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Treatment of rheumatic immune-related adverse events due
to cancer immunotherapy with immune checkpoint
inhibitors—is it time for a paradigm shift?
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Abstract
Immunotherapy has revolutionized cancer treatment during the last years. Several monoclonal antibodies that are specific for
regulatory checkpoint molecules, that is, immune checkpoint inhibitors (ICIs), have been approved and are currently in use for
various types of cancer in different lines of treatment. Cancer immunotherapy aims for enhancing the immune response against
cancer cells. Despite their high efficacy, ICIs are associated to a new spectrum of adverse events of autoimmune origin, often
referred to as immune-related adverse events (irAEs), which limit the utility of these drugs. These irAEs are quite common and
can affect almost every organ. The grade of toxicity varies from very mild to life-threatening. The pathophysiological mecha-
nisms behind these events are not fully understood. In this review, we will summarize current evidence specifically regarding the
rheumatic irAEs and we will focus on current and future treatment strategies. Treatment guidelines largely support the use of
glucocorticoids as first-line therapy, when symptomatic therapy is not efficient, and for more persistent and/or moderate/severe
degree of inflammation. Targeted therapies are higher up in the treatment pyramid, after inadequate response to glucocorticoids
and conventional, broad immunosuppressive agents, and for severe forms of irAEs. However, preclinical data provide evidence
that raise concerns regarding the potential risk of impaired antitumoral effect. This potential risk of glucocorticoids, together with
the high efficacy and potential synergistic effect of newer, targeted immunomodulation, such as tumor necrosis factor and
interleukin-6 blockade, could support a paradigm shift, where more targeted treatments are considered earlier in the treatment
sequence.
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Introduction

The pivotal role of the immune system in cancer and the
concept of cancer immunotherapy is far from new [1]. It has
been known for long that immune surveillance is responsible

for elimination of cancer cells in the very initial stages of
carcinogenesis [2]. Creation of neo-antigens, foreign antigens
on the surface of cancer cells, which are the result of genetic
and epigenetic changes, makes cancer cells a detectable target
for destruction by the immune system. However, cancer cells
can develop survival mechanisms and escape immune detec-
tion and destruction through induction of tolerance among
tumor-specific T cells and inhibition of T cell functions within
the tumor microenvironment [3].

Several different approaches of immunotherapy in cancer
have been or are currently being developed. Immune check-
point inhibitors (ICIs) restore the immune response against
tumors. Vaccination with tumor antigens activates effector
immune cells to tack neoplastic cells, albeit this strategy has
not been so successful [4]. Adoptive cellular therapy with
administration of immune cells directly to patients, adminis-
tration of oncolytic viruses for initiating systemic antitumor
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activity and ways of supplying co-stimulatory signals to en-
hance T cell activity, such as with cytokine administration in
order to stimulate the host’s immune system (IL2, IFN-α), are
some other examples of cancer immunotherapy [2]. Chimeric
antigen receptor (CAR) T cell therapy is another promising
immunotherapy using gene transfer technology to induce a
patient's cytotoxic T lymphocytes to express CARs stably [5].

Immune checkpoints

Among these different strategies, the most widely used today
is the blockade of some specific immune checkpoints, such as
the cytotoxic T lymphocyte–associated antigen 4 (CTLA-4)
and programmed death 1 (PD-1)/programmed death ligand 1
(PD-L1) acting as negative regulators of T cell immune func-
tion, using the so called CPIs. During recent years several
monoclonal antibodies to inhibit these targets have been de-
veloped and approved for the treatment of melanoma, non-
small cell lung cancer, and other cancers. Other inhibitory
immune checkpoints exist, such as lymphocyte activation
gene 3 (LAG-3), T cell immunoglobulin, and mucin domain
3 (TIM-3), V-domain immunoglobulin suppressor of T cell
activation (VISTA). We are going to focus on PD-1/PD-L1
and CTLA-4 since there are approved treatments targeting
them.

T cells require more than one stimulatory signal in order to
be activated. Binding of B7-1 (CD80) or B7-2 (CD86) mole-
cules on the antigen-presenting cells with CD28 on the T cells
gives the co-stimulatory signal required for the activation of T
cell, after the binding of T cell receptor (TCR) to MHC [6].
This leads to proliferation, differentiation and increased sur-
vival of T cells. CTLA-4 is a CD28 homolog with higher
affinity to B7, but unlike CD28, it does not produce a stimu-
latory signal leading to suppression of T cell activation [7]
(Fig. 1). The relative amount of CD28:B7 binding versus

CTLA-4:B7 binding determines whether a T cell will undergo
activation or will become anergic [8]. Stimulatory signals in-
duce upregulation of CTLA-4 [9]. In some cases however,
such as in regulatory T cells, CTLA-4 is constitutively
expressed and significantly contributes to their immune sup-
pressive functions [10].

Similarly to CTLA-4, PD-1, a member of the B7 family
of co-stimulatory receptors, inhibits T cell activation, pro-
liferation and survival through binding to PD-L1 and PD-
L2 [11] (Fig. 2). Although both PD-L1 and PD-L2 are
ligands of PD-1 and both downregulate T cell effector
function, these two ligands differ in several aspects. PD-
L1 is constitutively expressed at low levels and is induced
on nearly all tissues upon interferon-gamma signaling. In
contrast, PD-L2 expression is restricted mainly to antigen-
presenting cells. PD-L2 has a much stronger affinity for
PD-1 than does PD-L1[12]. There is a difference in the
expression of these two ligands in different tumor types,
something which might have therapeutic implications [13].
PD-1 is also a marker of “exhausted” T cells. T cell ex-
haustion is a state of hypofunctional T cells in response to
chronic antigen load, such as during chronic infections and
cancer, resulting in suboptimal control of infections and
tumors [14]. However, more recently, the definition of T
cell exhaustion has been altered. It is now known that
exhausted T cells is a heterogeneous group including T
cells that retain some effector function and play a crucial
role in limiting infections and tumor growth [15].

Inhibition of the above immune checkpoints leads to acti-
vation and proliferation of a higher number of effector T cells
and boosting the antitumor response. The exact mechanisms
however remain to be fully elucidated. In more detail, CTLA-
4 blockade leads to activation and proliferation of more T cell
clones and reduces T regulatory cell mediated immunosup-
pression [6]. PD-1 blockade restores the activity of antitumor
T cells that have become quiescent [6]. PD-L1 and PD-L2 are

Fig. 1 The CTLA-4 immune
checkpoint
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more widely expressed compared with the B7 ligands for
CTLA-4. Inhibiting PD-L1 specifically, as opposed to PD-1
inhibition, will block PD-1:PD-L1 interactions while preserv-
ing PD-1:PD-L2 interactions, since PD-1 has a higher affinity
to PD-L2 than PD-L1 [16]. That might have potential impli-
cations for a more favorable toxicity profile of PD-L1 targeted
inhibition.

Hitherto, seven CPIs have been approved by regulatory
authorities for the treatment of various solid tumors and he-
matological malignancies, either alone or in combination, and
for different stages of the diseases [17]. In Table 1, the

approved CPIs, their indication, target molecule and route of
administration is summarized.

Immune-related adverse events—a new
category of toxicity

Since immunological checkpoints are important regulators of
the immune system, contributing to self-tolerance, inhibition
of these pathways leads not unexpectedly to overactivation of
the immune system and genesis of autoimmune phenomena.

Table 1 Approved immune
checkpoint inhibitors, their
targets, and indications

Monoclonal
antibody

Target Indications

Ipilimumab CTLA-4 Advanced renal cell carcinoma, metastatic colorectal cancer, cutaneous
melanoma, unresectable or metastatic melanoma

Nivolumab PD1 Metastatic small cell lung cancer, unresectable or metastatic melanoma, locally
advanced or metastatic urothelial carcinoma, metastatic colorectal cancer,
hepatocellular carcinoma, metastatic non-small cell lunch cancer, advanced
renal cell carcinoma, classical Hodgkin lymphoma, recurrent or metastatic
squamous cell carcinoma of the head and neck

Pembrolizumab PD1 Melanoma, non-small cell lung cancer, head and neck squamous cell cancer,
Hodgkin lymphoma,Merkel cell carcinoma, hepatocellular carcinoma, gastric
cancer, urothelial carcinoma, cervical cancer

Cemiplimab PD1 Metastatic and locally advanced cutaneous squamous cell carcinoma

Atezolizumab PD-L1 Urothelial carcinoma, metastatic non-small cell lung cancer

Avelumab PD-L1 Metastatic Merkel cell carcinoma, locally advanced or metastatic urothelial
carcinoma

Durvalumab PD-L1 Unresectable stage III non-small cell lung cancer, locally advanced or metastatic
urothelial carcinoma

Fig. 2 The PD-1 immune
checkpoint
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Their exact pathophysiology is not yet entirely understood.
This new category of toxicities, the immune-related adverse
events (irAEs), is remarkably common, with approximately
50% of patients treated with CPI experiencing some form of
irAE [18]. They vary significantly in their severity, ranging
from very mild to life-threatening. They can affect any organ
system, either a single one or multiple organs simultaneously
[19]. Patrick Arnaud-Coffin et al. in a systematic review of
CPI irAEs in RCTs reported grade ≥ 3AEs for 14% of patients
treated with PD(L)-1 inhibitors, 34% of patients treated with
CTLA-4 inhibitors, 55% of patients on CPI combinations and
46 % of patients on immunotherapy-chemotherapy combina-
tion [20]. The profile of irAEs was different among the treat-
ment categories. The use of CPI, especially in combination, is
associated with significant rates of grade ≥ 3 AEs. Colitis,
dermatitis, pneumonitis, and hypophysitis are some examples
of irAEs. Interestingly, development of an irAEs is usually
associated with better response to treatment [21].

Among these irAEs, rheumatic complications, such as ar-
thritis, myositis, sicca syndrome, and polymyalgia
rheumatica, are relatively common and challenging not only
to diagnose but also to treat. Rheumatologic irAEs can occur
and persist long after the cessation of the CPI treatment in
contrast to all others non-rheumatic irAEs [22].

The true frequency of rheumatic irAEs is not well charac-
terized mainly because of underreporting, partly due to lack of
severity leading to hospitalization or death but also because
they can occur as a late as 2 years after the CPI treatment. In
addition, patients with pre-existing rheumatic conditions are
excluded from the clinical trials due to possible exacerbation
of autoimmune toxicity. Thus, the frequency estimates for
rheumatic irAEs vary substantially. For arthralgia/arthritis
the frequency reported ranges from 1 to 43% and for myalgia
including polymyalgia rheumatica (PMR) like syndrome from
2 to 20%. Sicca syndrome is been reported in 5% of patients
receiving monotherapy and 10% of those receiving combina-
tion therapy [23]. More than half of the vasculitis cases asso-
ciated with cancer immunotherapies are related to CPIs, and
increased cases of granulomatous disorders (sarcoidosis), sys-
temic sclerosis, lupus, antiphospholipid syndrome, and eosin-
ophilic fasciitis are reported [23].

Acquiring a deeper understanding of the biology of im-
mune checkpoints and their inhibition is crucial in order to
approach more optimal management strategies. Several rec-
ommendations regarding the management of irAEs have been
published to date [24–27].

Management of rheumatic irAE

There are some basic principles regarding treatment approach
of irAEs that we need to acknowledge. The therapeutic deci-
s ions should be taken af ter discuss ion between

rheumatologists, oncologists, and patients. Continuation or
discontinuation of the CPI should be guided by the severity
of the irAE, the effectiveness of the CPI and the immunosup-
pressive treatment, making the interdisciplinary approach cru-
cial for the optimal management of the patients. Additionally,
we should always keep in mind that we aim at a fine balance,
where the degree of immunosuppression should be high
enough to control the irAE but at the same time preserve the
antitumoral immune response.

According to recently published points to consider from the
European League against Rheumatism (EULAR), symptom-
atic treatment including non-steroidal anti-inflammatory
drugs and/or analgesics should be the initial treatment for
mild-to-moderate rheumatic irAE [25]. Local treatment with
intra-articular glucocorticoids can be considered in case of
monoarthritis or oligoarthritis, with or without combination
with symptomatic treatment. If this is insufficient and tissue
inflammation is still evident, systemic glucocorticoids should
be considered. Some of the rheumatic irAEs might require
high doses of glucocorticoids, and case reports and case series
have shown that even arthritis, which normally respond to
low–medium doses in most cases, might need high doses of
glucocorticoids in the treatment of irAE [28]. Identification of
non-steroid treatment modalities in rheumatic irAE is thus an
issue of concern in severe cases.

Glucocorticoids—friend or foe?

As described above, systemic glucocorticoids are quite high in
the treatment pyramid for the control of inflammation seen in
irAEs. However, there is limited evidence regarding the safety
of glucocorticoids, especially in high doses, in terms of a
potential negative impact on anti-tumoral responses.
Glucocorticoids have been negatively associated with prog-
nostic feature of immunotherapy, in particular for cancers out-
side of the central nervous system [29]. It has also been shown
in mouse models that both endogenous and exogenous gluco-
corticoids can inhibit anticancer immune responses [30]. One
study tested in vitro the influence of clinically relevant doses
of dexamethasone and an anti-TNF monoclonal antibody
[31]. In this study, even low doses of corticosteroids markedly
impaired the anti-tumor activity of tumor-infiltrating lympho-
cytes. In contrast, a standard clinical dose of infliximab, a
chimeric anti-tumor necrosis factor (anti-TNF) monoclonal
antibody, only had a minor effect on T cell activation and
tumor-killing. The activity of lymphocytes was restored after
withdrawal of steroids. Exogenous glucocorticoids used at
clinically relevant concentrations also have immunosuppres-
sive effects on the capacity of dendritic cell to present tumor
antigens as well as on T cell activation and tumor-killing ac-
tivity [32]. These data could suggest that steroid-sparing
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strategies and early initiation of anti-TNF therapy should be
considered for the treatment of irAEs in immuno-oncology.

Despite these in vitro effects, clinical data on the use of
corticosteroids have been contradictory, though only few
and small reports are currently available. In a case series with
36 patients with pre-existing rheumatic disease before anti-
PD1 therapy or de novo rheumatic irAEs on anti-PD1 therapy,
the majority of patients (30 out of 36) received glucocorticoids
[33]. High response rates to anti-PD1 treatment were still ob-
served, especially in the melanoma group. No overt differ-
ences were observed in the duration of corticosteroids in pa-
tients who exhibited ongoing responses compared to those
with primary or acquired resistance. In a systematic literature
review, the data suggested the concomitant administration of
corticosteroids and immune checkpoint inhibitors may not
necessarily lead to poorer clinical outcomes [34].

However, it is important to note that steroid administration
at doses higher than 10 mg prednisolone equivalent were part
of the exclusion criteria in the clinical trials that led to the
approval of ICIs in non-small-cell lung cancer [35–37].
Retrospective data in non-small-cell lung cancer patients treat-
ed with ICIs have demonstrated worse response rates,
progression-free survival and overall survival with steroid ad-
ministration at doses higher than 10 mg of prednisolone
equivalent at treatment initiation [38]. A retrospective study
in NSCLC patients receiving steroids for palliation of cancer-
related symptoms showed worse efficacy of concomitant ICIs
[39]. High-dose steroid administration (≥ 1 mg/kg/day) is the
main treatment option for the management of severe grade
III–IV irAEs, although data on the clinical outcome of patients
who received steroids due to the development of irAEs derive
mostly from melanoma studies. These have reported that their
administration does not influence ICI efficacy [40].

To conclude, there is at least a theoretical background sug-
gesting a negative impact of long-term use of corticosteroids
on the duration of anti-tumor response, but large, prospective
studies are needed.

Targeted treatment—time for a paradigm
shift?

According to the recently published points to consider, in case
of active rheumatic irAE requiring dose of glucocorticoids
higher than 10 mg/day of equivalent prednisone, a conven-
tional synthetic DMARD (csDMARD), such as methotrexate,
hydroxychloroquine or sulfasalazine, should first be consid-
ered [25]. There are several case reports and case series dem-
onstrating efficacy and safety of these drugs for the manage-
ment of rheumatic irAEs [25]. In case of severe irAE or after
inadequate response to csDMARDs, a bDMARDmay be con-
sidered. During the last two decades the therapeutic armamen-
tarium for various rheumatic diseases has been broadened

dramatically with the advent of selective immune-targeted
therapeutics based upon pathogenesis driven principles.
Numerous monoclonal antibodies and receptors targeting
pro-inflammatory key cytokines (such as IL6, IL17, IL1,
TNF) and immune cells (such as B cells) have been proven
effective and with an acceptable safety profile for chronic
rheumatic conditions. These drugs consist a large group called
biologic disease-modifying anti-rheumatic drug (bDMARDs)
(Table 2).

Especially for arthritis cases, tumor necrosis factor (TNF)
and interleukin-6 (IL6) blockade have been successfully used.
These two cytokines p lay a cent ra l ro le in the
immunopathogenesis of rheumatoid arthritis. TNF, a critical
cytokine for both physiological and pathological processes,
has a central role in the pathogenesis of many inflammatory
disorders, such as rheumatoid arthritis and Crohn’s disease. It
is also a key mediator of cancer associated inflammation [41].
There are several drugs that target TNF available today with
well-established efficacy and effectiveness as well as a good
short- and long-term safety profile [42]. TNF inhibition has
been used with success in cases of severe colitis and arthritis
[43]. For severe CPI induced colitis, we have witnessed a
treatment paradigm shift the last years, with TNF blockade
being the first-line treatment, and even as a prophylactic mea-
sure [44, 45]. Concurrent administration of ICIs with
infliximab is currently under investigation in the TICIMEL
trial (NCT03293784). For arthritis, use of TNF inhibitors is
considered after the failure of first-line treatments with GCs
and csDMARDs, and for severe cases.

IL-6 is a key cytokine in rheumatoid arthritis (RA). It is
secreted from a wide variety of cells including macrophages,
T cells, B cells, and synovial fibroblasts, and is regarded as
upper-rank cytokine in the hierarchical cytokine network in-
volved in the pathogenesis of RA. It has a wide range of
functions, such as in B cell proliferation and antibody produc-
tion, hematopoiesis, and T cell differentiation [46, 47].
Tocilizumab is a humanized monoclonal antibody against
IL-6 receptor, approved for the treatment of active RA both
as monotherapy and in combination with methotrexate. Its
efficacy and acceptable safety profile has been demonstrated
in several large randomized controlled trials [48–51]. In a
study on 87 patients who developed irAEs after treatment with
nivolumab, clinical improvement was observed in 27 of 34
patients who received tocilizumab [52]. In a small case series
tocilizumab was used successfully for the treatment of severe
polyarthritis induced by CPI [53].

As in the case of glucocorticoids, a major concern with
potent-targeted treatments is the risk of attenuation of the
anti-tumoral effect of the CPI, especially with long duration
of treatment. In contrast to other irAEs, such as colitis, that can
subside after a single administration of a biologic agent (such
as an anti-TNF monoclonal antibody), rheumatic irAEs tend
to be more chronic and require long-term immunomodulation
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for optimal control of the inflammation. A recent study with a
median follow-up of 9 months reported that anti-tumor re-
sponses were not adversely affected in patients treated with
TNF inhibitors [54]. As discussed above, there is evidence
from preclinical studies to support the superiority of targeted
versus broader immunomodulation (anti-cytokine therapy vs.
glucocorticoids), with the first having only a minor influence
on T cells. In addition to that, there seems to be a potential
synergistic effect of TNF inhibitors with CPI [55, 56].

Treating mice with TNF inhibitors concomitantly with com-
bined CTLA-4 and PD-1 immunotherapy ameliorated colitis
and, in addition, improved anti-tumor efficacy. Combined
blockade of IL6 and PD1/PD-L1 signaling was also found to
enhance tumor-specific Th1 responses and subsequent anti-
tumor effects in tumor-bearing mice [57].

Data regarding other bDMARDs, such as secukinumab, an
anti-IL17 monoclonal antibody and rituximab, an anti-CD20
monoclonal antibody are limited. A particular situation is

Table 2 Approved biological and
targeted synthetic disease-
modifying anti-rheumatic drugs
used for the treatment of various
rheumatic conditions

Target Indications

Biological DMARDs (bDMARDs)

Infliximab TNF RA, PsA, axSpA

Adalimumab TNF RA, PsA, axSpA

Etanercept TNF RA, PsA, axSpA

Certolizumab pegol TNF RA, PsA, axSpA

Golimumab TNF RA, PsA, axSpA

Sekukinumab IL-17 PsA, axSpA

Tocilizumab IL-6R RA, GCA

Sarilumab IL-6 RA

Abatacept T cell co-stimulation RA, PsA

Rituximab CD-20 (B cells) RA, AAV, SLE*

Belimumab BLyS SLE

Anakinra IL-1 RA**, still’s disease, periodical fever syndromes

Targeted synthetic DMARDs (tsDMARDs)

tofacitinib JAK1/JAK3 RA, PsA

baricitinib JAK1/JAK2 RA

upadacitinib JAK1 RA

TNF, tumor necrosis factor; IL, interleukin; BLyS, B-lymphocyte stimulator; JAK, Janus kinase; RA, rheumatoid
arthritis; PsA, psoriatic arthritis; axSpA, axial spondyloarthritis; GCA, giant cell arteritis; AAV, ANCA (anti-
neutrophil cytoplasmic antibodies)-associated vasculitis; SLE, systemic lupus erythematosus

*Off-label use

**Approved but not routinely used due to limited efficacy compared with other bDMARDs

Fig. 3 Paradigm shift of
treatment approach of rheumatic
irAEs with CPI
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related to abatacept, a recombinant fusion protein comprising
the extracellular domain of human CTLA-4 and a fragment of
the Fc domain of human IgG1, used for treatment of RA. It
acts through inhibition of the CD-28-B7-mediated T cell co-
stimulation at the level of dendritic cells and thus abrogate T
cell co-stimulation upstream of CTLA-4 and PD-1/PL-L1
pathways, potentially leading to a rapid and global cell energy.
Taking into account the structure and mechanism of action of
abatacept, one could consider its use in life-threatening events,
but this remains to be proven. Indeed, a case report showed
successful remission of nivolumab-induced myocarditis [58].
Its efficacy and safety remains to be proven in studies.

During the last years, a new category of disease-modifying
anti-rheumatic drugs (DMARDs) has appeared, the so called
targeted synthetic DMARDs (tsDMARDs), consisting of the
Janus Kinase (JAK) inhibitors (Table 2). The JAK family
comprises four members: JAK1, JAK2, JAK3, and TYK2.
They are cytoplasmic tyrosine kinases that mediate the intra-
cellular signaling by association with type 1 and type II cyto-
kine receptors [59]. JAK activation leads to activation of their
downstream substrates, the signal transducer and activator of
transcription (STAT) proteins, followed by their nuclear trans-
location and subsequent activation of target genes [60]. IL-6 is
one of the cytokines that use the JAK/STAT pathway to exert
their intracellular signal. Additionally, type I interferons signal
through JAK1 and JAK3, while type II interferon (INFγ)
signals through JAK2 [61]. IFNγ is essential for PD-L1 and
PD-L2 expression and is a marker of response to CPI [62].
Since the JAK/STAT pathway is related to INF signaling, it is
logical to hypothesize that JAK inhibition might have a place
in the management of CPI-related adverse events but also
resistance to therapy. Indeed, preclinical studies have shown
that combination of JAK inhibition and CPI enables to over-
come resistance to CPI possibly by reducing inflammation in
the tumor microenvironment [63]. As INFγ is not a desirable
target in the context of cancer immunotherapy due to its im-
portance for PD-L expression, JAK2-INFγ should be
retained. The first generation of JAK inhibitors, such as
tofacitinib and baricitinib affect JAK2 (baricitinib more than
tofacitinib), but the second generation of JAK inhibitors are
more selective, such as upadacitinib, a selective JAK1 inhib-
itor recently approved for the treatment of RA. The clinical
efficacy and safety of JAK inhibitors in the context of irAE
has yet to be proven.

Conclusion

Better understanding of the pathophysiology of the rheumatic
irAEs is needed, aside with predictors of development of this
new type of AEs. Treatment guidelines largely support the use
of glucocorticoids as first-line therapy, when symptomatic
therapy is not efficient, and for more persistent and/or

moderate/severe degree of inflammation. Targeted therapies
are higher up in the treatment pyramid, after inadequate re-
sponse to glucocorticoids and conventional, broad immuno-
suppressive agents, and for severe forms of irAEs. However,
preclinical data provide evidence that raise concerns regarding
the potential risk of impaired anti-tumoral effect, with some
clinical evidence regarding the negative effect of corticoste-
roid treatment on the efficacy of ICIs in non-small-cell lung
cancer. This important risk of glucocorticoids, together with
the high efficacy and potential synergistic effect of newer,
targeted immunomodulation, such as TNF and IL6 blockade,
support a paradigm shift and an invert treatment pyramid,
where csDMARDs and bDMARDs should be considered ear-
lier in the treatment sequence (Fig. 3). Future data from pro-
spective studies and randomized clinical trials, some of them
ongoing, will provide more evidence regarding this highly
relevant clinical question.
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