Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

substituents attached are also described in this report.

Review article

Review of ¹³carbon nuclear magnetic resonance characterizations of dimethyltin carboxylates

Harpreet Kaur, Archana Thakur

Chemistry Department, Chandigarh University, Mohali, Punjab, India

ARTICLE INFO ABSTRACT Keywords: Diorganotin carboxylates have received much interest in past decades due to their rich structural chemistry and Dimethytin complexes wide range of applications in various fields. This review study provides an in-depth analysis of carbon NMR data Dimethyltin carboxylates of dimethyltin complexes. The absorptions shown by the carbonyl carbon, methyl groups attached to tin and the Ligands other carbons present in the complexes were presented in this study. The effects of nature and the number of 13C NMR spectroscopy

1. Introduction

The significant rise in research activity in the chemistry of organotin complexes in past decades is probably because organotin compounds can be studied using various physical methods. The incredible structural and stereochemical diversity ability is an essential characteristic of organotin compounds. These compounds' synthesis, properties, industrial and biological applications were studied in all respect. The ambient nature of carboxylate ligands is due to the numerous structural motifs identified in this compound family [1, 2, 3]. Many factors, including the flexibility of coordination geometries, the number of coordinations, and the manner of coordination, all played a role in the structural diversity of organotin (IV) carboxylates [4]. In industry, diorganotin dicarboxylates are used as polymerization and transesterification catalysts [5, 6]. Dimethyltin derivatives have a wide range of properties, with anti-cancer, anti-tumour, and anti-bacterial prominent [7, 8]. In the α -glucosidase enzyme assay, some organotin complexes inhibited the enzyme's activity, while the standard drug acarbose inhibited poorly [9]. A surprising finding was that the 4-(diethylamino)benzic acid-derived dimethyltin (IV) complex outperformed the dibutyltin (IV) and triorganotin (IV) derivatives in terms of anti-bacterial activity [10]. Organotin carboxylates have a wide spectrum of applications and possible uses as indicated by the reports in the literature [11]. Organotin carboxylate compounds were used for their biocidal properties and effectiveness as medicinal compounds [12, 13]. Unique structural and diverse properties of organotin carboxylates make these compounds as significant class with applications as catalyst [14], anti-cancer [15], anti-fungal [16, 17], anti-bacterial [18], insecticidal [19], and wood preservatives agents [20].

The spectroscopic and technological developments enabled researchers from various disciplines to use these techniques not only for the complex structural purposes of molecules but also for wide-ranging applications. ¹³C Nuclear Magnetic Resonance (NMR) study has attained the status of one of the best spectroscopic methods for significant structural characterization, containing organic groups, among the currently useful spectroscopical techniques (Infrared, proton, carbon and tin NMR, Mössbauer spectroscopic studies and Mass spectrometry). In order to get a better insight of the structure chemistry of organotin carboxylates, the ¹³C NMR spectra of several dimethyltin carboxylates were investigated, and the results were presented in this paper.

2. ¹³C NMR data of dimethyltin carboxylates

Two dimethyltin carboxylate complexes 1(a) and 1(b) of *m*-methyl trans-cinnamic acid ligand were synthesized, and their ¹³C spectroscopic characterization was carried out. The carbonyl carbon showed resonance at δ 176, and 173 ppm, the tin atom's methyl carbon, and the ligand's methyl group showed peaks at δ 5.2 and 9.8/6.6 ppm and δ 21.23 and 21.3 ppm respectively in different dimethyltin carboxylates [21]. A new dimethyl organotin complex (2) synthesized from ligand 2-(2-hydroxybenzylideneamino)benzoic acid showed carbon resonances at δ 173 ppm (COO); 147 (1, 6, 8, 9 carbons); 136, 130, 125 (2, 3, 4, 5, 10, 11, 12, 13 carbons), 115 (7 carbon), 10 (Sn-CH₃) ppm respectively [22]. The carbonyl carbon in [Me₂Sn(O₂CC₄H₃E)₂] complexes 3(a), 3(b) and 3(c) where E is oxygen or sulphur of 2-thiophene- or 2-furan-carboxylic acids showed resonance at δ 170 ppm while the ring carbons showed resonances between δ 127–134 ppm. In addition to finding the structure of

* Corresponding author. E-mail addresses: arch9chem@gmail.com, archana.e9358@cumail.in (A. Thakur).

https://doi.org/10.1016/j.heliyon.2022.e10507

Received 13 April 2022; Received in revised form 31 July 2022; Accepted 26 August 2022

CelPress

^{2405-8440/© 2022} The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).

Table 1. List and overview of ligands.

Ligand no.	Ligand name	Structure	Double bond at position	Functional group, Substituents attac	/ hed	Reference
				Group	Position	
L1	<i>m</i> -Methyl trans-cinnamic acid	5 4 3 CHs	1, 3, 5, 7	CH3	3	[21]
L2	2-(2-Hydroxybenzylideneamino) benzoic acid	5 0H HO 0 4 2 7 N 8 9 10 13 12	2, 4, 6, 7, 9, 11, 13	ОН	1	[22]
L3	Thiophene-2-carboxylic acid		1, 3	-	-	[23, 24]
L4	Furan-2-carboxylic acid		1, 3		-	
L5	(2-[2,6-Dichlorophenylamino] phenylacetic acid)	5 6 0 1 NH 1' 6' 0 0 0 0 0 0 0 0 0 0 0 0 0	2, 4, 6, 1′, 3′, 5′	CI	2, 6	[25]
L6	4-Bromomaleanilic acid	$HO \underbrace{10}_{0} \underbrace{9}_{8} \underbrace{7}_{H} \underbrace{10}_{4} \underbrace{10}_{5} \underbrace{10}_{6} \underbrace{10}_{1} 1$	2, 4, 6, 8	Br; C=O	1; 7	[26]
L7	2 [(2,4-DichloroanilinoCarbonyl)] benzoic acid)	$10^{9^{\prime}} \xrightarrow{11}{10} \begin{array}{c} \text{Cl} \\ 10^{\prime} \\ 10^{\prime} \\ 10^{\prime} \\ 10^{\prime} \\ 10^{\prime} \\ 9^{\prime} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	1, 3, 5, 8, 10, 9′	Cl; C=O	1, 3; 7	[27]
L8	4-((4-methoxy-2-Nitrophenyl) amino)-4-oxobut-2-enoic Acid	H_0	1, 4, 6, 8	C=O; OCH ₃ ; NO ₂	3; 7; 9	[28]
L9	3-(4-Ethoxyphenyl)-2-methylacrylic acid	$HO = \begin{bmatrix} 10 \\ CH_3 \\ 2 \\ 4' \\ 5' \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -3 \\ -2 \\ -7 \\ -8 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -3 \\ -7 \\ -8 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -7 \\ -8 \end{bmatrix}$	1, 3, 5′, 5	CH ₃ ; OCH ₂ CH ₃	1; 6	[29]
L10	Iminodiacetic acid		-		-	[30]

Table 1 (continued)

Ligand no.	Ligand name	Structure	Double bond at position	Functional group Substituents atta	o/ ched	Reference
				Group	Position	
L11	Di-(9- anthracene carboxylic acid)	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \end{array} \begin{array}{c} 0 \\ 9 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 7$	2, 4, 5, 6, 8, 10, 12			[31]
L12	4-Phenylbutyric acid	$ \begin{array}{c} 9 \\ 3 \\ 7 \\ 6 \end{array} $ $ \begin{array}{c} 9 \\ 4 \\ 5 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	5, 7, 9		-	[32]
L13	2-(2-Fluorobenzylidene) butanoic acid	Ho Ho H_{3C} g g g g g g g g g g	1, 4, 6, 8	F; CH ₂ CH ₃	4; 1	[33]
L14	(3,5-Di-tert-butyl-4-hydroxybenzoate)	$H_{3}C$ H	1, 3, 5	C(CH ₃) ₃ ; OH	3, 5; 4	[34]
L15	(3-(3,5-Di-tert-butyl-4-hydroxyphenyl) propionate)	$H_{3}C - CH_{3}$	1, 3, 5	С(СН ₃) ₃ ; ОН	3, 5; 4	
L16	2-(<i>N</i> -Maleoyl)-3-phenylpropanoic acid	8' 1 6 0 4' 5' 6 6 6	3, 5, 5′, 8	C=O	7, 7′	[35]
L17	6-Nitropiperonylic acid	7 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1, 3, 5	NO ₂	6	[36]
L18	3-[(3',5'-Dimethylphenylamido)] propanoic acid	$\begin{array}{c} 7\\ 4\\ 5\\ 8\end{array} \xrightarrow{\begin{array}{c} 0\\ 1\\ 5\end{array}} \xrightarrow{\begin{array}{c} 0\\ 1\\ 1\\ 0\end{array}} \xrightarrow{\begin{array}{c} 0\\ 1\\ 0\\ 0\end{array}} \xrightarrow{\begin{array}{c} 0\\ 0\\ 0} \xrightarrow{\begin{array}{c} 0\\ 0\\ 0\end{array}} \xrightarrow{\begin{array}{c} 0\\ 0\\ 0\\ 0\end{array}$	1, 3, 5	C=O; CH ₃	9; 3, 5	[37]
L19	(<i>S</i>)-(+)-6-Methoxy-alpha-methyl-2-naphthaleneacetic acid	13 7 12 0 12 0 10 9 2 1 СООН	3, 11, 6, 8, 9	CH ₃ ; OCH ₃	1;6	[38]

11. Kuui, A. Inukui	Н.	Kaur,	А.	Thakur
---------------------	----	-------	----	--------

Table 1 (continued)

Ligand no.	Ligand name	Structure	Double bond at position	Functional grou Substituents att	p/ ached	Reference
				Group	Position	
L20	2-[(2',4',6'-Tribromophenylamido)] benzoic Acid	Br 10 9 9 9 7 0 0 0 0 0 0 0 0 0 0 0 0 0	1, 3, 5, 9, 10′, 11	C=O; Br	7; 2, 4, 6	[39]
L21	3-[(2',4',6'-Tribromophenylamido)] propanoic Acid	Br O Br O H H Br O H	1, 3, 5, 8	C=0; Br	7; 2, 4, 6	
L22	3-(4-Cyanophenyl)-2-methylacrylic acid	8 -1	1, 3, 5′, 5	CH3; CN	1; 7	[40]
L23	6-Chloro-3-pyridineacetic acid	HO 6 5 N CI	1, 3, 5	CI	1	[41]
L24	Bis 2-(4-Methoxy-2-nitrophenylcarbamoyl) benzoic acid	HO O_2N 13 123 6 7 8 9 10 14	2, 4, 6, 8, 10, 12	C=0; NO ₂ ; OCH ₃	7; 13; 11	[42]
L25	3,4-Methylenedioxy 6-nitrophenylpropenoic Acid		1, 3, 5, 8	NO ₂	6	[43]
L26	3-(4-Fluorophenyl) acrylic acid	HO O 2 - 3 4 - 5 - 6 F	1, 3, 5′, 5	F	6	[44]
L27	4-p (Chlorophenyl)-2-phenyl-5-thiazoleacetic acid	13 + 15 + HO = O $12 + 11 + 10 + S = 8 + 16 + 16 + 16 + 16 + 16 + 16 + 16 +$	2, 4, 6, 7, 9, 10, 12, 14	Cl	4	[45]
L28	2-{[5-(2-Nitrophenyl) furan-2-yl] methyleneamino} benzoic acid	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$	1, 3, 5, 7, 8, 10, 12, 14, 16	NO ₂	17	[46]

Table 1 (continued)

Ligand no.	Ligand name	Structure	Double bond at position	Functional group, Substituents attac	/ :hed	Reference
				Group	Position	
L29	1-Ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3- carboxylic acid	$\begin{array}{c} 12\\ 11\\ H_2C\\ H_3C\\ 7\\ 6\\ 5\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	2, 10, 6, 8	CH ₂ CH ₃ ; C=0; CH ₃	1; 4; 7	[47]
L30	Phenyl acetylene carboxylic acid	51 6 6 5 5	4, 6, 4' (C=C) 1 (C≡C)			[48]
L31	2-Phenyl-4-selenazole carboxylic acid	HO 0 1 Se 4 HO 0 0 0 0 0 0 0 0 0 0 0 0 0	3, 5, 7		•	[49]
L32	2-Aminobenzoic acid	4 3 2 0 0 0 0	1, 3, 5	NH ₂	6	[50]
L33	2,6-Pyridinedicarboxylic acid	HO 12' OH	1, 2, 2'		-	[51]

methyltin (IV) compounds in solution, spectroscopic proof from the coupling constants of the methyl carbons and the tin hydrogen of [Me₂Sn(O₂CR)]₂O₂ (where R = Thiophene and furan) revealed that there was no interaction between tin and sulphur or oxygen atoms in the compound [23]. Based on spectroscopic evidence of {[Me₂Sn(O₂CR)]₂O₂ (R = Thiophene and furan), the dimeric structure of dicarboxylato tetraorganodistannoxanes with R₂Sn atoms upfield (for exocyclic) and downfield (for endocyclic) resonance. Deshielding of the respective free acids in the heterocyclic ring was shown [24]. A low-intensity peak at δ 178.5 ppm in the ¹³C NMR of dimethyltin (2-[2, 6-dichlorophenylamino]phenylacetate) complex (4) demonstrated that the carboxylate ion was not in a free state. The shift in the exocyclic methylene carbon and carbon 6 field values towards lower field values revealed the bonding of the metal through the carboxylic group in the methylene carbon [25].

 13 C NMR results for Me₂Sn(4-bromomaleanalate)₂ (5), showed resonances caused by the carboxylate carbon after coordination has been shifted. During the process of complexation, the other carbons in the molecule did not move considerably. With the ^{1}J value for the molecule, the projected C–Sn–C angle was 109.50°, indicating that the complex was in a tetragonal environment around the tin nucleus [26]. Table 1 gives the list and overview of the ligands. Shahzadi and co-workers reported carbon NMR of dimethyltin-2-[(2,4-dichloroanilino carbonyl)]benzoate complexes (6). The position of the carboxylate group in tin bonding was corroborated by the resonance attributed to C, which indicated a shift in the position of the carboxylate group following coordination. The carbon atoms of the methyl groups that are connected to the tin atom are discovered to be in the same location [27]. In dimethyltin complexes **7(a)**

and 7(b) derived from 4-((4-methoxy-2-nitrophenyl)amino)-4-oxobut-2-enoic acid ligand reported in a study. The carboxylate moiety resonances showed a noticeable shift to downfield concerning the Sn due to the electronegative Sn atom withdrawing electron density away from the ligand. In the Lockhart Equation, the C-Sn-C bond angle value for methyltin compounds calculated from the ${}^{2}J$ (119 Sn 1 H) coupling was 117° [28]. Figure 1 explains the structures of complexes number 1–10. The ¹³C NMR of complexes (8) of formula $[Me_2SnL_2]$ [where L = 3-(4-Ethoxyphenyl)-2-methylacrylate], showed ^{1}J [119 Sn, 13 C], 703 Hz (146°) corresponding to 5-coordinated tin atoms in solutions comparable with literature results. The data was further supported five coordinated structure of the tin atom in solutions by C-Sn-C angles values using Lockhart Equation. The pattern of complexity ranging from six solid-state coordination to five solution coordination attributed to fluxion behaviour [29]. In a methanol solvent, dimethyltin dicarboxylates (9) were made by heating disodium iminodiacetate hydrate using dimethyltin dichloride. The carbon NMR of the complex showed resonances at δ 179 ppm due to carbonyl carbon and CH_2 group attached to carbonyl carbon at δ 51.9 ppm [30]. The dimethyltin complexes (10) Me₂Sn [OC(O)C₁₄H₉]₂ CH₃OH derived from the ligand anthracenecarboxylic acid, was reported to be characterized by elemental analysis, mass spectrometry, multinuclear nuclear magnetic resonance studies. The ¹³C NMR resonances due to different Carbons appeared at δ 5.4 ppm (CH₃, ¹*J* (¹¹⁹Sn–¹³C), 50.3 (CH₃OH), 124.8, 124.9, 126.1, 126.7, 128.1, 128.4, 129.6, 130.5 (C14H9), and 178.4 (COO) ppm [31]. Table 2 depicts ¹³C NMR data of complexes number 1–10.

The reactions of Me_2SnCl_2 with $NaO_2C(CH_2)_3Ph$, yielded carboxylates **(11)** of formula [{($Me_2SnOC(CH_2CH_2CH_2)_2O$ }]. The different carbon NMR peaks observed at δ 179.9, 35.7, 27.4, 34.4, 141.8–126.3, and

Figure 1. Structure of complex 1–10: (a) Dimethyl complexes 1 (a) and 1(b) with m-methyl trans-cinnamic acid ligand; 2 with 2-(2-hydroxybenzylideneamino)benzoic acid ligand; 3(a), 3(b) with thiophene-2-carboxylic acid and 3(c) with furan-2-carboxylic acid ligand; 4 complex (2-[2,6-dichlorophenylamino]phenylacetic acid) ligand; 5 with 4-bromomaleanilic acid ligand; 6 dimethyltin-2-[(2,4-dichloroanilinocarbonyl)]benzoate complex; 7(a) and 7(b) with 4-((4-methoxy-2-nitrophenyl)-4-oxobut-2-enoic acid ligand; 8 with 3-(4-ethoxyphenyl)-2-methylacrylate ligand; 9 with iminodiacetate hydrate ligand; 10 with anthracene carboxylic acid ligand.

Table 2. ¹³C NMR data of complexes number 1–10.

Complex	Complex formula	δ (¹³ C) (pp	om)			J values (Hz)	C–Sn–C angle (°)	Reference
		Carbons attached to Tin (Sn) Carbons of Ligand						
		Position	Value	Position	Value			
1 (a)	$[Me_2Sn(L^1)_2] CH_3 5$	5.20	COO	176.0	¹ J [633.00]	132.28	[21]	
				1	134.3			
				2	131.5			
		3 138.5 4 128.8 5 128.5 6 125.4	3	3	138.5			
				4	128.8			
				6	125.4			
				7	117.1			
				8	147.0			
				9	21.23			
1 (b)	$\{[(Me_2SnL^1)_2O]_2\}$	$[SnL^1]_2O]_2$ CH ₃ 9.80, 6.60	COO	173.0	¹ J [815.00], [756.00]	148.25		
			1	134.0				
				2	130.0			
				3	138.0			
				4	128.69			
				5	128.67			
				6	125.16			
				7	121.19			
			8	144.0				
				9	21.30			

H. Kaur, A. Thakur

Table 2 (continued)

Complex	Complex formula	δ (¹³ C) (pr	om)			J values (Hz)	C–Sn–C angle (°)	Reference	
		Carbons at	ttached to Tin (Sn)	Carbons of Ligand		-			
		Position	Value	Position	Value	-			
2	$[Me_2Sn(L^2)_2]$	CH ₃	10	COO	173	¹ J [960]	-	[22]	
				1, 6, 8, 9	147				
				2, 3, 4, 5, 10, 11, 12, 13	136, 130				
				7	125				
					115				
3 (a)	$[Me_2Sn(L^3)_2]$	CH ₃	3.5	COO	170.7	¹ J [630]	132	[23, 24]	
				1	133.7				
				2	133.4				
				3	128.0				
				4	134.6				
3 (b)	[Me ₂ SnCl(L ³)]	CH ₃	3.5	COO	169.5	-	-		
				1	132.6				
				2	133.6				
				3	127.8				
				4	134.8				
3 (c)	$[Me_2Sn(L^4)_2]$	CH ₃	5.1	C00	165.8	-	-		
				1	144.7				
				2	118.9				
				3	111.8				
				4	146.4				
4	$[Me_2Sn(L^5)_2]$	CH ₃	9.5. 6.6	COO	178.5	-	145, 141	[25]	
	- 2 - 72	- 5	,	1	137.9				
				2.6	129.7				
				3.5	128.8				
				4	123.9				
				5'	130.6				
				6'	125.4				
				7'	41.2				
5	$[Me_2Sn(L^6)_2]$	CH₂	4.5	COO	169.0	-	-	[26]	
Ī	[1	134.2			[]	
					2.6	132.2			
				3.5	132.4				
				4	127.3				
				7	172.8				
				8	121.8				
				9	115.4				
6	[Me ₂ Sn(L ⁷) ₂]	CH₂	14.12	COO	175.7	-	-	[27]	
		- 5		1	136.7				
				2.4	128.5				
				3.5	134.0				
				6	130.3				
				7	166.3				
				8.11	131.3				
				9.9'	124.0				
				10.10'	1141				
7	[Me ₂ Sn(L ⁸) ₂]	CHa	-0.7	COO	164.2	¹ J [833]	-	[28]	
í l	[0113		1	131.4	0 [000]		[10]	
				2	133.8				
				3	170.2				
				4	125.2				
				5	126.8				
				6	121.1				
				7	156.3				
				8	109.5				
				9	142.7				
			10	56.6					

H. Kaur, A. Thakur

Table 2 (continued)

Complex	Complex formula	δ (¹³ C) (ppm)				J values (Hz)	C–Sn–C angle (°)	Reference	
		Carbons attached to Tin (Sn)		Carbons of Ligand	Carbons of Ligand				
		Position	Value	Position	Value				
8	[Me ₂ Sn(L ⁹) ₂]	/le ₂ Sn(L ⁹) ₂] CH ₃ 4.5	Me ₂ Sn(L ⁹) ₂] CH ₃ 4.5	4.5	COO	179.1	² J [703]	146.0	[29]
				1	127.6				
				2	138.3				
					3	131.5			
				4,4′	130.9				
				5,5′	114.3				
				6	159.2				
				7	63.4				
				8	14.8				
				9	14.4				
9	${Me_2SnL^{10} [Sn(Cl)_2Me_2]_2}$	CH ₃	23.5	COO	171.1	-	152.8, 134.3	[30]	
				1,1′	51.9				
10	$[Me_2Sn(L^{11})_2]$	CH ₃	5.4	COO	178.4	¹ J [642, 625]	133	[31]	
		1–13 14	1–13	124.8-130.5					
				14	50.3				

9.1 ppm [32]. The bis [-2-(2-fluorobenzylidene)butanoato] tetramethyldistannoxane complex (12) showed eleven peaks at δ 177.5, 130.2, 136.5, 123.7, 160.4, 115.7, 130.3, 130.02, 128.6, 21.5, 13.8 ppm due to carbons numbering from C1 to C-11 and at δ 4.8 ppm due to C–Sn [33]. The organotin (IV) carboxylates 13(a) and 13(b) based on 3, 5-di-tert-butyl-4-hydroxyphenyl of formulae (RCOO)₂SnMe₂ showed peaks at δ 4.31 [Sn(CH₃)₂], 30.3 [C(CH₃)₃], 31.42 [ArCH₂CH₂COO], 34.31 [C(CH₃)], 36.21 [ArCH₂-CH₂CO₂], 124.88; 131.02; 135.87; 152.17 ppm due to Ar group and at δ 183.52 ppm due to carbonyl carbon [34]. The ¹³C NMR spectroscopy data of dimethyltin complexes (14)

Figure 2. Structure of complex 11–20: dimethyl complexes; **11** with 4-phenylbutyric acid; **12** bis(-2-(2-fluorobenzylidene)butanoato) tetramethyldistannoxane complex; **13(a)** with (3,5-di-tert-butyl-4-hydroxybenzoate) and **13 (b)** with (3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) ligand; **14** with 2-(*N*-maleoyl)-3-phenylpropanoic acid ligand; **15** with 6-nitropiperonylic acid ligand; **16** with 3-[(3',5'-dimethylphenylamido)]propanoic acid ligand; **17** with (*S*)-(+)-6-methoxy-alpha-methyl-2-naphthaleneacetic acid ligand; **18(a)** with 2-[(2',4',6'-tribromophenylamido)]benzoic acid and **18(b)** with 3-[(2',4',6'-tribromophenylamido)]propenoic acid ligand; **19** with 3-(4-cyanophenyl)-2-methylacrylic acid ligand; **20** with 6-chloro-3-pyridineacetic acid ligand.

 Table 3. ¹³C NMR data of complexes number 11–20.

Complex	Compound	δ (¹³ C) (pp	m)			J values (Hz)	C-Sn-C angle (°)	Reference		
		Carbons at	Carbons attached to Tin (Sn) Carbons of Ligand		Ligand					
		Position	Value	Position	Value					
11	$[(Me_2Sn(L^{12})_2]]$	CH ₃	9.1	COO	179.9	¹ J [802/767]	147.1, 143.2	[32]		
			6.6	1	35.7	¹ J [758/722]				
				2	27.4					
				3	34.4					
				4_9	141.8–126.3					
12	${[Me_2SnL^{13}]_2O}_2$	CH ₃	4.8	COO	177.5	¹ J [14.3]	-	[33]		
				1	130.2	¹ J [248.2]				
				2	136.5	^{1}J [21.8]				
				3	123.7	J[8.2] ${}^{1}J[3.7]$				
				4	160.4	${}^{1}J$ [3.0]				
				5	115.7					
				6	130.3					
				7	130.02					
				8	128.6					
				9	21.5					
				10	13.8					
13 (a)	$[Me_2Sn(L^{14})_2]$	CH ₃	4.95	COO	176.42	-	-	[34]		
				1–6	120.53, 128.10, 135.75, 158.70,					
				8	30.20					
				9	34.37					
13 (b)	$[Me_2Sn(L^{15})_2]$	CH ₃	4.31	COO	183.52	-	-			
				1–7	124.88, 131.02, 135.87, 152.17					
				8	31.42					
				9	36.21					
14	$[Me_2Sn(L^{16})_2]$	CH ₃	7.4	COO	170.1	-	131.3	[35]		
				2	54.3					
				3	34.9					
				4	137.6					
				5,5′	128.7					
				6,6′	133.7					
						7	126.6			
				8	175.2					
				9,9′	128.5					
15	$[Me_2Sn(L^{17})_2]$	CH ₃	4.6	COO	174.3	-	-	[36]		
				1	129.0					
				2	108.5					
				3	151.3					
				4	149.8					
				5	105.0					
				6	143.2					
				7	103.6					
16	$[Me_2Sn(L^{18})_2]$	CH_3	29.6	COO	177.4	349–396	359.3	[37]		
				1	138.03					
				2/6	117.08					
				3/5	139.67					
				4	124.84					
				7/8	21.85					
				9	170.69					
				10	29.26					
				11	31.38					
17	$[Me_2Sn(L^{19})_2]$	CH_3	18.90	COO	180.85	-	-	[38]		
				2–11	157.54–105.56					
				6	55.25					
				12	47.43					

Table 3 (continued)

Complex	Compound	δ (¹³ C) (pp	m)			J values (Hz)	C–Sn–C angle (°)	Reference	
		Carbons at	tached to Tin (Sn)	Carbons of	Ligand				
		Position	Value	Position	Value				
18 (a)	$[Me_2Sn(L^{20})_2]$	CH ₃	29.6	COO	174.8	-	-	[39]	
				1	136.7				
				2/4/6	128.6				
				3/5	134.5				
				7	166.7				
				8	131.0				
				9, 9′	124.1				
				10,10′	115.7				
				11	130.2				
18 (b)	$[Me_2Sn(L^{21})_2]$	CH ₃	29.6	COO	175.7	-	-		
				1	135.0				
				2/4/6	129.5				
				3/5	133.7				
				7	164.2				
				8	124.6				
				9	114.4				
19	$[Me_2Sn(L^{22})_2]$	CH ₃	4.6	COO	177.6	¹ J [704/670]	138.5	[<mark>40</mark>]	
				1	125.3				
				2	140.3				
				3	138.4				
				4	28.2				
				5	132.2				
				6	111.8				
				7	118.5				
				8	14.4				
20	$[Me_2Sn(L^{23})_2]$	CH ₃	14.1	COO	173.3	-	-	[<mark>41</mark>]	
				1–5	124.1–150.2				
				1-5 6	6	37.7			

derived from 2-(N-maleoyl)-3-phenylpropanoic acid exhibited a number of signals representing magnetically different carbon atoms. The involvement of two C=O entities in the ligand produced two distinct, well-separated, regions ranging from δ 170–175 ppm. At δ 7.4 ppm, the moieties connected to the tin atom produced a signal [35]. The ¹³C NMR data of dimethytin compounds (15) derived from 6-nitropiperonylate, in CDCl₃ solvent, showed resonances at 8 129.0, 108.5, 151.3, 149.8, 105.0, 143.2, 103.6 and 174.3 ppm attributed to carbons numbering from C1–C8 carbons. The methyl group attached to tin showed signal at δ 4.6 ppm [36]. Figure 2 depicts the structures of complex number 11-20. Dimethyltin complexes (16) developed from a new ligand synthesized by treating succinic anhydride and 3,5-dimethylaniline described in a report. The decrease in the ¹³C NMR shift upon coordination, in agreement with the results from the carboxylic carbon resonance, demonstrates that the carboxylate group plays a more significant role in the bonding to Sn. In the experimental findings, concerning reports in the literature, the carbon of alkyl groups bonded to tin is found in almost the same position [37]. A complex of formula {[Me₂Sn(L)]₂O}₂ (17) reported in study where ligand L а was (S)-(+)-6-methoxy-alpha-methyl-2-naphthaleneaceto anion. A significant downfield shift in the ¹³C NMR spectrum, including all carbon resonances, was observed in comparison to the ligands, which was attributed to the outflow of electron density from the ligand to the metal atoms. At δ 174.8 ppm, the resonances are attributed to the carbonyl carbon [38]. In dimethyltin complexes 18(a) and 18(b) showed values of δ 163.0–166.8 and 170–176.8 ppm due to the –COO and –C=O group, respectively. Aromatic carbon resonances showed signals in the region reported in the literature [39]. The ¹³C NMR data of the complex (19) showed peaks of & 177.6, 125.3, 140.3, 138.4, 128.2, 132.2, 111.8, 118.5, 14.4 ppm due to C1–C9 carbons and δ 4.6 ppm due to the methyl

carbon attached to the tin [40]. The carbon NMR spectra of organotin complex (20) synthesized using 6-chloro-3-pyridineacetic acid ligand and dimethyltin dichloride showed signals at δ 173.3 ppm due to COO group, 124.1–150.2 ppm due to C₆H₅–C group, 37.7 ppm due to C₆H₅–CH₂ group and δ 14.1 ppm due to CH₃ carbon [41]. Table 3 presents ¹³C NMR data of complexes number 11–20.

The dimethyltin complexes (21) derived from 2-(4-methoxy-2-nitrophenylcarbamoyl)benzoic acid ligand exhibited fifteen signals at δ 160.3, 129.6, 127.7, 132.9, 135.7, 124.4, 131.9, 167.0, 121.3, 128.7, 120.9, 156.6, 109.5, 142.5, and 56.0 ppm [C1-C15 carbons]. The Sn-CH₃ carbon showed a signal at δ 0.6 ppm ¹J [¹¹⁹Sn-¹³C], 800 Hz [42]. The complex of formula [Me₂SnL₂] (22), using 3,4-methylenedioxy-6-nitrophenylpropenoic acid ligand showed resonances due to carboxyl carbon moved to a lower region, indicating the coordination with the carboxyl group [43]. The dimethyltin complexes (23) derived from ligand 3-(4-fluorophenyl)acrylic acid ligand showed that C1 of the complexes were shifted downfield due to the drainage of electron density [44]. The NMR spectra of dimethyltin complexes (24) of 4-p-(chlorophenyl)-2-phenyl-5-thiazoleacetic acid showed signals due to carbonyl Carbon at δ 180 ppm [45]. A new dimethyltin complex (25) was synthesized general formula [Me₂Sn(OBz)₂] where OBz represents ligand named 2-{[5-(2-nitrophenyl)furan-2-yl]methyleneamino}benzoic acid and its spectroscopic data were analyzed. Coupling constants ⁿJ (¹¹⁹Sn-¹³C) helps in the structural elucidation of the new complexes. Figure 3 depicts the structures of complex number 21–31.

¹³C NMR spectra of ligand (NaOBz) showed its shift as (δ ppm): 173.24 (COO); 112.61–178.71 (others) and of the complex as 175.30 (COO); 111.28–178.14 (others) respectively [46]. A new complex **(26)** derived from the ligand (1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid). The spectra showed no appreciable change

Figure 3. Structure of complex 21–31: dimethyl complexes; 21 with bis 2-(4-methoxy-2-nitrophenylcarbamoyl)benzoic acid; 22 3,4-methylenedioxy 6-nitrophenylpropenoic acid ligand; 23 with 3-(4-fluorophenyl)acrylic acid and 24 with 4-(*p*-chlorophenyl)-2-phenyl-5-thiazoleacetic acid ligand; 25 with 2-{[5-(2-nitrophenyl)furan-2-yl]methyleneamino}benzoic acid ligand; 26 with (1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid ligand; 27 with phenyl acetylene carboxylic acid acid; 28 with o-(p-dimethylaminobenzali- dine)benzoic acid ligand; 29 with 2-phenyl-4-selenazole carboxylic acid ligand; 30 with 2-aminobenzoic acid ligand; 31(a) and 31(b) with 2,6-pyridinedicarboxylic acid ligand.

in the carbon resonances except the carbonyl carbon [47]. The $[Me_2Sn(pac)]_4$ complex (27) derived from the ligand phenyl acetylene carboxylic acid showed resonance values at δ 158.15 (COO); 83.20, 84.23 (C=C); 120.22–132.95 (aromatic ring); 5.79, 10.14 ppm (methyl

carbons attached directly to tin) [48]. The spectroscopic data of dimethyltin complex (28) derived from the ligand *o*-(*p*-dimethylaminobenzali- dine)benzoic acid exhibited signals at δ 175.0 (COO); 31.2 (NCH3); 110.7–150.3 (other carbons); 5.5 ppm (Sn–CH₃) [49]. Another

Table 4. ¹³	³ C NMR data of compl	lex number 21–3	1.					
Complex	Compound	ompound δ (¹³ C) (ppm)				J values (Hz)	C–Sn–C angle (°)	Reference
		Carbons attached to Tin (Sn)	Carbons of Ligand					
		Position	Value	Position	Value			
21	$[Me_2Sn(L^{24})_2]$	CH ₃	0.6	COO	160.3	¹ J [800]	147	[42]
				1	129.6			
				2	127.7			
				3	132.9			
				4	135.7			
				5	124.4			
				6	131.9			
		7	7	167.0				
				8	121.3			
				9	128.7			
				10	120.9			
				11	156.6			
				12	109.5			
				13	142.5			
				14	56.0			

Complex	Compound	δ (¹³ C) (pp	m)			J values (Hz)	C–Sn–C angle (°)	Reference					
		Carbons at	ached to Tin (Sn)	Carbons of Ligand									
		Position	Value	Position	Value								
22	$[Me_2Sn(L^{25})_2]$	CH ₃	4.34	COO	187.87	-	-	[43]					
				1	126.36								
				2	105.93								
				3	153.10								
				4	150.18								
				5	104.86								
				6	141.35								
				7	104.30								
				8	141.25								
				9	123.10								
23	$[Me_2Sn(L^{26})_2]$	CH ₃	4.6	COO	171.3	¹ J [703]	138.4	[44]					
				1	118.3								
				2	145.4								
				3 4.4'	131.2								
				5,5'	129.5								
				6	116.1, 115.8								
					165.8, 162.4								
					129.5								
24	[Me ₂ Sn(L ²⁷) ₂]	CH₃	5.6	COO	170.0	¹ J [630]	-	[45]					
	L 2 C 723	- 5		1	136.8								
				2.6	112.2								
				35	135.8								
				4	131.6								
				7	128.8								
				8	133.5								
				0	148.0								
				10	127.0								
				11 15	124.0								
				11,15	134.9								
				12,14	134.0								
				13	128.1								
25	[Me ₂ Sn(L ²⁸) ₂]	CII	14.05	10	21.1			[46]					
25	[Me ₂ Sn(L ²⁸) ₂]	[Me23II(L)2] CH3 14.93	14.95	1	1/5.30	-	-	[40]					
					1	121.79							
					2	112.22							
										3	112.22		
				4	132.68								
				5	116.05								
				6	150.97								
				7	178.14								
				8	152.61								
				9	111.28								
				10	132.92								
				11	153.18								
				12	114.42								
				13	130.21								
				14	131.05								
				15	133.24								
				16	124.34								
	22			17	147.34								
26	$[Me_2Sn(L^{29})_2]$	CH ₃	1.5	COO1234567891011	178.0	-	-	[47]					
				1	148.2								
				2	122.3								
				3	166.6								
				4	109.7								
				5	120.3								
				6	148.6								
				7	164.8								
				8	136.5								
				9	47.4								
				10	15.2								
				11 10	25.3								

Table 4 (continued)

Complex	Compound	δ (¹³ C) (ppm)				J values (Hz)	C–Sn–C angle (°)	Reference
		Carbons attached to Tin (Sn)		Carbons of Ligand				
		Position	Value	Position	Value			
27	[Me ₂ Sn(L ³⁰)] ₄	CH3	5.79, 10.14	COO	158.15	-	-	[48]
				1	83.20			
				2	84.23			
				3	132.95			
				4,4′	130.20			
				5,5′	120.22			
				6	128.54			
29	[(Me ₂ Sn) ₄ (L ³¹) ₂ (Cl) ₂]	CH3	-	COO	176.21	-	-	[49]
				1	169.13			
				2–7	127.93-151.37			
30	$[Me_2Sn(L^{32})_2]$	CH3	7.3	COO	175.1	-	-	[50]
				1–6	150.4-113.1			
31 (a)	[Me ₂ Sn(L ³³) ₂]	CH3	10.1	COO	168.8	-	159.6–161.6	[51]
				1,1′	141.3			
				2,2'	126.2			
				3	147.2			
31 (b)		CH3	10.2	COO	166.8	-		
				1,1′	141.3			
				2,2'	126.2			
				3	147.2			

new dimethyltin complex **(29)** of 2-phenyl-4-selenazole carboxylic acid ligand showed two signals due to endocyclic/exocyclic tin atoms at δ 143 and 190 ppm, respectively, indicating dimer in solution [50]. Bis(μ_3 -oxo) bis (μ -O-aminobenzoato-O,O')bis (O-aminobenzoato)tetrakis [di-methyltin (IV)] complex **(30)** showed the resonance signals at δ 175.1 (COO); 150.4–113.1 (aromatic carbons); 7.3 ppm (Sn–CH₃) [51]. The spectroscopic data of two dimethyltin complexes **31(a)** and **31(b)** using ligand 2,6-pyridinedicarboxylic acid showed that the resonances due to carboxylate groups remained at almost the same resonance as that of the ligand. The methyl carbons attached directly to the tin also showed a point of difference between the two complexes [52]. Table 4 represents data related to ¹³C NMR data of complex number 21–31.

3. Conclusion

The chemical shift of ¹³C nucleus is influenced by the electronic environment of the complex. The carbonyl carbon in these complexes showed resonances from δ 158–187 ppm. Some of the complexes showing absorption in higher ppm value were having electron donating groups and benzene rings in the structure. The complexes showing absorption in low ppm region were having electron withdrawing groups. As far as methyl groups attached with tin are concerned also showed absorption in different ppm values ranging from δ 0.6–29.6 ppm. The nitro groups containing complexes showed resonances in δ 0.6–1.5 ppm region. While the complexes contacting chloro, bromo and oxygen atoms showed absorption in δ 14–29.6 ppm region. The C–Sn–C bond angle ranges from 132-159° in different dimethyltin complexes. The higher angle was seen in case of nitrogen containing complexes. This spectroscopic technique has contributed a lot in explaining the structural chemistry and in future also will play an important role in this area.

Declarations

Author contribution statement

All authors listed have significantly contributed to the development and the writing of this article.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability statement

No data was used for the research described in the article.

Declaration of interest's statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

- W. Kang, X. Wu, J. Huang, Synthesis, crystal structure and biological activities of four novel tetranuclear di-organotin (IV) carboxylates, J. Organomet. Chem. 694 (15) (2009) 2402–2408.
- [2] V.N. Dokorou, D. Kovala-Demertzi, M. Louloudi, A. Silvestru, M.A. Demertzis, Synthesis, characterization and catalytic properties of diorganotin derivatives. Crystal and molecular structure of the first complex of 2-(2-methyl-3-nitroanilino) benzoic acid of 1, 2: 3, 4-di-µ2-2-(2-methyl-3-nitroanilino) benzoato-O, O-1, 3-bis-2-(2-methyl-3-nitroanilino) benzoato-O-1, 2, 4: 2, 3, 4-di-µ3-oxo-tetrakis [dimethyltin (IV)], J. Organomet. Chem. 693 (24) (2008) 3587–3592.
- [3] E. Gómez, R. Flores, G. Huerta, C. Alvarez-Toledano, R.A. Toscano, V.c. Santes, N. Nava, P. Sharma, Dimethyltin (IV) 2, 6-disubstituted pyridine complexes, J. Organomet. Chem. 672 (1-2) (2003) 115–122.
- [4] S.M. Abbas, S. Ali, S.T. Hussain, S. Shahzadi, Structural diversity in organotin (IV) dithiocarboxylates and carboxylates, J. Coord. Chem. 66 (13) (2013) 2217–2234.
- [5] C.J. Evans, Organotin compounds in modern technology, J. Organomet. Chem. Libr. 16 (1985) 1137–1138.
- [6] T.P. Lockhart, J.C. Calabrese, F. Davidson, Structural studies of diorganotin (IV) carboxylates. X-ray and NMR structures of Me2Sn (OAc) 2 and a 7-coordinate tin anion, Me2Sn (OAc) 3NMe4. cntdot. 2CHCl3, Organometallics 6 (12) (1987) 2479–2483.
- [7] Q. Zhang, M. Zhang, H. Wang, X. Tian, W. Ma, L. Luo, J. Wu, H. Zhou, S. Li, Y. Tian, A series of two-photon absorption organotin (IV) cyano carboxylate derivatives for targeting nuclear and visualization of anti-cancer activities, J. Inorg. Biochem. 192 (2019) 1–6.

- [8] M. Kumar, Z. Abbas, H.S. Tuli, A. Rani, Organotin complexes with promising therapeutic potential, Curr. Pharmacol. Rep. (2020) 1–15.
- [9] M. Roy, S. Roy, K.S. Singh, J. Kalita, S.S. Singh, Synthesis, characterization and antidiabetic assay of diorganotin (IV) azo-carboxylates: crystal structure and topological studies of azo-dicarboxylic acid ligand and its cyclic tetranuclear dimethyltin (IV) complex, New J. Chem. 40 (2) (2016) 1471–1484.
- [10] Y.-F. Win, S.-G. Teoh, M. Vikneswaran, S.-T. Ha, P. Ibrahim, Synthesis and characterization of organotin (IV) complexes derived of 4-(diethylamino) benzoic acid: in vitro anti-bacterial screening activity, Int. J. Phys. Sci. 5 (8) (2010) 1263–1269.
- [11] E.R. Tiekink, Structural chemistry of organotin carboxylates: a review of the crystallographic literature, Appl. Organomet. Chem. 5 (1) (1991) 1–23.
- [12] N.F. Cardarelli, Tin as a Vital Nutrient: Implications in Cancer Prophylaxis and Other Physiological Processes, CRC Press, 2019.
 [13] B.K. Keppler, Metal Complexes in Cancer Chemotherapy, Wiley VCH, 1993.
- [13] B.K. Reppier, Metal Complexes in Cancel Chemotherapy, Wiley Vorh, 1995.
 [14] M. Sirajuddin, M. Tariq, S. Ali, Organotin (IV) carboxylates as an effective catalyst for the conversion of corn oil into biodiesel, J. Organomet. Chem. 779 (2015)
- 30–38.
 [15] H. Wang, L. Hu, W. Du, X. Tian, Q. Zhang, Z. Hu, L. Luo, H. Zhou, J. Wu, Y. Tian, Two-photon active organotin (IV) carboxylate complexes for visualization of anticancer action, ACS Biomater. Sci. Eng. 3 (5) (2017) 836–842.
- [16] F.A. Shah, M. Sirajuddin, S. Ali, S.M. Abbas, M.N. Tahir, C. Rizzoli, Synthesis, spectroscopic characterization, X-ray structure and biological screenings of organotin (IV) 3-[(3, 5-dichlorophenylamido)] propanoates, Inorg. Chim. Acta. 400 (2013) 159–168.
- [17] J.J. Bonire, G.A. Ayoko, P.F. Olurinola, J.O. Ehinmidu, N.S. Jalil, A.A. Omachi, Synthesis and antifungal activity of some organotin (IV) carboxylates, Met. Base. Drugs 5 (4) (1998) 233–236.
- [18] A.F. Butt, M.N. Ahmed, M.H. Bhatti, M.A. Choudhary, K. Ayub, M.N. Tahir, T. Mahmood, Synthesis, structural properties, DFT studies, antimicrobial activities and DNA binding interactions of two newly synthesized organotin (IV) carboxylates, J. Mol. Struct. 1191 (2019) 291–300.
- [19] S. Shahzadi, K. Shahid, S. Ali, M. Mazhar, A. Badshah, E. Ahmed, A. Malik, Nonsteroidal anti-inflammatory drugs (NSAIDs) as donor ligands in organotin (IV) derivatives: synthesis, spectroscopic characterization and biological applications, Turk. J. Chem. 29 (3) (2005) 273–288.
- [20] S. Blunden, R. Hill, Bis (tributyltin) oxide as a wood preservative: its conversion to tributyltin carboxylates in Pinus sylvestris, Appl. Organomet. Chem. 4 (1) (1990) 63–68.
- [21] M. Danish, S. Ali, M. Mazhar, A. Badshah, M.I. Choudhary, H.G. Alt, G. Kehr, Mössbauer, multinuclear magnetic resonance and mass spectrometric studies of organotin carboxylates of m-methyltrans-cinnamic acid, Polyhedron 14 (20-21) (1995) 3115–3123.
- [22] D.K. Dey, M.K. Saha, M. Gielen, M. Kemmer, M. Biesemans, R. Willem, V. Gramlich, S. Mitra, Synthesis, spectroscopy and structure of [N-(2-carboxyphenyl) salicylideneiminato] dimethyltin (IV), J. Organomet. Chem. 590 (1) (1999) 88–92.
- [23] C. Vatsa, V.K. Jain, T. Kesavadas, E.R. Tiekink, Structural chemistry of organotin carboxylates: XII. Synthesis and characterization of diorganotin (IV) carboxylates containing 2-thiophene-or 2-furan-carboxylic acid. Crystal structure of [Et2Sn (O2CC4H3S) 2], J. Organomet. Chem. 410 (2) (1991) 135–142.
- [24] C. Vatsa, V. Jain, T. Das, E. Tiekink, Structural chemistry of organotin carboxylates VI. Characterization of {[R2Sn (O2CR')] 20} 2 (R= Me, Et, nPr and nBu; R'= thiophene and furan). X-ray crystal structure of {[nBu2Sn (O2CC4H3S)] 20} 2, J. Organomet. Chem. 396 (1) (1990) 9–18.
- [25] N. Kourkoumelis, M.A. Demertzis, D. Kovala-Demertzi, A. Koutsodimou, A. Moukarika, Preparations and spectroscopic studies of organotin complexes of diclofenac, Spectrochim. Acta Mol. Biomol. Spectrosc. 60 (10) (2004) 2253–2259.
- [26] K. Shahid, S. Ali, S. Shahzadi, A. Badshah, K.M. Khan, G.M. Maharvi, Organotin (IV) complexes of aniline derivatives. I. Synthesis, spectral and anti-bacterial studies of di-and triorganotin (IV) derivatives of 4-bromomaleanilic acid, Synth. React. Inorg. Met. Org. Chem. 33 (7) (2003) 1221–1235.
- [27] S. Shahzadi, K. Shahid, S. Ali, M. Mazhar, K. Khan, Organotin (IV) derivatives as biocides: an investigation of structure by IR, solution NMR, electron impact MS and assessment of structure correlation with biocidal activity, J. Iran. Chem. Soc. 2 (4) (2005) 277–288.
- [28] M. Sirajuddin, S. Ali, V. McKee, N. Akhtar, S. Andleeb, A. Wadood, Spectroscopic characterizations, structural peculiarities, molecular docking study and evaluation of biological potential of newly designed organotin (IV) carboxylates, J. Photochem. Photobiol. B Biol. 197 (2019), 111516.
- [29] M. Tariq, M. Sirajuddin, S. Ali, N. Khalid, N. Shah, Biological evaluations and spectroscopic characterizations of 3-(4-ethoxyphenyl)-2-methylacrylate based organotin (IV) carboxylates derivatives, Russ. J. Gen. Chem. 87 (11) (2017) 2690–2698.
- [30] S. Hussain, S. Ali, S. Shahzadi, M.N. Tahir, M. Shahid, K.S. Munawar, S.M. Abbas, Synthesis, spectroscopy, single crystal XRD and biological studies of multinuclear organotin dicarboxylates, Polyhedron 117 (2016) 64–72.
- [31] M.M. Amini, A. Azadmeher, H.R. Khavasi, S. Ng, Synthesis, characterization, and molecular structures of di-and triorganotin (IV) complexes with 9-anthracenecarboxylic acid: the structural diversity in organotin 9-anthracenecarboxylates, J. Organomet. Chem. 692 (18) (2007) 3922–3930.
- [32] C. Rocha, B. de Morais, B.L. Rodrigues, C. Donnici, G. de Lima, J.D. Ardisson, J.A. Takahashi, R.S. Bitzer, Spectroscopic and X-ray structural characterization of

new organotin carboxylates and their in vitro antifungal activities, Polyhedron 117 (2016) 35–47.

- [33] M. Iqbal, S. Ali, N. Muhammad, M. Parvez, P. Langer, A. Villinger, Synthesis, characterization, crystal structures and electrochemical studies of organotin (IV) carboxylates, J. Organomet. Chem. 723 (2013) 214–223.
- [34] T. Antonenko, D. Shpakovsky, D. Berseneva, Y.A. Gracheva, L. Dubova, P. Shevtsov, O. Redkozubova, E. Shevtsova, V. Tafeenko, L. Aslanov, Cytotoxic activity of organotin carboxylates based on synthetic phenolic antioxidants and polycyclic bile acids, J. Organomet. Chem. 909 (2020), 121089.
- [35] S. Ahmed, S. Ali, F. Ahmed, M.H. Bhatti, A. Badshah, M. Mazhar, K.M. Khan, Synthesis, spectroscopic characterization, and biological applications of organotin (IV) derivatives of 2-(N-maleoyl)-3-phenylpropanoic acid, Synth. React. Inorg. Met. Org. Chem. 32 (8) (2002) 1521–1536.
- [36] M. Hanif, M. Hussain, S. Ali, M.H. Bhatti, M.S. Ahmed, B. Mirza, H. Stoeckli-Evans, In vitro biological studies and structural elucidation of organotin (IV) derivatives of 6-nitropiperonylic acid: crystal structure of {[(CH2O2C6H2 (o-NO2) COO) SnBu2] 20} 2, Polyhedron 29 (1) (2010) 613–619.
- [37] F. Shah, S. Ali, S. Shahzadi, C. Rizzoli, S. Ahmad, Synthesis, spectral characterization and X-ray crystal structure of biologically active organotin (IV) 3-[(3', 5'-dimethylphenylamido)] propanoates, J. Iran. Chem. Soc. 9 (6) (2012) 923–932.
- [38] C. Ma, B. Zhang, S. Zhang, R. Zhang, Chiral organotin (IV) carboxylates complexes: Syntheses, characterization, and crystal structures with chiral (S)-(+)-6-methoxyα-methyl-2-naphthaleneaceto acid ligand, J. Organomet. Chem. 696 (10) (2011) 2165–2171.
- [39] S. Shahzadi, K. Shahid, S. Ali, Coordination behavior of the carboxylate group in organotin (IV) derivatives of 2-[(2', 4', 6'-tribromophenylamido)] benzoic acid and 3-[(2', 4', 6'-tribromophenylamido)] propenoic acid: spectroscopic studies, Russ. J. Coord. Chem. 33 (6) (2007) 403–411.
- [40] M. Tariq, S. Ali, N.A. Shah, N. Muhammad, M.N. Tahir, N. Khalid, Catalytic, biological and DNA interaction studies of 3-(4-cyanophenyl)-2-methylacrylate organotin (IV) carboxylates derivatives: synthesis, spectroscopic characterization and X-ray structures, Inorg. Chim. Acta. 405 (2013) 444–454.
- [41] J.-H. Zhang, R.-F. Zhang, C.-L. Ma, D.-Q. Wang, H.-Z. Wang, New organotin carboxylates derived from 6-chloro-3-pyridineacetic acid exhibiting discrete molecular, drum-like, linear polymeric and ladder structures constructed from dimeric tetraorganodistannoxane units, Polyhedron 30 (4) (2011) 624–631.
- [42] M. Sirajuddin, V. McKee, M. Tariq, S. Ali, Newly designed organotin (IV) carboxylates with peptide linkage: synthesis, structural elucidation, physicochemical characterizations and pharmacological investigations, Eur. J. Med. Chem. 143 (2018) 1903–1918.
- [43] M.S. Ahmad, M. Hussain, M. Hanif, S. Ali, B. Mirza, Synthesis, chemical characterization and biological screening for cytotoxicity and antitumor activity of organotin (IV) derivatives of 3, 4-methylenedioxy 6-nitrophenylpropenoic acid, Molecules 12 (10) (2007) 2348–2363.
- [44] M. Tariq, M. Sirajuddin, S. Ali, N. Khalid, M.N. Tahir, H. Khan, T.M. Ansari, Pharmacological investigations and Petra/Osiris/Molinspiration (POM) analyses of newly synthesized potentially bioactive organotin (IV) carboxylates, J. Photochem. Photobiol. B Biol. 158 (2016) 174–183.
- [45] S. Ali, M.N. Khokhar, M. Bhatti, M. Mazhar, M.T. Masood, K. Shahid, A. Badshah, 1H, 13C, and 119Sn NMR, IR, mass, thermal, and biological studies of organotin (IV) derivatives of 4-p-(Chlorophenyl)-2-phenyl-5-thiazoleacetic acid, Synth. React. Inorg. Met. Org. Chem. 32 (8) (2002) 1373–1392.
- [46] L.C. Dias, G.M. de Lima, J.A. Takahashi, J.D. Ardisson, New di-and triorganotin (IV) carboxylates derived from a Schiff base: synthesis, characterization and in vitro antimicrobial activities, Appl. Organomet. Chem. 29 (5) (2015) 305–313.
- [47] S. Ahmed, M.H. Bhatti, S. Ali, F. Ahmed, Organotin (IV) derivatives of 1-ethyl-1, 4dihydro-7-methyl-4-oxo-1, 8-naphthyridine-3-carboxylic acid (nalidixic acid): synthesis, structural elucidation and biological activities, Turk. J. Chem. 30 (2) (2006) 193–202.
- [48] M. Yousefi, F. Tavakolinia, S.M. Hassanzadeh, Comparison of anti-bacterial activities of di-and tri-tin (IV) carboxylate complexes, in: International Conference on Biology, Environment and Chemistry (Singapoore), 2011.
- [49] T.S.B. Baul, E.R. Tiekink, Crystal and molecular structure of o-aminobenzoato (o-(pdimethylaminobenzalidine) benzoato)(o-ammoniobenzoate) dimethyltin (IV), an example of a mixed carboxylate complex of tin, J. Chem. Crystallogr. 26 (6) (1996) 393–397.
- [50] M. Nath, Conventional and microwave-assisted synthesis, characterization, DFT calculations, in vitro DNA binding and cleavage studies of potential chemotherapeutic diorganotin (IV) mandelates, J. Photochem. Photobiol. B Biol. 162 (2016) 348–360.
- [51] F. Vieira, D. Menezes, G. De Lima, J. Wardell, M. Cortés, G. Silva, A. Vilas-Boas, J. da S. Maia, Effect of diorganotin (IV) carboxylate complexes, [N-(2-carboxyphenyl) salicylideneiminato] dimethyltin (IV), bis (µ3-oxo) bis (µ-O-aminobenzoato-O, O') bis (O-aminobenzoato) tetrakis [dimethyltin (IV)] and bis (O-aminobenzoato-O, O') di-n-butyltin (IV), on the membrane of Candida albicans cells—a mechanistic investigation of the antifungal activity of organotin complexes, Appl. Organomet. Chem. 22 (8) (2008) 433-439.
- [52] C. Ma, J. Li, R. Zhang, D. Wang, Syntheses and crystal structures of dimethyltin (IV) derivatives with 2, 6-pyridinedicarboxylic acid, Inorg. Chim. Acta. 358 (15) (2005) 4575–4580.