the variance account for less of it in

the population that recently expanded (BN+growth) than in the

population that did not (BN). For example, when h2
C~0:05, the 25

SNPs that account for the most VP will account for 5% of the VP in

the BN population (orange line in Fig. 6A). In contrast, for the

BN+growth population (green line in Fig. 6A), the 25 SNPs that

account for the most VP will only explain ,3.5% of it. Put another

way, the top 25 SNPs that explain the most variance account for .

90% of the VA contained within the mutational target in the BN

population, but ,70% of the VA in the BN+growth population.

These results suggest that, if mutational effects on disease are

correlated with their effects on fitness, many of the additional rare

causal variants found in a recently expanded population, may, in

aggregate, explain a substantial proportion (say 20%) of the

heritability of the trait.

If a mutation’s effect on fitness is independent of its effect on

disease (t= 0), then the top SNPs that explain the most variance

account for almost all of the VA contained within the mutational

target (Fig. 6B). For example, in the model where h2
C~0:05, the

top 25 SNPs will account for nearly 5% of the VP, regardless of the

demographic history of the population. Put another way, here the

top 25 SNPs account for the majority of the VA that is contained

within the mutational target, and this pattern is not affected by the

demography of the population. This finding supports the previous

statement that, if a mutation’s effect on fitness is independent of its

effect on the trait, many of the extra causal mutations seen in

Fig. 5B in the recently expanded population actually contribute

very little to the overall VP of the trait. Similar results are found for

other values of h2
C and mutational target sizes (Fig. S7).

Effect of demography on the power of association tests
Next, I investigate how different demographic histories affect

the power to associate SNPs with a trait in a sample of 1000 cases

and 1000 controls. Most power simulations for association tests

examine the power to detect a given causal variant conditional on

its allele frequency and/or effect size. Using this approach, I find

that power to detect the SNPs that explain the greatest amount of

VA is actually higher in the population that recently expanded

(BN+growth) than in the population that only underwent a

bottleneck (BN; Text S2). However, recent population growth has

a more limited effect on the power to detect a given association

when conditioning on the allele frequency or odds ratio of the

causal SNP (Text S2).

The power analyses summarized above refer to the power to

detect a given causal variant, conditional on various attributes of it.

However, the number of causal variants, their frequencies, and

their effect sizes are random variables that are influenced by the

evolutionary process experienced by the population under study.

Thus, it is also useful to examine the expected number of causal

SNPs with P-values less than the significance threshold across the

different models of demographic history (Fig. 7). The expected

number of causal SNPs detected in a study of a given sample size

will account for both the power to detect a given variant as well as

the number, frequency distribution, and effect size distribution of

causal variants in the population. It also directly answers the

relevant question for researchers who are planning and interpret-

ing an association study: Under a given model of genetic

architecture, with a given sample size, how many significant

associations would I expect to detect?

Under the model where a mutation’s effect on fitness is

correlated with its effect on the trait (t= 0.5), h2
C~0:3, and

M = 70 kb, fewer causal mutations are detected in the populations

that have undergone ancient (Old growth; purple box in Fig. 7A)

or recent (BN+growth; green box in Fig. 7A) expansions, relative

to the population that only underwent a recent bottleneck (BN;

orange box in Fig. 7A). Similar trends are seen for the other

Figure 6. Cumulative distribution of the amount of the
phenotypic variance of a trait (VP; y-axis) explained by the
SNPs that explain the most variance (x-axis). (A) A SNP’s effect on
the trait is correlated with its effect on fitness (t= 0.5). Note that the top
SNPs that account for the most variance explain less of it in the
population that experienced recent growth (green; BN+growth) than in
the populations that did not recently expand (orange and purple; BN
and Old growth). (B) A SNP’s effect on the trait is independent of its
effect on fitness (t= 0). Here h2

C~0:05 and M = 70 kb.
doi:10.1371/journal.pgen.1004379.g006
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models of h2
C and M (Fig. S4). However, when h2

C~0:05, sample

sizes of 1000 cases and controls are too small to detect almost any

associations with P,161025, regardless of the demography of the

population. When using a less stringent significance threshold (P,

0.01), h2
C~0:3, and M = 70 kb, a median of 10 causal loci are

associated with the trait in the BN population (Fig. S8A).

However, a median of only 8 causal loci are detected in the BN+
growth population. Again, similar trends are noted for the other

models of h2
C and M (Fig. S8). However, when h2

C~0:05, a

median of 2 causal SNPs are detected at P,0.01 for all three

demographic models. This result is due to the very low power to

detect an association for causal variants with very small effect sizes

using samples of 1000 cases and 1000 controls, regardless of the

demography of the population. Nevertheless, even here, a higher

proportion of simulation replicates have detected at least 3

associations in the BN population (54%) than in the BN+growth

population (41%). Taken together, this analysis suggests that

recent population growth can result in a decrease in the expected

number of associations to be detected in a given sample size. Thus,

while recent growth may increase power to detect the SNP that

explains the greatest amount of the variance, and have little effect

on power to detect a given SNP conditional on its frequency or

effect size, it enriches the frequency distribution for rare causal

variants. The power to detect such variants using single-marker

association tests is low, decreasing the expected number of

significant associations to be detected in the population that

recently expanded.

However, demographic history has no clear effect on the

number of causal loci detected with a given sample size when the

mutation’s effect on fitness is independent of its effect on the trait

(t= 0; Fig. 7B, Fig. S4D–F, and Fig. S8E–H). For some models,

the BN+growth population appears to have a higher number of

significant associations than in the BN population (Fig. S4D and

Fig. S4E). However, this pattern is not consistently seen across

models or significance thresholds. Similarly, when using a

significance threshold of P,0.01, the Old growth population

appears to show a greater number of significant association (Fig.
S8) than either of the other two models of population history. This

pattern may be due to the slight, but noticeable, increase in the

h2
C for the Old growth population (Fig. S1).

Researchers have suggested that the amount of the additive

genetic variance (VA) explained by a set of SNPs increases when

the stringency of the P-value threshold for including SNPs in the

set is decreased [74–76]. Fig. 8 shows the amount of VA explained

by SNPs having single-marker P-values less than the threshold

specified on the x-axis for the model where h2
C~0:05and

M = 70 kb. When a SNP’s effect on the trait is correlated with

its effect on fitness (t= 0.5), population history has an important

effect on the amount of VA accounted for by SNPs with P-value less

than a given threshold (Fig. 8A). Specifically, recent population

growth decreases the amount of VA accounted for by SNPs at all P-

value thresholds, relative to what is seen in a population that has

not expanded. For example, SNPs having P,0.05 account for

about 30% of the VA in the BN population. SNPs with P,0.05

account for only 20% of VA in the BN+growth population.

Including all SNPs detected in the case-control study captures only

70% of the VA contained within the mutational target in the BN+
growth population. The reason for this is that many of the rare

variants that account for the VA of the trait in the population are

not present in the sample of 1000 cases and 1000 controls. When

t= 0, population history has little affect on the amount of VA

accounted for by SNPs with a given P-value (Fig. 8B). Including

all SNPs present in the association study captures over 95% of the

VA contained within the mutational target. This finding is not

surprising in light of the observation (Fig. 4B) that much of the VA

is accounted for by common variants when t= 0, and such

variants are likely to be present in the sample of 1000 cases and

1000 controls. Qualitatively similar trends are seen for other

heritablities and mutational target sizes (Fig. S9).

Discussion

I have shown that very recent population growth can have an

impact on patterns of deleterious genetic variation and the genetic

architecture of complex traits. Specifically, I show that recent

population growth leads to an increase in the proportion of

nonsynonymous SNPs relative to that expected in non-expanded

populations. Further, this recent growth is predicted to have

affected the genetic architecture of some complex traits. This result

has implications for discovering the ‘‘missing heritability’’ in

different human populations and detecting causal variants that

may also affect reproductive fitness.

While I have shown that demographic history greatly affects the

proportion and frequencies of deleterious mutations segregating in

the population, it is interesting that demography does not have a

large effect on the overall genetic load of the population. Haldane

has shown that the genetic load at equilibrium contributed by a

particular mutation is independent of the strength of selection

acting on the particular mutation and the frequency of that

Figure 7. The number of causal SNPs with a significant P-value
(,161025) in the single-marker association test for different
models of population history. (A) A SNP’s effect on the trait is
correlated with its effect on fitness (t= 0.5). (B) A SNP’s effect on the
trait is independent of its effect on fitness (t= 0). Here h2

C~0:3 and
M = 70 kb.
doi:10.1371/journal.pgen.1004379.g007
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mutation [66]. Strongly deleterious mutations will have a large

effect on fitness, but will be kept at lower frequency by negative

selection than mutations of weaker effect. Weakly deleterious

mutations will not have as large of an effect, but they can be at

higher frequency in the population. Haldane suggested that these

effects should cancel each other out. Haldane’s result was derived

for a simple model with a constant population size. It was unclear

whether this result would hold when considering populations with

bottlenecks and recent growth, though previous theoretical results

suggested that smaller populations may be expected to have a

higher load [77]. Here I have shown that Haldane’s result applies

under certain complex demographic models. Further work is

required to determine whether this trend holds in other species

and demographic models, and whether this trend holds for models

involving dominance.

It is also important to appreciate that while my analysis as well

as that of Simons et al. [38] show that recent population history

has not affected the overall genetic load of the population, these

results should not be taken to imply that population history has

had no effect on patterns of deleterious variation. First, the way in

which the populations arrive at their load differs across popula-

tions with different histories. Populations that have recently

expanded have more of the load accounted for by rare variants

than populations that have not recently expanded. Further,

genetic load is one specific feature of deleterious genetic variation.

Other statistics, like the proportion of nonsynonymous SNPs, are

very sensitive to differences in population history. While it has

been shown that differences in population history between

European and African populations have affected the proportion

of nonsynonymous SNPs in the two populations [54], here I

demonstrate that the influence of population history on the

proportion of nonsynonymous SNPs is predicted to apply on a

much more recent timescale, and to populations that are much

more similar to each other than Europeans and Africans. In sum,

taken together, these results suggest that population history affects

patterns of deleterious genetic variation found in different

populations.

I find that population history is predicted to have little effect on

the overall amount of additive genetic variance for a trait seen in

different populations. As such, assuming a common environmental

variance across populations, the heritability of a trait is predicted

to be similar across populations. This finding suggests that if

differences in the heritability of a trait are detected across

populations, these differences are more likely to be due to differing

environmental effects, rather than due to different amounts of

additive genetic variance. For example, it has been suggested that

the heritability of height in a West African population is less than

that typically estimated from European populations [78]. My

results would argue that such a difference would be due to shifts in

the environmental variance, rather than changes in amount of

additive genetic variance as a result of differences in recent

population history.

A major conclusion of this study is that recent population

growth has a greater effect on the architecture of traits when a

mutation’s effect on fitness is correlated with its effect on the

phenotype than when the mutation’s effect on fitness is indepen-

dent of its effect on the phenotype. The extent to which mutations

that increase risk of disease are under negative selection remains

unclear. While it is intuitive that disease mutations should be

under negative selection, most common diseases have an onset

after reproductive age, and as such, may not be correlated with

reproductive fitness. However, it is possible that mutations

increasing risk to late-onset disease may have pleiotropic effects

and could affect traits related to reproduction [59,79]. In fact, it

has been suggested that pleiotropy is rather frequent for many

common SNPs associated with disease [80], and may apply to rare

variants as well. Additionally, genes and common variants

associated with common diseases show signatures of negative

selection [81,82], suggesting that disease variants may be under

negative selection. A third line of evidence comes from studies of

model organisms. A mutagenesis study [83] found that P-element

insertions that contributed the most to the variance in bristle

number in Drosophila tended to reduce viability. A fourth line of

evidence suggesting that a mutation’s effect on complex disease

may be correlated with fitness comes from an empirical analysis of

GWAS data. Looking at over 350 susceptibility SNPs across eight

Figure 8. Cumulative distribution of the amount of the additive
genetic variance of a trait (VA; y-axis) explained by SNPs with a
single-marker association test P-value less than a given
threshold (x-axis). (A) A SNP’s effect on the trait is correlated with
its effect on fitness (t= 0.5). Note that the population that experienced
recent growth (green line; BN+growth) has a lower proportion of VA

accounted for by SNPs at any P-value threshold than the populations
that did not recently expand (orange and purple lines; BN and Old
growth). (B) A SNP’s effect on the trait is independent of its effect on
fitness (t= 0). Here note that the SNPs with low P-values (,0.05)
account for most of the VA regardless of the demographic history of the
population. Here h2

C~0:05 and M = 70 kb.
doi:10.1371/journal.pgen.1004379.g008
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categories of phenotypes, Park et al. [84] found that low-frequency

SNPs tended to have larger effect sizes than more common SNPs

(significantly so for type 1 diabetes, height, and LDL levels), even

after correcting for the ascertainment bias resulting from the

reduced power to detect associations with low-frequency SNPs of

weak effect. Such a correlation is expected under models where a

mutation’s effect on fitness is correlated with its effect on the trait

(t= 0.5; Fig. S10A). However, a correlation between a mutation’s

effect on disease and its frequency is not expected under a model

where a mutation’s effect on disease is independent of its effect on

fitness (t= 0; Fig. S10B). There is little direct evidence to indicate

whether this result holds for low-frequency variants in coding

regions. But, selection is likely to be stronger (per base pair) in

coding regions than throughout noncoding regions of the genome

[85], suggesting this result should hold for coding regions as well.

Finally, the correlation between a mutation’s effect on fitness and

its effect on a trait is likely to depend on the particular trait

involved. While further empirical and theoretical work is needed

in this area, all of these lines of evidence suggest that, for some

traits, it is plausible that a mutation’s effect on fitness could indeed

be correlated with its effect on disease.

Further rationale for considering models where a mutation’s

effect on fitness is correlated with its effect on the trait comes from

exome sequencing studies themselves. A major assumption made

in exome sequencing studies is that some of the missing heritability

can be explained by rare variants of large effect that increase risk

to disease [3,4]. If there is no correlation between a mutation’s

effect on disease and its effect on fitness, then there is no reason for

the effects on disease risk to be greater for rare variants than for

more common variants. Under this model (where fitness effects are

independent of trait effects), effect sizes would be randomly

assigned to SNPs, regardless of their allele frequency. On the other

hand, if a mutation’s effect on fitness is correlated with its effect on

disease, then the SNPs with the strongest effects on disease are

likely to be the most deleterious ones. As such, they will also be the

most rare in the population due to negative selection. Because the

exome sequencing paradigm essentially assumes that the effect of a

coding region mutation on disease is correlated with its effect on

fitness, it is important to investigate the proprieties of such a model

under different population histories.

My models make several predictions that can be tested with

empirical data. While these models have been developed to apply

to exome sequencing data, because the predictions are robust to

the mutational target size and heritability accounted for by the

mutations in the target region (Fig. S1, Fig. S4, Fig. S6–Fig.
S9), they should apply to GWAS data as well, especially if low-

frequency variants are imputed from a reference panel, like the

1000 Genomes Project. First, the models predict that if a

mutation’s effect on fitness is correlated with its effect on the

trait, common variants should account for more of the heritability

in a population that did not expand than in one that had recently

expanded. This prediction can be tested by analyzing GWAS data

in expanded vs. non-expanded populations. Second, for a given

sample size, if a mutation’s effect on fitness is correlated with its

effect on the trait, the models predict that fewer significant

associations will be detected in the recently expanded population

than in a population that has not expanded. This prediction can

also be tested by comparing the number of significant associations

detected in GWAS data from the expanded population vs. the

non-expanded population. Third, the prediction that, if a

mutation’s effect on fitness is correlated with its effect on the

trait, low-frequency variants should account for more of the

heritability in the recently expanded population than in a non-

expanded population can be tested directly once large-scale exome

sequencing data in both expanded and non-expanded populations

has been collected. Failing to find these patterns in GWAS and

exome sequencing data would suggest that there is little correlation

between a mutation’s effect on fitness and its effect on the trait.

Several recent studies have used results from population genetic

models to guide the design and interpretation of association studies

of rare variants [86,87]. My results are especially complementary

to those Zuk et al. [87]. In particular, they argue that a population

expansion does not increase the proportion of the disease due to

new alleles. My finding of a similar contribution of young alleles to

the heritability in expanded vs. non-expanded populations

(Fig. 3A) supports their conclusion, despite different modeling

assumptions in the two studies. Zuk et al. [87] also argue that the

‘‘role’’ of rare variants in disease is increased in an expanding

population. Here I provide a more detailed analysis of this topic

using an explicit quantitative genetic model and evaluate the

conditions under which recent population growth accentuates the

contribution of rare variants to the heritability of the trait.

One important limitation of the present study is that I evaluated

the power of single-marker association tests, rather than gene-

based association tests. It has been suggested that single-marker

tests may be under-powered relative to gene-based tests for

detecting associations with rare variants [37,88]. I did not consider

gene-based association tests in the present study because the

present simulations assume that all SNPs are independent of each

other. Thus, there is no way to simulate genes containing multiple

SNPs having the appropriate LD structure in this framework.

Future work could simulate larger genic regions using other

approaches [56]. However, the analysis of the performance of

single-marker association tests still provides important insights for

understanding how demography affects the ability to map genes

for complex traits. First, many association studies of rare variants

include single-marker association tests, even if they also consider

gene-based tests [23–25,88]. Thus, my results are directly

applicable to designing and interpreting such studies. Second,

several gene-based association tests combine the single-marker

association tests in various ways. Thus, the manner in which

single-marker signals are affected by demography is relevant for

such tests. Third, it is not clear that gene-based tests are always

superior to single-marker tests. A recent study [89] has suggested

that gene-based tests based on single-marker association statistics

may be more powerful than other ‘‘burden tests.’’ Further,

performance of gene-based association tests is known to decrease if

many non-causal SNPs are included [22,87,89]. Also, if causal

variants are scattered across many distinct genes, then gene-based

association tests may not provide an increase in power over single-

marker tests [30]. As sample sizes continue to grow, it is likely that

single-marker tests will be more frequently used for sequencing-

based association studies because they are simpler to implement

and eliminate the need to decide how to combine variants within a

gene. Thus, insights gained from the analysis of single-marker

association tests in the present study should still be useful.

Another possible limitation of this study is that my models do

not allow some mutations affecting complex traits to be beneficial

or under balancing selection. There is some evidence that loci

associated with certain traits (obesity and type 2 diabetes, in

particular [90,91]) may have been affected by positive selection.

However, this pattern was found for common variants outside of

coding regions. It is not clear how many nonsynonymous causal

mutations would be expected to be under positive selection.

Additionally, loci under positive or balancing selection should have

already been detected in GWAS (because they would be common

variants), and are not the type of loci researchers are aiming to

discover through exome sequencing studies.
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My results suggest that if a mutation’s effect on fitness is

correlated with its effect on the trait, recent population history can

have an important effect on the ability to detect associations with

causal variants. In the simulations, fewer causal SNPs were

significantly associated with disease in the population that

experienced recent growth as compared to the population that

did not expand. This result would imply that, in order to detect the

greatest number of causal loci for a given sample size, it would be

better to focus on populations that experienced a bottleneck, but

did not experience a recent population expansion. Currently, it is

not clear which populations meet this criterion. Further sequenc-

ing of large samples of individuals will be required to determine

which populations have not experienced recent population

growth. For a variety of reasons, most GWAS have been done

in large samples of cases and controls of European ancestry [92].

The same trend may hold for exome and genome re-sequencing

studies. Recent genetic studies, as well as historical records indicate

that many European populations are precisely those that

experienced the type of extreme, recent population growth

simulated in this study [36]. The simulations presented here

suggest that focusing on such populations may not discover the

largest number of causal variants for a given number of individuals

sequenced.

An important goal in human genetics is to understand disease

risk in populations throughout the globe. While focusing on

populations that have not experienced ancient or recent growth

may yield the largest list of putative causal loci, it is currently not

clear whether such an approach will lead to increased under-

standing of the genetic basis of disease in all populations—not just

the population under study. Analyses of common variants

implicated through GWAS suggest that loci associated with traits

in European populations also affect the traits in other non-

European populations [93–96]. However, it is unclear whether this

trend also holds for rare variants that have arisen after the

populations have split from each other. Thus, in order to

understand the genetic basis of complex traits across the globe,

it will be important to study populations that have recently

expanded in addition to those more stable in size, recognizing that

larger sample sizes in populations that have recently expanded will

be necessary to achieve comparable power to that in non-

expanded populations.

Finally, these results are directly relevant for finding the

‘‘missing heritability’’ in different populations. If a mutation’s

effect on disease is correlated with its effect on fitness, then more of

the heritability will be explained by very rare variants in a

population that experienced a recent expansion than in a

population that did not recently expand. Additionally, the variants

detected by single-marker association tests explain less of the

heritability in a recently expanded population than in a population

that did not recently expand. Thus, while the overall heritability of

a trait may not be variable across populations, our ability to

discover the variants that account for it is likely to vary across

populations due to differences in demographic history.

Supporting Information

Figure S1 Population history has little effect on the narrow-sense

heritability (h2) of a trait. (A–D) A SNP’s effect on the trait is

correlated with its effect on fitness (t= 0.5). (E–H) A SNP’s effect

on the trait is independent of its effect on fitness (t= 0). (A, E)

h2
C~0:3 and M = 70 kb. (B, F) h2

C~0:3 and M = 140 kb. (C, G)

h2
C~0:1 and M = 70 kb. (D, H) h2

C~0:05 and M = 70 kb.

Narrow sense heritability was computed for each demographic

model as h2~
VA

VAzVE

. Here VE~1{h2
C for all scenarios.

VA~
P

i SNPs

2pi(1{pi)a
2
i , pi is the frequency of the ith SNP, and ai

is the ith SNP’s effect on the trait.

(PDF)

Figure S2 Proportion of nonsynonymous SNPs over time. Note

that the proportion of nonsynonymous SNPs after the bottleneck

(near 0 generations) is higher than that in the ancestral population

(at time 4000 generations ago) for both the model with recent

population growth (dashed green line) and the model without

recent population growth (solid orange line).

(PDF)

Figure S3 Population history has little effect on the genetic load.

Genetic load was calculated for all SNPs segregating in a sample of

6000 individuals taken from each demographic history.

(PDF)

Figure S4 The number of causal SNPs with a significant P-value

(,161025) in the single-marker association test for additional

models of the trait. Orange denotes the bottleneck demographic

model (BN). Green denotes the bottleneck and recent growth

model (BN+growth). Purple denotes the ancient growth model

(Old growth). (A–C) A SNP’s effect on the trait is correlated with

its effect on fitness (t= 0.5). (D–F) A SNP’s effect on the trait is

independent of its effect on fitness (t= 0). (A, D) h2
C~0:3 and

M = 140 kb. (B, E) h2
C ~0:1 and M = 70 kb. (C, F) h2

C ~0:05

and M = 70 kb.

(PDF)

Figure S5 Effect of recent population growth on the heritability

attributable to mutations of different ages when t= 0. Orange

boxes denote the bottlenecked population that did not recently

expand (BN). Green boxes denote a population that expanded 80

generations ago (BN+growth). ‘‘Before bottleneck’’ refers to

mutations that arose more than 1960 generations ago (before or

during the bottleneck). ‘‘After bottleneck’’ refers to mutations that

arose after the population recovered from the bottleneck, but

earlier than 80 generations ago. ‘‘After growth’’ refers to mutations

that arose within the last 80 generations (after the population

expanded). (A) Heritability attributed to mutations of different

ages. Note that recent population growth does not affect the

median heritability attributable to mutations of different ages. (B)

Number of SNPs segregating in the present-day that arose during

the different time intervals. (C) Mean allele frequency of SNPs that

are segregating in the present-day that arose during the different

time intervals. (D) Mean effect size of SNPs that are segregating in

the present-day that arose during the different time intervals. Here

h2
C~0:05 and M = 70 kb.

(PDF)

Figure S6 Cumulative distribution of the amount of the additive

genetic variance of a trait (VA; y-axis) explained by SNPs

segregating below a given frequency in the population (x-axis)

for additional models of the trait. (A–C) A SNP’s effect on the trait

is correlated with its effect on fitness (t= 0.5). Note that the

population that experienced recent growth (green; BN+growth)

has a higher proportion of VA accounted for by low-frequency

SNPs (,0.1% frequency) than the populations that did not

recently expand (orange and purple; BN and Old growth). (D–F)

A SNP’s effect on the trait is independent of its effect on fitness

(t= 0). Note that less of VA is accounted for by low-frequency

variants than when the trait is correlated with fitness (A).

(PDF)

Figure S7 Cumulative distribution of the amount of the

phenotypic variance of a trait (VP; y-axis) explained by the SNPs
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that explain the most variance (x-axis) for additional models of the

trait. (A–C) A SNP’s effect on the trait is correlated with its effect

on fitness (t= 0.5). Note that the top SNPs account for less of the

phenotypic variance in the population that experienced recent

growth (green; BN+growth) than in the populations that did not

recently expand (orange and purple; BN and Old growth). (D–F)

A SNP’s effect on the trait is independent of its effect on fitness

(t= 0).

(PDF)

Figure S8 The number of causal SNPs with a P-value ,161022

in the single-marker association test for different models of

population history and the trait. Orange denotes the bottleneck

demographic model (BN). Green denotes the bottleneck and

recent growth model (BN+growth). Purple denotes the ancient

growth model (Old growth). (A–D) A SNP’s effect on the trait is

correlated with its effect on fitness (t= 0.5). (E–H) A SNP’s effect

on the trait is independent of its effect on fitness (t= 0). (A, E)

h2
C~0:3 and M = 70 kb. (B, F) h2

C~0:3 and M = 140 kb. (C, G)

h2
C~0:1 and M = 70 kb. (D, H) h2

C~0:05 and M = 70 kb.

(PDF)

Figure S9 Cumulative distribution of the amount of the additive

genetic variance of a trait (VA; y-axis) explained by SNPs with a

single-marker association test P-value less than a given threshold

(x-axis) for additional models of the trait. (A–C) A SNP’s effect on

the trait is correlated with its effect on fitness (t= 0.5). Note that

the population that experienced recent growth (green line; BN+
growth) has a lower proportion of VA accounted for by SNPs at

any P-value threshold than the populations that did not recently

expand (orange and purple lines; BN and Old growth). (D–F) A

SNP’s effect on the trait is independent of its effect on fitness

(t= 0). Note that the SNPs with low P-values (,0.05) account for

most of the VA regardless of the demographic history of the

population. (A, D) h2
C~0:3 and M = 70 kb. (B, E) h2

C~0:3 and

M = 140 kb. (C, F) h2
C~0:1 and M = 70 kb.

(PDF)

Figure S10 The relationship between a mutation’s effect on the

trait and its allele frequency. Statistics were calculated for each

simulation replicate and then averaged over the 1000 simulation

replicates. (A, C) A SNP’s effect on the trait is correlated with its

effect on fitness (t= 0.5). (B, D) A SNP’s effect on the trait is

independent of its effect on fitness (t= 0). (A–B) Average effect size

(on the liability scale) for SNPs having the allele frequency (in the

population) specified on the x-axis. (C–D) Median odds ratios

(ORs) computed from a sample of 1000 cases and controls across

all SNPs in a simulation replicate having the allele frequency (in

the population) specified on the x-axis. Note, median ORs equal to

infinity (due to many case-only variants) were set to 4 for plotting

purposes. Here h2
C~0:3 and M = 70 kb.

(PDF)

Table S1 Values of the constant C used to generate the desired

heritability for different values of h2
C and M.

(DOCX)

Table S2 Average percentage of the phenotype variance (VP)

explained by the top 50 SNPs that explain the most variance under

different models of population history, h2
C and M.

(DOCX)

Table S3 Average number of GWAS hits expected in samples of

1000 cases and 1000 controls under different models of population

history, h2
C and M.

(DOCX)

Text S1 Additional results on recent growth and deleterious

variation.

(DOCX)

Text S2 Additional results on the effect of demography on the

power of association tests.
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