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Simple Summary: The amount of hereditary information (DNA) contained in the cell nuclei of larger
or more complex organisms is often no greater than that of smaller or simpler organisms. Why this is
so is an evolutionary mystery. Here, I show that the amount of DNA per cell nucleus (‘genome size’)
relates more positively to egg size than body size in crustaceans (including shrimp, lobsters and
crabs). Genome size also seems to relate more to the size of eggs or other gametes and reproductive
propagules (e.g., sperm, spores, pollen and seeds) than to adult size in other animals and plants. I
explain these patterns as being the result of genome size relating more to cell size (including that
of single-celled eggs) than the number of cells in a body. Since most organisms begin life as single
cells or propagules with relatively few cells, propagule size may importantly affect or be affected by
genome size regardless of body size. Relationships between genome size and body size should thus
become weaker as body size (and the amount of cell multiplication required during development)
increases, as observed in crustaceans and other kinds of organisms.

Abstract: The body size and (or) complexity of organisms is not uniformly related to the amount
of genetic material (DNA) contained in each of their cell nuclei (‘genome size’). This surprising
mismatch between the physical structure of organisms and their underlying genetic information
appears to relate to variable accumulation of repetitive DNA sequences, but why this variation has
evolved is little understood. Here, I show that genome size correlates more positively with egg size
than adult size in crustaceans. I explain this and comparable patterns observed in other kinds of
animals and plants as resulting from genome size relating strongly to cell size in most organisms,
which should also apply to single-celled eggs and other reproductive propagules with relatively few
cells that are pivotal first steps in their lives. However, since body size results from growth in cell size
or number or both, it relates to genome size in diverse ways. Relationships between genome size and
body size should be especially weak in large organisms whose size relates more to cell multiplication
than to cell enlargement, as is generally observed. The ubiquitous single-cell ‘bottleneck’ of life
cycles may affect both genome size and composition, and via both informational (genotypic) and
non-informational (nucleotypic) effects, many other properties of multicellular organisms (e.g., rates
of growth and metabolism) that have both theoretical and practical significance.

Keywords: allometric scaling; cell size; cellular (nuclear) DNA content; Crustacea; egg and sperm
sizes; life cycles; multicellular animals and plants; nucleotypic effects; spore, pollen and seed sizes;
unicellular organisms

1. Introduction

Two fundamental properties of all living systems are their physical size (‘body size’)
and the quantity of their genetic material (DNA) per cell (‘genome size’, which refers to
either the haploid or total DNA content per cell nucleus: see [1] for a review of this term).
Numerous biological and ecological traits relate to body size [2–6] and genome size [7–12].
At first thought (and without further knowledge), one might think that the body size and
genome size of organisms, i.e., the magnitudes of their phenotype (physical structure) and
genotype (DNA information), should be strongly related. It seems reasonable to assume
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that more genetic information should be required to build larger (often more complex)
organisms than smaller ones.

However, genome size appears to be unrelated (or only weakly related) to organis-
mal complexity, apparently (at least in part) because much of the DNA in the genome
does not consist of genes that code for RNA and proteins making up the structure of the
body [7,8,13–16] (but see [17,18]). Much of the DNA in eukaryotic organisms consists of
replicated sequences, which can vary greatly in quantity independently of the size or
complexity of an organism [7,8,13–16]. The existence of replicated DNA helps explain
why genome size is not necessarily related to body size or complexity, the so-called ‘C-
value paradox’; but why the quantity of replicated DNA has evolved to be so different
among species, is still little understood [7,8,14,15]. Although the proximate mechanisms
involved are quite well understood (e.g., mobile or transposable DNA and polyploidy are
importantly involved in genome expansion [8,9,14]), the ultimate (evolutionary) causes
of genome-size variation remain unclear. Another related mystery is why the body-size
scaling of genome size is highly diverse taxonomically, showing positive (strong or weak)
relationships in many taxa, but no or even negative relationships in many others (Table 1).
The primary aim of my article is to try to help explain this surprising diversity of rela-
tionships between genome size and body size. I hope that my exploratory analyses will
stimulate others to investigate further the functional mechanisms and evolutionary causes
underlying this diversity of genome-size scaling.

Table 1. Positive (POS), negative (NEG) or nonsignificant (NO) relationships between genome size
(total or haploid DNA content per cell nucleus, pg) and body size in various taxa of unicellular and
multicellular organisms.

Taxon Relationship Source

UNICELLULAR ORGANISMS
Prokaryotes and eukaryotes POS [19,20]

Planktonic bacteria POS [21]
Escherichia coli POS [22]

Algae (phytoplankton) POS [23–25]
Dunaliella tertiolecta POS [26]

Bacillariophyceae (diatoms) POS [27]
Ditylum brightwellii POS [28]
Thalassiosira species POS [29]

Dinoflagellata POS [30]
Protists POS [31]

Ciliophora POS [32,33]
Stentor coeruleus POS 1 [34]

MULTICELLULAR PLANTS
Polypodiopsida (ferns) NO [35]

Angiospermae NEG [10]
Herbaceous species POS [36]

Perennial species NEG [12]
Acacia species NO [37]
Brassica rapa NO [38]

Lolium multiflorum POS [39]
Nicotiana species POS/NO 2 [40]
Senecio species POS [41]

Vicia faba NEG [42]
Zea mays NEG [43]
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Table 1. Cont.

Taxon Relationship Source

MULTICELLULAR INVERTEBRATE
ANIMALS

Platyhelminthes (flatworms) POS [44]
Nematoda (round worms) NO [45]
Rotifera (Monogononta) NO [46]

Brachionus plicatilis POS/NO 3 [47]
Annelida (segmented worms) POS [48]

Oligochaeta NO [49]
Polychaeta POS [50]

Dorvilleidae
Ophryotrocha species POS/NO 4 [48,51]

Mollusca POS [52]
Gastropoda (snails)
Viviparus contectus POS [53]

Arthropoda
Arachnida POS [54]

Acari (mites and ticks) POS [55]
Araneae (spiders) NO [56]

Crustacea
Cladocera NO [present study]

POS [57]

Copepoda POS [44,57–62] [present
study]

Decapoda NO [57]
NEG [present study]

Synalpheus species NO [63]
Ostracoda POS [64]
Peracarida ? 5 [present study]

Amphipoda POS [57,65,66]
Hexapoda (insects)

Blattodea (cockroaches and termites) NO [67]
Coleoptera (beetles)

Chrysomelidae NO [68]
Coccinellidae NO [69]
Lampryidae NO [70,71]

Tenebrionidae NO [72]
Phylan semicostatus NEG [73]

Pimelia species NO [74]
Tribolium species NO [75]

Diptera
Chironomidae (midges) NO/POS [76]
Culicidae (mosquitoes)

Aedes albopictus NO [77]
Drosophilidae (fruit flies) NO [78]

POS [79]
Drosophila melanogaster POS 6 [80]

Hymenoptera
Apidae (bees)

Melipona species NO [81]
Formicidae (ants) NO [82]

Hemiptera
Aphidoidea (aphids) NO [83]

Coccoidea (scale insects) POS [67]
Lepidoptera (moths and butterflies) NO [84,85]

Arctiidae NEG [85]
Geometridae POS [85]

Noctuidae NO [85]
Odonata
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Table 1. Cont.

Taxon Relationship Source

Anisoptera (dragonflies) POS [86]
Zygoptera (damselflies) NEG [86]

MULTICELLULAR VERTEBRATE
ANIMALS

Actinopterygii (ray-finned fishes) NO [87]
Cyprinidae NO [88]

Tetrapoda (4-legged vertebrates) NO [89]
Anura (frogs and toads) NO [90]

Pipidae NO [91]
Caudata (salamanders) NO [90,92]

POS [93]
Dinosauria
Sauropoda NO 7 [94]

Aves (birds) POS [95–97]
Mammalia POS [95,98]

Artiodactyla NO [95]
Carnivora NO [95]

Chiroptera (bats) NO [95]
POS [99]

Pteropodidae (megabats) NO [100]
NO/POS 3 [99]

Primates NO [95]
Rodentia POS [95]

1 Ploidy level used as measure of genome size. 2 Positive for dry body mass, but no effect for stalk height at first
flowering. 3 Positive relationship found for a Pearson’s product moment correlation analysis, but no significant
relationship found for a phylogenetically informed analysis. 4 No significant relationships were found Pearson’s
product moment correlation analyses, but a significantly positive relationship was found for a phylogenetically
informed analysis. 5 A positive trend is seen (see Table 2, Figure 1C), but the sample size (n = 7) is too small for
adequate analysis. 6 Body size estimated as pupal size. 7 Genome size inferred from osteocyte lacunae volumes.

Crustaceans are an excellent taxonomic group for studying the body-size scaling
of genome size because (1) they encompass a broad range of body sizes (>nine orders
of magnitude in body mass [101]), (2) the genome size of many (>400) species has been
determined [102], and (3) crustacean taxa show diverse genome sizes (nearly 650-fold [62])
and body-size scaling relationships [57,103], thus providing a useful model system for
exploring the causes of genome-size diversity.

In this article, I explore whether crustacean genome size correlates more strongly with
egg size than adult size. This objective was motivated by the remarkable similarity between
the body-size scaling of genome size in various crustacean taxa [57,103] and that observed
for egg size in the same taxa [101], as further described in the Results (Section 3). As will
be seen, crustacean genome size does correlate more strongly with egg size than adult size,
and this pattern can be explained in terms of (1) single-celled eggs being a critical first
step in all animal life histories, and (2) the typically strong relationship observed between
genome size and cell size. I further suggest that the body-size scaling of crustacean genome
size varies considerably because (1) genome size relates more strongly to cell size (including
egg size) than to the number of cells in a multicellular body, and (2) the proportional effects
of cell size and number on body size vary greatly among taxa (also see [44,64]). This
perspective provides insight into the causes of variation in genome size and its relationship
to organismal size, as I further illustrate with applications to other animal and plant taxa.
I also promote the view that biological scaling analyses should be expanded beyond the
traditional focus on adult size to include the sizes of other developmental stages, as well.
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2. Materials and Methods
2.1. Data Sources

I obtained data on genome size (haploid DNA content per cell nucleus, pg) and
maximum body length (mm) for 170 species of four major taxa of crustaceans (Cladocera,
Copepoda, Peracarida and Decapoda) from the supplementary information in [57]). For
comparison, I also used data in [101] on egg mass (mg) and adult (maternal) body mass
(mg) for 262 species in the same four taxa as above. Additional genome-size data from
various tissues (including exopodites, gills, testes, haemocytes, coelomocytes, muscle
cells, heart cells, and whole-body samples) of various crustacean species were collected
from [102]. Data on body mass, egg mass and genome size are available in Table S1.

2.2. Scaling Analyses

I scaled genome size versus egg mass or adult mass or length using least squares
regression of log10-tranformed values, so as to linearize and normalize the data, and to
permit proportional relationships to be readily discerned (following [104,105]). I also used
general linear model (GLM) analyses to compare the relative strength of relationships
between genome size and egg versus adult size. I used SYSTAT 10 software (SPSS Inc.,
Chicago, IL, USA) for all statistical analyses.

3. Results

Relatively parallel scaling exponents (slopes) occur between the relationships of
genome size with body length and of egg mass with body mass among the four major
crustacean taxa sampled (Figure 1A,B; Table 2). For both kinds of relationships, the slopes
decrease in the same order: Copepoda, Peracarida, Cladocera and Decapoda (Table 2).
These and similar differences in the scaling of genome size with body mass among these
four taxa (Figure 1C; Table 2) suggested that genome size should be positively correlated
with egg mass, which was confirmed (Figure 1D; Table 2). The greater positive effect of
egg mass versus body mass on genome size is indicated by the greater scaling slopes of
genome size in relation to egg mass than to body mass in all four taxa (Table 2).
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Figure 1. Log-linear relationships between genome size (pg) and body length (mm) (A: data from 
[57]), wet egg mass (mg) and wet adult (maternal) body mass (mg) (B: data from [101]), genome 
size and wet body mass (C: data from [101,102]), and genome size and wet egg mass (D: data from 
[101,102]) for four major crustacean taxa. Solid and dashed lines indicate significant and non-sig-
nificant linear regressions, respectively (details in Table 2). 
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of body mass, whereas the effect of body mass was non-significant or significantly nega-
tive after controlling for the effect of egg mass (Table 3). The only exception to this pattern 
was the Peracarida, which showed no significant effects of egg mass or body mass (after 
controlling for the other) on genome size, probably because of the small sample size (Table 3). 

Table 3. General linear model (GLM) analyses for scaling relationships between log10-transformed 
values of genome size (pg) versus wet body mass (BM, mg) and wet egg mass (EM, mg) for each 
of four major crustacean taxa. 1. 

Taxon N BM Effect Coefficient P EM Effect Coefficient P 
Cladocera 10 −0.098 0.074 0.343 0.0089 
Copepoda 12 0.203 0.140 0.643 0.040 
Peracarida 7 0.515 0.258 −0.373 0.676 
Decapoda 23 −0.181 0.0025 0.247 0.0090 

1 Data from [57,101,102]. 

Figure 1. Log-linear relationships between genome size (pg) and body length (mm) (A: data
from [57]), wet egg mass (mg) and wet adult (maternal) body mass (mg) (B: data from [101]),
genome size and wet body mass (C: data from [101,102]), and genome size and wet egg mass (D:
data from [101,102]) for four major crustacean taxa. Solid and dashed lines indicate significant and
non-significant linear regressions, respectively (details in Table 2).
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Table 2. Statistical details for scaling relationships between log10-transformed values of genome size
(GS, pg) versus body length (BL, mm) or wet body mass (BM, mg), wet egg mass (EM, mg) versus
wet body mass, and genome size versus wet egg mass for each of four major crustacean taxa 1.

Relationship Taxon Slope 2 Intercept 2 r 3 n 4 p 5

GS vs. BL Cladocera 0.444 (±0.155) −0.680 (±0.073) 0.756 28 <0.00001
GS vs. BL Copepoda 1.354 (±0.419) −0.078 (±0.159) 0.709 44 <0.00001
GS vs. BL Peracarida 1.291 (±1.029) −1.091 (±1.423) 0.504 19 0.017
GS vs. BL Decapoda 0.001 (±0.168) 0.623 (±0.345) 0.002 79 0.986

EM vs. BM Cladocera 0.390 (±0.168) −1.828 (±0.213) 0.777 18 0.00015
EM vs. BM Copepoda 0.842 (±0.111) −2.377 (±0.117) 0.871 75 <0.00001
EM vs. BM Peracarida 0.639 (±0.123) −1.972 (±0.204) 0.798 64 <0.00001
EM vs. BM Decapoda 0.094 (±0.031) −1.190 (±0.520) 0.145 105 0.141
GS vs. BM Cladocera 0.039 (±0.098) −0.562 (±0.133) 0.309 10 0.384
GS vs. BM Copepoda 0.432 (±0.222) 0.861 (±0.196) 0.807 12 0.0015
GS vs. BM Peracarida 0.367 (±0.502) 0.025 (±0.931) 0.643 7 0.119
GS vs. BM Decapoda −0.194 (±0.126) 1.487 (±0.552) 0.573 23 0.0043
GS vs. EM Cladocera 0.179 (±0.152) −0.211 (±0.339) 0.694 10 0.026
GS vs. EM Copepoda 0.972 (±0.420) 3.330 (±1.182) 0.852 12 0.00043
GS vs. EM Peracarida 0.541 (±1.242) 1.047 (±1.034) 0.448 7 0.314
GS vs. EM Decapoda 0.273 (±0.219) 0.873 (±0.223) 0.493 23 0.017

1 Data from [57,101,102]. 2 95% confidence intervals in parentheses. 3 Pearson’s product-moment correlation
coefficient. 4 Sample size. 5 Probability that correlation is due to chance.

A GLM analysis also revealed that in the Cladocera, Copepoda and Decapoda, the
effect of egg mass on genome size was significantly positive after controlling for the effect
of body mass, whereas the effect of body mass was non-significant or significantly negative
after controlling for the effect of egg mass (Table 3). The only exception to this pattern
was the Peracarida, which showed no significant effects of egg mass or body mass (after
controlling for the other) on genome size, probably because of the small sample size
(Table 3).

Table 3. General linear model (GLM) analyses for scaling relationships between log10-transformed
values of genome size (pg) versus wet body mass (BM, mg) and wet egg mass (EM, mg) for each of
four major crustacean taxa 1.

Taxon N BM Effect Coefficient p EM Effect Coefficient p

Cladocera 10 −0.098 0.074 0.343 0.0089
Copepoda 12 0.203 0.140 0.643 0.040
Peracarida 7 0.515 0.258 −0.373 0.676
Decapoda 23 −0.181 0.0025 0.247 0.0090

1 Data from [57,101,102].

Another pattern emerged when the data for all the sampled crustacean species were
scaled together. The relationships between genome size and body length or body mass, and
between egg mass and body mass were all significantly curvilinear (concave downward),
whereas the relationship between genome size and egg mass was significantly linear
(Figure 2; Table 4). These patterns indicate that genome size correlates more positively
with egg mass and the body size of relatively small crustaceans than with the body size of
relatively large crustaceans.
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Figure 2. Curvilinear relationships between crustacean genome size (pg) and body length (mm) (A), 
wet egg mass (mg) and wet adult (maternal) body mass (mg) (B), and genome size and wet body 
mass (C). Note contrast with linear relationship between genome size and wet egg mass (D). All 
relationships based on log-transformed data in Figure 1 (statistical details in Table 4). 
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whether the curvilinear relationship is a significantly better fit than the linear relationship.  

Figure 2. Curvilinear relationships between crustacean genome size (pg) and body length (mm) (A),
wet egg mass (mg) and wet adult (maternal) body mass (mg) (B), and genome size and wet body
mass (C). Note contrast with linear relationship between genome size and wet egg mass (D). All
relationships based on log-transformed data in Figure 1 (statistical details in Table 4).

Table 4. Statistical details for linear and curvilinear (polynomial, quadratic) scaling relationships
between log10-transformed values of genome size (pg) versus body length (mm) or body mass (mg),
egg mass (mg) versus body mass, and genome size versus egg mass in crustaceans 1.

Relationship Y Intercept X Term X2 Term r 2 n 3 p 4

GS vs. BL (linear) −0.052 0.344 0.534 170 <0.00001

GS vs. BL (curvilinear) −1.252 0.903 −0.217 0.588 170 <0.00001
0.00013

EM vs. BM (linear) −2.217 0.391 0.758 262 <0.00001

EM vs. BM (curvilinear) −2.101 0.688 −0.079 0.831 262 <0.00001
<0.00001

GS vs. BM (linear) 0.213 0.110 0.461 52 0.00058

GS vs. BM (curvilinear) 0.377 0.331 −0.058 0.674 52 <0.00001
0.00002

GS vs. EM (linear) 0.793 0.257 0.439 52 0.00112

GS vs. EM (curvilinear) 0.889 0.528 0.094 0.474 52 0.0132
0.163 2

1 Data from [57,101,102]. 2 Pearson’s product-moment correlation coefficient. 3 Sample size. 4 Probability that
correlation is due to chance. A second p value refers to the X2 term, which indicates whether the curvilinear
relationship is a significantly better fit than the linear relationship.

4. Discussion
4.1. Scaling of Crustacean Genome Size with Egg versus Adult Body Sizes

The results of this study indicate that crustacean genome size correlates more posi-
tively with egg mass than adult body mass. Furthermore, relationships between genome
size and body size appear to be stronger in small versus large crustaceans, as revealed
by the curvilinear (concave downward) scaling depicted in Figure 2A,C. This trend is
consistent with the observation that egg mass also scales curvilinearly (concave downward)
with body mass in a similar way (Figure 2B; also see [99]). Since genome size is a linear
function of egg mass (Figure 2D), and egg mass relates more positively to body mass in
small versus large crustaceans (Figure 2B), it follows that genome size should also relate
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more positively to body size in small versus large crustaceans, as observed (Figure 2A,C).
This difference is highlighted by a comparison of two taxa with the largest sample sizes:
microscopic copepods and macroscopic decapods. In copepods, genome size is strongly
positively correlated with both egg mass and body size, whereas in decapods, genome
size is positively correlated with egg mass, but non-significantly related to body length
and negatively related to body mass (Figure 1A,C,D; Tables 2 and 3). However, in both
taxa, egg mass is a stronger positive predictor of genome size than is body mass (Table 3).
Before attempting further explanation of these patterns, I discuss next whether they may
also apply to reproductive propagules in other organisms.

4.2. Scaling of Genome Size with Sizes of Gametes and Propagules in Other Animal and Plant Taxa

I surveyed the literature to investigate whether genome size is more positively related
to the size of eggs and other reproductive propagules (spores, pollen and seeds) or gametes
(sperm) than to body size in other organisms. Table 5 shows that in various multicellular
plants and animals at various taxonomic levels, genome size is frequently positively
correlated with propagule size.

Table 5. Positive (POS), negative (NEG) or nonsignificant (NO) relationships between genome size
and propagule or gamete size in various taxa of multicellular organisms.

Taxon Propagule or
Gamete Relationship Source

PLANTS
Bryophyta (mosses) Sperm POS [106]

Polypodiopsida
(ferns) Spore POS [35,107]

Gymnospermae Pollen NO [108]
Seed POS [109]

Pinus species Seed POS [110–112]
Angiospermae Pollen NO/POS [9,113–116]

Seed POS [9,10,36,109,114,117,118]
Perennial herbs Seed POS [12]

Geophytes Seed NO [119]
Acacia species Seed NO [37]

Achillea species Seed POS [120]
Aesculus species Seed NO/POS 1 [121]
Allium species Seed POS [9,113]

Anacardium occidentale Seed POS [122]
Armeria maritima Pollen POS [123]

Bouteloua curtipendula Pollen POS 2 [124]
Brassica rapa Seed NO [38]
Cicer species Seed POS [125]

Corchorus olitorius Seed NO/POS 3 [126]
Crepis species Pollen POS [127]

Seed POS [127]
Dasypyrum villosum Seed POS [128]

Glycine max Seed POS [129]
Gossypium species Pollen POS [130]

Hemerocallis varieties Pollen POS [131]
Hyacinthus orientalis Pollen POS [132]
Hylocereus species Pollen POS [133,134]

Seed NO/POS/NEG 4 [133]
Juglans rea Seed POS [135]

Lavandula angustifolia Seed POS [136]
Lolium multiflorum Seed POS [39]

Lolium perenne Seed POS [137]
Malus × domestica Pollen POS [138]
Nicotiana species Seed POS [40]
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Table 5. Cont.

Taxon Propagule or
Gamete Relationship Source

Pisum sativum Seed POS [139]
Pyrus pyrifolia Pollen POS [140]

Ramonda species Pollen POS [141]
Ramonda species Seed NO/POS 5 [141]

Scilla sibirica Pollen POS [132]
Senecio species Seed NO [41]

Sisyrhinchium species Seed POS [142]
Streptocarpus species Pollen NO/POS 6 [143]

Vicia species Seed POS [113,144]
Vicia sativa Seed POS [145]
Zea mays Seed NEG [43]

INVERTEBRATE
ANIMALS

Rotifera
(Monogononta) Egg NO [46]

Brachionus plicatilis Egg POS [47]
Annelida (segmented

worms)
Oligochaeta
Dorvilleidae

Ophryotrocha species Egg NO [48,51]
Mollusca

Crassostrea gigas Egg POS [146]
Arthropoda
Crustacea
Cladocera Egg POS [present study]
Copepoda Egg POS [present study]
Decapoda Egg POS [present study]
Peracarida Egg ? 7 [present study]

Insecta
Coleoptera (beetles)

Bruchinae Egg NO [147]
Tenebrionidae

Tribolium species Sperm POS [75]
Diptera Egg ? 8 [148]

Drosophilidae (fruit
flies) Sperm POS [79]

Drosophilidae (fruit
flies) Egg NO [79,149] my analysis

VERTEBRATE
ANIMALS

Actinopterygii
(ray-finned fishes) Egg POS [87,150]

Anura (frogs and
toads) Egg NO [90]

Pipidae Egg NO [91]
Caudata

(salamanders) Egg NO [90]

Plethodontidae Egg POS [151] my analysis
Mammalia Sperm NO/POS 9 [7,152,153]
Chiroptera Neonate NO [99]

1 No significant relationship overall, but positive relationships within clades. 2 Chromosome number (ploidy)
used as an indicator of genome size. 3 Significantly positive effect on seed surface area, but not for seed mass,
length or width. 4 Associations varied with various diploid-tetraploid lines. 5 Weakly positive effect on mass, but
not significantly different in structural size. 6 Positive correlation in polyploids, but not diploids. 7 An apparent
positive trend (see Figure 1D; Table 2), but sample size (n = 7) is too small for adequate analysis. 8 Sample size
(n = 5) is too small for adequate analysis, but two species with tiny eggs have very small genome sizes. 9 Positive
associations with ploidy in rodents, but lack of correlation for general phylogenetically informed analyses.
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Although a crude comparison because of the variation in taxonomic levels represented
(from species to phyla or divisions), genome size of multicellular organisms appears to be
correlated positively with propagule size (69%: 49/71) much more frequently than with
body size (39%: 29/75; Table 1). These suggestive differences deserve to be explored in a
more rigorous way, as I have done here for crustaceans.

4.3. Single-Cell ‘Bottlenecks’ in the Life Cycles of Multicellular Organisms May Affect Their
Genome and Cell Sizes

In this section, I propose the Single-Cell ‘Bottleneck’ Hypothesis (SCBH) to explain
why genome size appears to relate more positively to the sizes of eggs and other reproduc-
tive propagules than to body size, and why relationships between genome size and body
size vary so greatly among different kinds of crustaceans and other organisms (Table 1).
The SCBH has eight well-verified assumptions and five testable predictions (Table 6).

Table 6. The eight assumptions and five predictions of the Single-Cell “Bottleneck’ Hypothe-
sis (SCBH).

Assumption/Prediction Statement

Assumption #1
The life cycles of most multicellular organisms include a
single-celled developmental stage connecting one generation to
the next.

Assumption #2
Reproductive propagules or gametes are unicellular (e.g.,
eggs/oocytes, sperm and spores) or consist of relatively few cells
(pollen and seeds) compared to that of adults.

Assumption #3 Variation in the sizes of multicellular reproductive propagules is
usually related to variation in cell size, at least in part.

Assumption #4 Genome size is almost always positively correlated with cell size.

Assumption #5 Genome size is usually unrelated or even negatively related to
cell number in multicellular organisms.

Assumption #6 Multicellular bodies grow by cell enlargement or multiplication,
or both.

Assumption #7
Large organisms typically require more cell multiplication to
reach adult size than do small organisms, especially if the size
differences are large.

Assumption #8
Trade-offs between somatic cell size and number and between
propagule size and number often occur because of spatial
(body-volume) constraints.

Prediction #1
Genome size should be more positively correlated with
propagule size than adult body size. This prediction should apply
to both unicellular and multicellular propagules.

Prediction #2 Genome size should be more strongly related to the size of a
living system if it is unicellular than if it is multicellular.

Prediction #3
Genome size should be more strongly related to adult body size
in multicellular organisms that differ mainly in cell size rather
than cell number.

Prediction #4

Genome size should be more related to the size of a multicellular
living system if it is small and chiefly affected by cell size (e.g.,
reproductive propagules and small adults) than if it is large and
chiefly affected by cell number (e.g., large adults).

Prediction #5

Spatial (body-volume) constraints and similar effects of genome
size on the sizes of somatic cells and reproductive propagules
should cause interpopulation or interspecific variation in
propagule size and number to parallel variation in somatic cell
size and number.
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Assumption #1 is not only nearly always true [154], but also supported by theory
(e.g., [155,156]). As Bonner [154] remarked, the unicellular unfertilized egg “is the mini-
mum unit of inheritance that joins one life cycle to the next. The point of minimum size
in the cycle is therefore also the smallest possible unit of heredity” (p. 127). According to
multi-level selection theory, single-celled propagules ensure cooperation among the cells of
multicellular organisms [155–162]. Development from a single cell minimizes competition
among somatic cells because they all receive the same genes, and thus are genetically iden-
tical except for somatic mutations [156–158]. As Grosberg and Strathmann [157] stated: “If
cells have a legislature of lineages like the parliament alleged for genes, then a multicellular
organism is a clonal congress. It is the unicellular bottleneck that maintains a voting block
of genetically identical cells that is overwhelmingly large.” (p. 115). “With a unicellular
bottleneck, defecting cell lineages rarely succeed beyond the life span of the multicellular
individual.” (p. 621). This allows evolutionary selection at the individual (cell-group) level
to predominate over selection at the cell level [162–165], which, as I argue in Section 4.4.2,
has important consequences for both the size and composition of the genome.

Assumption #2 is common knowledge, based on an enormous amount of histologi-
cal work.

Assumption #3 is supported by many studies, showing that variation in the sizes of
multicellular propagules (e.g., pollen and seeds) is related to variation in cell size (at least
in part), both in the propagules themselves and in the somatic body ([109,115,116,166–171];
see also Section 4.4; Table A1).

Assumption #4 is supported by numerous data sets in both plants and animals and is
universally accepted, at least as a very common rule (e.g., [7–9,15,16,19,20,31,116,172–188]).

Assumption #5 is supported by many studies, showing that although increasing
genome size (including polyploidy) is almost always associated with increased cell
size [179,184,189–195], it usually has no or a negative relationship with cell number (as
indicated by no or only small increases or decreases in body size [179,184,193,195–204] (see
also Section 4.5; Table A2).

Assumption #6 is supported by simple logic. Growth and development of multicellular
organisms involve various degrees of cell multiplication and enlargement depending on
the kind of organism [103,203,205–207].

Assumption #7 is supported by the fact that large organisms tend to grow more by cell
multiplication than cell enlargement. In many kinds of multicellular organisms (especially
vertebrate animals), body size is only weakly related to cell size (e.g., [3,177,205,208–214]),
thus requiring that increased body size must be largely due to cell multiplication [4,203,211].

Assumption #8 is supported by the common observation that at a given body size,
increases in the sizes of somatic cells or reproductive propagules tend to be accompanied
by decreases in their number (e.g., [101,146,166,184,196–199,202,204,215–222]); see also
Section 4.4; Table A1).

Prediction #1 (following from assumptions 1–7) is supported by my analyses of
crustacean genome size, egg size and body size (Section 3: Figures 1 and 2; Tables 2–4), and
my overview of relationships of genome size with propagule size and body size in other
animals and plants (Section 4.2: Tables 1 and 5).

Prediction #2 (as illustrated in Figure 3; and following from assumptions 4–7) is
supported by observations in Table 1. Genome size is positively related to body size
for all unicellular taxa in my database (100%: 12/12), whereas it is positively correlated
with body size much less frequently in multicellular taxa (39%: 29/75) (also see [186]).
Interestingly, a strong relationship between genome size and body size is also found in
acellular viruses [223].
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vocated by [44,57,64,103]. It is especially well supported by a comparison of copepods 
with decapods. Adult copepods tend to have similar cell numbers regardless of their body 
size, and thus interpopulation and interspecific variation in body size is strongly related 
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Figure 3. Schematic diagrams illustrating relationships between genome size, cell size and body
size in unicellular and multicellular organisms, following predictions #2 and #3 of the Single-Cell
‘Bottleneck’ Hypothesis (SCBH: Table 6). (A): Genome size (indicated by the size of the black nucleus
in each cell) correlates positively with cell size in unicellular organisms. (B): Genome size correlates
positively with body size in multicellular organisms that differ largely in cell size. (C): Genome size
does not correlate with body size in multicellular organisms that differ largely in cell number. Weak
correlations between genome size and body size may occur if body size is related to both cell size
and number (a situation intermediate between B and C).

Prediction #3 (as illustrated in Figure 3; and following from assumptions 4–6) is
advocated by [44,57,64,103]. It is especially well supported by a comparison of copepods
with decapods. Adult copepods tend to have similar cell numbers regardless of their body
size, and thus interpopulation and interspecific variation in body size is strongly related
to variation in cell size [44,58,59,224,225]. Therefore, genome size, which is more related
to cell size than number, is strongly positively related to adult body size in copepods
(Figure 1A,C; Table 2). By contrast, variation in the adult body sizes of decapods appears
to be more related to cell number than cell size. In support, haemocyte sizes are similar
in decapods varying greatly in adult body size (including shrimp, crayfish, crabs and
lobsters [226–231]). Accordingly, genome size, a strong indicator of cell size (following
assumption #4), is unrelated to body length and somewhat negatively related to body
mass in decapods (Figure 1A,C; Table 2). More observations of variation in cell size and
number in decapods (and other animals) with different body sizes are needed to further
test this prediction.

Prediction #4 (following from assumptions 2–7) is supported by the observation
that microscopic copepods show strong positive relationships between genome size and
body size, whereas much larger macroscopic decapods do not (Figure 1A,C; Table 2).
Furthermore, the curvilinear (concave downward) scaling of genome size with body size
in crustaceans, as a whole, is consistent with this prediction. At small body sizes, genome
size scales positively with body size, whereas at large body sizes, it is unrelated to or even
scales somewhat negatively with body size (Figure 2A,C; Table 4).

Prediction #4 is also consistent with multiple reports that the genome sizes of relatively
large animals (e.g., fishes and tetrapods, including huge dinosaurs) and vascular plants
(e.g., ferns and flowering plants, including huge trees) tend to show no, or weakly positive
or negative relationships with body size (Table 1; Figure 4). As predicted, among mammals,
relatively small Rodentia show a weakly positive correlation between genome size and body
mass, whereas relatively large Primates, Carnivora and Artiodactyla show no significant
relationships (Table 1). However, bats, which include many species at the small end of
the mammalian size distribution, may or may not show a significant relationship between
genome size and body mass (Table 1).
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Figure 4. Representative pictures of relatively large multicellular organisms, including decapod
crustaceans, bony fishes, ferns and flowering plants [232–235] that show positive (+) relationships
between genome size and reproductive propagule size, but no (0) or weakly negative (−) relationships
with adult body size (Tables 1 and 2), largely following predictions #1, #3 and #4 of the Single-Cell
‘Bottleneck’ Hypothesis (SCBH: Table 6). These relationships occur apparently because genome size
is more related to cell size (including the cells of eggs, spores and seeds) than to cell number (which
mainly determines the various sizes of relatively large organisms) (following assumptions #2–#5 of
the SCBH: Table 6).

Although the above results provide significant support for prediction #4 of the SCBH,
the great variation in genome-size:body-size relationships shown by various taxa of small-
bodied invertebrates is unexpected. Although many studies have reported positive rela-
tionships between genome size and body size in small invertebrate taxa (e.g., flatworms,
polychaete worms, mollusks, cladocerans, copepods, amphipods, ostracods, mites and
ticks, and some rotifers and insect taxa), as predicted, several nonsignificant (or even nega-
tive) relationships have also been reported, as well (e.g., nematodes, rotifers, oligochaete
worms, spiders, and many insect taxa) (Table 1). Some possible explanations for this
surprising variation are provided in [8,57,64] and other sources cited in Table 1. Unfortu-
nately, some of these explanations also appear to be inadequate. For example, it has been
suggested that taxa showing determinate growth are more likely to exhibit positive associa-
tions between genome size and body size than those exhibiting indeterminate growth [64].
However, existing crustacean data contradict this hypothesis. Although both cladoceran
and peracaridan crustaceans exhibit indeterminate (postmaturational) growth, they still
exhibit significant associations between genome size and body size, as do copepods and
ostracods that show determinate growth (Figure 1A,C; [64,236]). Unfortunately, the hy-
pothesis of [64] is based on the mistaken (and unsupported) idea that determinate growth
necessarily involves cell expansion and fixed cell numbers among adults having different
body sizes, whereas indeterminate growth entails cell multiplication and fixed cell size.
The use of these terms in [60] does not follow the conventional definitions, which are that
determinate growth ceases at sexual maturation, whereas indeterminate growth continues
after maturation [236,237]. These modes of growth do not require specific patterns of cell
growth or multiplication.

Prediction #5 (as illustrated in Figure 5; and following from assumptions 2–4 and 8)
is supported by many observations that increased chromosome number (and thus DNA
content per cell) is associated with not only increased cell size and reduced cell number,
but also in parallel, increased propagule size and reduced propagule number. Numerous
studies of polyploidy effects support this prediction especially well (see Section 4.5; and
Table A2). Further evidence is provided by the striking contrast between copepods and
decapods. In copepods, the interspecific scaling of egg mass is nearly isometric (slope near
1), whereas the scaling of egg number (clutch size) is not significantly different from 0 [101].
Conversely, in decapods, the interspecific scaling of egg mass is not significantly different



Biology 2021, 10, 270 14 of 52

from 0, whereas the scaling of egg number is nearly isometric [101] (see also Section 4.7).
These patterns parallel the different interspecific variation in cell size and number in these
two taxa. Variation in body size is more related to cell size than number in copepods, but
more related to cell number than cell size in decapods, as already noted.
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Figure 5. Schematic diagrams showing how the size and number of somatic cells (blue circles)
in multicellular organisms tend to parallel the size and number of reproductive propagules (here
illustrated as eggs: red circles), following prediction #5 of the Single-Cell ‘Bottleneck’ Hypothesis
(SCBH: Table 6). (A): An organism with relatively few large somatic cells produces relatively few
large eggs. (B): An organism with relatively many small somatic cells produces relatively many small
eggs. These differences are similarly produced by changes in genome size (see Table A2) and ambient
temperature (see Section 4.6).

The SCBH is helpful in explaining much of the diversity of genome size in the living
world, especially in relation to propagule size and adult body size, but other factors
not considered here may also be influential. For example, the SCBH apparently cannot
explain why genome size (DNA content per cell nucleus) is much larger in copepods and
peracaridans than in cladocerans having equivalent body or egg masses (Figure 1C,D;
see also [57]). Perhaps, the relatively small genome size of cladocerans is related to their
relatively rapid growth rates ([57]; see also Section 4.7). I further evaluate the SCBH in
Sections 4.4–4.6. In Section 4.7, I also use the SCBH to promote linking genomic theory to
life-history and metabolic theory.

4.4. Relationships between the Sizes and Numbers of Somatic Cells and Those of Propagules
or Gametes
4.4.1. Data

Assumption #3 and prediction #5 (Figure 5) of the SCBH (Table 6) are supported by
data in Tables A1 and A2. Variation in the sizes of somatic cells parallels that of reproductive
propagules or gametes (Table A1). Furthermore, increases in genome size (via genome
duplication or polyploidy) usually result in congruous increases in the sizes of cells and
reproductive propagules and decreases in their number (Table A2; see also Section 4.5).
These similarities suggest that a common mechanism or set of mechanisms may underlie
trade-offs between somatic cell size and number and between reproductive propagule size
and number. This mechanism or set of mechanisms may involve functional relationships
to genome size, at least in part, as discussed in Sections 4.4.2 and 4.5.

4.4.2. Hypothetical Nucleotypic Effects

Here, I discuss why interpopulation or interspecific variation in the sizes and number
of somatic cells parallels that for reproductive propagules (following prediction #5 of
the SCBH). My overall explanation has two key components: (1) genome size and cell
size are tightly correlated (assumption #4 of the SCBH) and (2) during development, the
genome of germ cells is transmitted to somatic cells of the body, thus causing parallel
effects of genome size on the sizes of germ cells and somatic cells, and of multicellular
reproductive propagules that are largely affected by variation in cell size (following as-
sumptions #1, #2 and #3 of the SCBH). To understand these parallel effects, one must
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realize that DNA can affect phenotypes through not only informational transmission
(‘genotypic effects’), but also non-informational, physical/mechanical, ‘nucleotypic effects’
(following [7,15,16,31,113,238–241]). Throughout my article, I use the phrase “nucleo-
typic effect” to refer to any effect of genome size on various cellular, physiological and
life-history traits, which have been quantified in numerous experimental and correlation
analyses that I cite. How nucleotypic effects work is not well understood and subject
to considerable debate [7,8]. For further information, the reader should see the reviews
in [7,8,16,174,176,183,194,241–243]. Suffice it to say here that, as a general rule, large cells
appear to require larger genomes to support their greater structure and resource demands
than do smaller cells. In effect, nucleotypic effects provide an explanation for assumption
#4, a critical foundational piece of the SCBH.

Another fundamental and controversial question is whether genome size determines
cell size or vice versa [7,8,103,176,181,183,187]. Many studies assume implicitly or ex-
plicitly that genome size determines cell size. This view is well supported by experi-
mental manipulations of genome size that cause correlated effects on cell size (see also
Section 4.5). However, these short-term experiments focus on immediate phenotypic ef-
fects and do not consider the long-term coevolution of genome size and cell size, as seen
in interspecific comparisons. During evolution, it is possible that selection may favor
larger (or smaller) cells, which in turn require larger (or smaller) genomes for structural
and functional support [7,15,20,31,176,181,244]. If so, the following hypothetical scenario
(Figure 6), involving both the long-term evolution of reproductive propagule cell size
and its effect on genome size, and the short-term ontogenetic effects of genome size on
somatic cell size, may result. Specific (e.g., cold, dry, resource-poor or highly competi-
tive) environments may favor organisms that produce larger eggs, sperm, spores or other
multicellular reproductive propagules (pollen and seeds) composed of relatively large
cells (see also Sections 4.6 and 4.7; and [15,101,245–251]). These cells may in turn require
larger genomes. These large genomes are then transmitted to somatic cells and next-
generation germ cells, which are relatively large because of nucleotypic effects. In addition,
because of spatial (body-volume) constraints (following assumption #8), organisms in
these specific environments may produce larger, but fewer somatic cells and reproductive
propagules than those with similar body sizes in other environments favoring smaller
propagules (also see Figure 5). Other hypothetical possibilities involving selection on
the sizes of somatic cells (or their correlates, such as rates of growth, development and
metabolism [7,8,15,89,96,176,181,218,244,252–258]) with secondary effects on genome size
and propagule size, or effects of spontaneous or environmentally induced duplication
of DNA sequences or whole genomes [8,11,17,103,172,186,242] on the sizes of somatic
cells and reproductive propagules (Figure 6) should also be considered and evaluated.
Mechanisms underlying relationships among genome size, cell size and propagule size are
likely complex and multidirectional in cause-and-effect (Figure 6; see also Section 4.7).

Of course, the hypothetical scenarios depicted in Figure 6 assume that genome size
and cell size are not altered during the ontogenetic development of various cell lineages.
However, in specific cases, genomes (and their cells) may be up- or down-sized in specific
tissues (e.g., [7,8,11,45,103,185,224,258,259]). Nevertheless, frequently observed associa-
tions between the sizes of somatic cells and their genomes and that of germ cells and
reproductive propagules (Tables A1 and A2) suggest that the above cases are exceptions to
a general rule. In short, unicellular bottlenecks in the life cycles of multicellular organisms
may affect not only the genome composition of their somatic cells by minimizing the effects
of somatic cell mutants on organismal genetic lineages [156–158], but also their genome
sizes via nucleotypic effects.
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Figure 6. Hypothetical scenarios showing possible causal (functional or evolutionary) relation-
ships among the sizes of reproductive propagules, genomes (DNA content per cell), somatic
cells and germ cells. These scenarios, each of which may occur at least in some cases, attempt
to explain why the sizes of the above entities are often positively correlated with one another
(see Figures 1D, 2D and 4; Tables 2–5, Tables A1 and A2). The left-hand scenario hypothesizes that
natural selection for larger reproductive propagules with relatively large cells favors larger genomes
for structural and functional support. These larger genomes are then passed onto somatic cells
and next-generation germ cells, which are also larger because of nucleotypic effects. The larger
germ cells, in turn, contribute structurally and functionally to larger next-generation propagules,
thus reinforcing the adaptive evolutionary effects. The selection for larger propagules may also
be associated with changes in other life-history traits. In addition, changes in the sizes of somatic
cells may have secondary effects on other phenotypic traits, including rates of growth, development
and metabolism. The middle scenario hypothesizes that spontaneous or environmentally induced
changes in genome size affect the sizes of somatic and germ cells, and secondarily propagule size
and possibly other associated phenotypic traits. The right-hand scenario hypothesizes that natural
selection for larger somatic cells favors larger genomes for structural and functional support. These
larger genomes, in turn, support larger germ cells and reproductive propagules with possible sec-
ondary effects on other life-history traits. The selection for larger somatic cells may be direct or the
indirect result of selection on other associated phenotypic traits. All of the hypothetical scenarios
include a single-celled developmental stage, and as such are informed by the Single-Cell ‘Bottleneck’
Hypothesis (SCBH) described in Table 6.

4.5. Effects of Polyploidy on the Sizes and Numbers of Cells, Gametes and Propagules

Numerous studies have shown that the sizes and numbers of somatic cells and repro-
ductive propagules often correlate with genome size (e.g., [8,9,87,150,195]; see also Table 5
and Section 4.3). These associations are most clearly shown by comparing the sizes and
numbers of somatic cells and reproductive propagules to the level of polyploidy among
individuals, populations or species of organisms. Numerous examples for unicellular
organisms and multicellular plants and animals are listed in Table A2: increasing ploidy
correlates with larger but fewer somatic cells in 90 reported cases, larger sizes of both
somatic cells and reproductive propagules in 58 cases, and larger but fewer propagules
in 21 cases. Very few deviations from these trends have been reported. Many of the cited
studies involve inducing polyploidy experimentally (e.g., by colchicine treatments). These
experiments are especially useful for providing insight into cause-and-effect relationships.

4.6. Temperature Effects on Sizes of Cells, Gametes and Propagules

Experiments may also be used to manipulate the sizes of cells and propagules di-
rectly, independently of genome size. Most of these studies involve testing whether the
effects of temperature on body size relate to changes in the sizes of somatic cells, repro-
ductive propagules, or offspring. A common finding in ectothermic organisms is that
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decreasing temperature is associated with not only larger adult body size (following the
‘temperature-size rule’ [260]), but also significantly larger cells, propagules and (or) off-
spring (e.g., [103,218,219,248,250,252,261–289]). These studies provide further evidence
that the sizes of somatic cells and reproductive propagules tend to be positively correlated
(as illustrated in Figure 5).

Moreover, a short-term experimental study on the fruit fly Drosophila melanogaster
showed that lower temperatures induced the growth of larger cells and nuclei without
any change in genome size [290] (though an experimental study on bacteria showed
that warming caused decreases in both genome size and cell size [285]). Therefore, al-
though cell size and genome size are usually strongly correlated, it is possible that cell size
can change without changes in genome size (see also [132,203,291]). Genome size does
not always determine cell size, thus opening up the possibility that cell (or propagule)
size may first change and only later through evolution be accompanied by changes in
genome size. Increases in both cell size and genome size (including polyploidy) along
natural environmental gradients of decreasing temperature, as observed in various pro-
tists, plants and invertebrate animals (e.g., [9,56,61,62,103,182,191,192,276,280,292–304]; but
see [90,118,172,183,193,305]), may be the result of long-term adaptive evolution. If so, they
(in combination with the laboratory experiments of [290]) provide support for the hypothet-
ical view described in Section 4.4.2 (Figure 6) that, on an evolutionary timescale, changes
in cell size may precede changes in genome size (also see next Section 4.7).

4.7. Linking Genomics with Life-History and Metabolic Theory
4.7.1. Linking Genomics with Life-History Theory

The findings of this study and arguments made in Sections 4.3 and 4.4 suggest that
an understanding of genome-size diversity would benefit from a life-history perspective,
as pioneered by Cavalier-Smith [15]. He suggested that much of the variation of genome
size could be explained in terms of the life-history theory of r- and K-selection [306] (see
also [57,178,243,253,293,300,307]). According to this view, small genomes are associated
with r-selected traits, such as high colonizing ability, rapid individual and population
growth, early maturation, high reproductive output and short lives that are favored in
unstable or ephemeral habitats and at low population densities, whereas large genomes
are associated with K-selected traits, such as high competitive ability, slower individual
and population growth, late maturation, low reproductive output and long lives that are
favored in stable habitats and at high population densities. Although the theory of r- and
K-selection may help explain some variation in genome sizes (e.g., the association of large
genomes with relatively slow growth rates and long lives in some protists, plants and
ectothermic animals (e.g., [7,8,15,19,59,60,113,151,177,186,189,195,243,255,293,300,308–312];
but not in endothermic vertebrates [95]), and the association of relatively large genomes
with larger, but fewer reproductive propagules ([146,166,217,219,313,314]; Table A2), it
cannot explain why genome size covaries with body size in some taxa, but not others (as
observed in Table 1).

I argue that additional life-history theory is needed to provide further insight into
variation of genome size and its relationship to variation in body size and propagule size.
In particular, life-history theory based on age- and size-specific mortality [237,245,315,316]
may be especially useful in this respect. According to this theory, variation in juvenile
mortality relative to adult mortality can have profound effects on life histories, including
growth rates, the age and size at maturation, offspring size and number, and breeding
frequency. For example, Glazier [101] has used this theory to explain why in copepods
egg mass, but not egg number per clutch, strongly correlates with body mass, whereas in
decapods the opposite occurs. He hypothesized that the ratio of juvenile/adult mortality
(MJ/MA) is relatively low in copepods, thus favoring increased investment in individual
offspring at the expense of number as total reproductive investment associated with larger
body sizes increases (total clutch mass scales isometrically with maternal body mass in
crustaceans: [101]). In contrast, he hypothesized that MJ/MA is relatively high in decapods,
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thus favoring increased investment in number rather than size of offspring as total body-
size related reproductive investment increases. When juvenile survival is relatively high
and adult survival relatively low (and thus the probability of future reproduction is greater
in juveniles than adults), the fitness of individual offspring (which relates to their energy
stores and overall size) should be prioritized over parental fitness (which relates to both
the size and number of offspring), thus favoring the allocation of increasing reproductive
investment to larger, rather than more offspring, as observed in copepods. However,
when juvenile survival is relatively low and adult survival relatively high (and thus the
probability of future reproduction is greater in adults than juveniles), parental fitness
should be prioritized over that of individual offspring, thus favoring the allocation of
increasing reproductive investment to more, rather than larger offspring, as observed in
decapods. Data shown in Figure 7 support this hypothesis. Copepods exhibit much lower
MJ/MA than do decapods.
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decapods having different ratios of juvenile/adult mortality (MJ/MA) (data from Table A3). For
copepods, the top ratio is based on MJ for nauplii, whereas the bottom ratio is based on MJ for
copepodids. The scaling exponent (slope, b) is indicated for each relationship. Hypothetical effects of
MJ/MA on the observed scaling relationships are discussed in Section 4.7.1 (also see [101]).

Following the SCBH, the above observations also help to explain why genome size
scales positively with body size in copepods, but not in decapods (Figure 1A,C and
Figure 7). Larger reproductive propagules with larger cells require larger genomes for
structural and functional support. Therefore, genome size should also relate to MJ/MA, at
least indirectly.

Changes in genome size may not only result from life-history changes, but also cause
them [103]. Variation in genome size is often (but not always) associated with changes in
various life-history traits, including not only propagule size and number, but also growth
rate, duration of developmental periods, and age at sexual maturity ([8–11,15,16,19,32,
48,57–60,80,97,103,109,113,177,186,189,192,195,255,293,294,308–314,317]; see also sources
cited in Table 2; but for contradictory evidence, see [97,98]). Interspecific correlations
between genome size and longevity have also been proposed [48], but questioned [9,97].
Experimental manipulations of genome size (ploidy) provide critical evidence that genome
size can affect life-history traits (e.g., [166,195]; also see sources cited in Table A2).
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4.7.2. Linking Genomics with Metabolic Theory

Metabolism fuels all biological activities, including key life-history processes such as
growth and reproduction [318,319]. Furthermore, cell size may affect metabolic rate by
means of surface area-to-volume effects. Surface-area-limited resource uptake and waste
removal should scale to the 2/3 power of cell mass in isomorphic cells, whereas volume-
related resource requirements should scale more steeply (log-log slope ≈ 1) with cell mass.
Therefore, as cells grow, increasing limits on resource supply relative to resource-requiring
cytoplasmic mass should cause them to have increasingly lower mass-specific metabolic
rates. Maintaining ionic gradients is also less costly in larger cells with less surface area
per volume. Therefore, an organism with few large cells should have a lower metabolic
rate than an organism of similar size that has relatively many small cells [253,320,321]. In
addition, the cell-size theory of metabolic scaling posits that if organisms grow by cell
enlargement only, their total cell-surface-area and thus metabolic rate should scale to the
2/3-power of body mass. However, if they grow by cell multiplication only, their total
cell-surface-area and thus metabolic rate should scale isometrically (log-log slope ≈ 1)
with body mass. Or, if organisms grow by both cell enlargement and multiplication, the
metabolic scaling exponent should be between 2/3 and 1 [205,320–324]. Consequently, if
increasing genome size requires larger cells (following assumption #4 of the SCBH), then
organisms with large genomes should also have lower mass-specific metabolic rates than
those with smaller genomes [15,238,253].

The above genome-size hypothesis of metabolism has been tested many times with
mixed results. As predicted, interspecific analyses often show that mass-specific metabolic
rate is negatively related to genome size [8,118,205,238,253,256,257,320,325–329]
(but see [330]). However, intraspecific tests in animals comparing polyploids with diploids
have shown that increasing ploidy more often has no effect on metabolic rate than negative
effects, and sometimes positive effects have even been observed (reviewed in [331–334];
also see [335,336]), as also seen for rates of photosynthesis in plants (e.g., [195,201,293,333]).
Differences in metabolic rate between polypoid and diploid animals may be temperature-
dependent [334–336]. In addition, some studies have shown that, although metabolic rate
and its scaling with body mass relate to variation in cell size, they do not relate to variation
in genome size [337,338]. Furthermore, although some intraspecific studies show relation-
ships between cell size and metabolic scaling [321–323,339–341], others do not [342–344].
These results, suggest that interspecific associations between genome size and metabolic
rate may be the result of the coevolution of genome size with cell size and metabolic
rate, rather than direct effects of genome size on metabolic rate. Multiple cause-and-effect
relationships may be involved, including selection for increased metabolic rate favoring
the evolution of smaller cells and supporting genomes (see also Figure 6; and Section 4.4.2).
The causes and consequences of the coevolution of genome size with various cellular,
physiological and life-history traits are further discussed in the next Section 4.7.3.

4.7.3. Genome Size as an Inter-Linking Component of Multi-Trait Adaptive Syndromes

Correlation analyses, as used this study, do not allow conclusive determination of
cause-and-effect relationships. Incisive multivariate experimental and comparative anal-
yses are needed to unravel the various causal pathways likely involved in relationships
between genome size and reproductive propagule size, somatic cell size, body size, and
various other phenotypic (developmental, physiological and life-history) traits (Figure 6).
Artificial selection experiments may be especially valuable in this respect (e.g., [345]). Sev-
eral investigators have emphasized that multiple causal pathways are likely involved in
the evolution of genome size (e.g., [7,8,90,97,183,186,327]).

The life-history approach that I promote in this essay is only one of many possible
multi-directional causal pathways involved in the evolution of genome size (Figure 6; see
also Section 4.4.2). Nevertheless, it has three features that I believe make it especially
worthy for further investigation.
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First, it emphasizes the importance of the evolution of propagule size as a driving
influence on genome size, cell size and other phenotypic traits (Figure 6; and Section 4.4.2),
which has received little explicit consideration (though this view was intimated in [15,16];
also see [90]). As Bernardo [246] emphasized, phenotypes of eggs and other propagules
relate to the genotypes and evolutionary fitness of both parents and offspring. I would add
that they relate to the nucleotypes of both parents and offspring, as well (cf. [16]). Others
have further argued that the egg is the most influential cell in an animal’s life history [346],
and that its size strongly influences many other life-history traits [346–348]. Therefore,
propagule size should be considered a key factor in a comprehensive understanding of the
evolution of genome size and other associated phenotypic traits (also see Section 5).

Second, my approach helps to explain a greater congruity between the evolution of
reproductive strategies and somatic cellular structure and function than has been hith-
erto appreciated (Figure 6). Nucleotypic and environmental factors that influence the
size and number of somatic cells in a body usually have parallel effects on the size and
number of reproductive propagules that are produced (Figure 5; also see Sections 4.3–4.6;
and Tables A1 and A2). These parallel patterns are also supported by reports made over
100 years ago that in frogs and other animals relatively large gametes tend to give rise
to adult bodies with relatively large somatic cells [261,349]. Unfortunately, these reports
were largely ignored and forgotten, chiefly due to claims that they were not of general
significance [208]. My analyses suggest that the pioneering findings of Chambers [261] and
Popoff [349] were prematurely dismissed and deserve renewed attention.

Third, my approach emphasizes genome size as a critical connecting link between
various reproductive and somatic traits (Figure 6; see also Section 5). For example, if
selection favors larger (but fewer) somatic cells in the body, and thus larger supporting
genomes, nucleotypic effects may, in turn, result in the production of larger (but fewer)
propagules via enlargement of their cells. Alternatively, if selection favors larger (but fewer)
propagules, larger supporting genomes may also be favored that, via nucleotypic effects,
result in larger somatic cells. Or these causal pathways may both occur, resulting in an
evolutionary or functional co-adjustment of the sizes of genomes, cells and propagules.

Multivariate, multidirectional approaches to genome-size evolution can be further
understood in light of the ‘adaptive syndrome’ concept [350–353]. An adaptive syndrome
is a “coordinated set of characteristics” (p. 139 in [350]) evolved in a specific ecological
context (e.g., with respect to resource use, dispersal strategy, predator avoidance, survival in
extreme environments, etc.). It recognizes that natural selection does not act on individual
traits in isolation, but on constellations of phenotypic traits [354]. Although the ecological
and behavioral aspects of adaptive syndromes have received some attention [351,352], their
origin(s) is(are) little understood. According to traditional evolutionary theory, one may
presume that natural selection acting on variable genes has driven the evolution of adaptive
syndromes, perhaps in a step-wise gradual manner [355,356]. However, other kinds of
mechanisms, including synergistic functional linkages and antagonistic trade-offs, and
allometric, developmental, physiological and structural constraints may also be important
in channeling, expediting or hindering evolution toward specific sets of phenotypic traits.
This is a large topic that I cannot discuss fully here. Here, I would like to focus on the
potentially important roles of nucleotypic effects and phenotypically plastic responses in
facilitating or retarding the evolution of specific adaptive syndromes that involve the sizes
of cells and genomes.

As previously emphasized, nucleotypic effects underpin how changes in genome
size relate to a plethora of phenotypic changes, including changes in the size and number
of somatic cells and reproductive propagules, and of the rates of growth, development
and metabolism (see also Section 4.4.2). This “nucleotypic bond” [329] involves a cascade
of synergistic phenotypic changes that may facilitate adaptation to specific kinds of en-
vironments because each phenotypic trait responds in a way that increases fitness. For
example, in resource-poor and other kinds of stressful environments, increased sizes of
cells and propagules and lower rates of growth, development and metabolism may all
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be advantageous responses (see, e.g., [101,253,300,309,357]). Perhaps this is why organ-
isms with large genome sizes (including polyploids) often occur in stressful environments
(e.g., [103,193–195,287,293,336,358,359]).

Similarly, phenotypically plastic responses to cold environments often involve increases
in the sizes of somatic cells and reproductive propagules, and decreases in the rates of
growth, development and metabolism, as well (see Section 4.6; and, e.g., [360–364]). These
coordinated, multi-faceted phenotypic changes may be not only adaptive themselves
(a point that is currently being debated [103,264,265,267–270,274,282,365,366]), but also
the vanguard for further adaptive (genotypic) evolution in cold environments (or in an
opposite way in hot environments). This view is in line with recent arguments that
phenotypic plasticity is centrally important to the evolution of integrated phenotypic
complexes (e.g., [354,367–370]). Coordinated phenotypic norms of reaction, as observed
in plastic thermal responses, may often precede and facilitate the adaptive evolution of
integrated phenotypes.

Therefore, both nucleotypic effects and phenotypically plastic responses may facilitate
the coordinated evolution of adaptive syndromes in specific habitats. Additionally, propag-
ule size may be an essential component of many of these adaptive syndromes (also see
Section 5). However, some environments or life styles may favor the decoupling of genome
size, cell size and various physiological and life-history traits. For example, comparisons
of major taxa of crustaceans reveal that genome size and egg (propagule) size may be
decoupled: at a given body size, cladocerans have much larger eggs, but much smaller
genomes than do copepods (compare Figure 1A,C with Figure 1B). Why this is so deserves
further investigation. In any case, it is possible that nucleotypic effects and phenotypically
plastic responses may not only facilitate the evolution of adaptive syndromes in specific
ecological contexts, but also hinder them in others that favor discordant responses of
genome size, cell size, propagule size, etc.

5. Conclusions

In my essay, I have grappled with the long-standing mystery about why genome
size shows highly variable (positive, absent and negative) relationships with body size
(see Table 1). Four key observations that help unlock this mystery are (1) genome sizes
usually relate more strongly to the structural size of the cells making up a multicellular
organism than to the size of the whole body, (2) nearly all multicellular organisms have a
single-celled developmental stage, (3) multicellular organisms grow by increasing cell size
or number or both, and (4) genome size often shows no or even negative relationships with
cell number. These and other observations are incorporated into a Single-Cell ‘Bottleneck’
Hypothesis (SCBH) that rests on eight well-verified assumptions that are used to infer five
testable predictions (Table 6) for which there are considerable support (see Section 4.3).
As a result of focused statistical analyses on four major taxa of crustaceans and broader
surveys of other kinds of unicellular organisms and multicellular plants and animals, I
reach the following major conclusions:

1. Genome size often relates more positively to reproductive propagule size than adult
size (see Figure 1 and Tables 1–3 and 5). This makes sense because propagules are ei-
ther single-celled (e.g., eggs, sperm and spores) or consist of a relatively few cells (e.g.,
pollen and seeds) whose size often relate strongly to propagule size. Therefore, since
genome size and cell size are usually strongly positively related, genome size should
often relate positively to propagule size, as well. By contrast, multicellular body size
relates to either cell size or number or both. This fact leads to the next conclusion.

2. Genome size relates more positively to the size of unicellular organisms or small
multicellular organisms whose variation in size relates strongly to variation in cell
size, than to the size of relatively large multicellular organisms whose variation in
size relates chiefly to variation in cell number (illustrated in Figure 3). This conclusion
is supported by ubiquitous positive relationships between genome size and body
size observed in unicellular organisms, frequently positive relationships between
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genome size and body size observed in small multicellular organisms (e.g., flatworms,
polychaete worms, mollusks, copepods, cladocerans, ostracods, amphipods, mites
and ticks, and some rotifers and insects), and no or weakly positive or negative rela-
tionships with body size observed in relatively large organisms (e.g., decapods, fishes,
tetrapods, ferns and angiosperms; see Figures 3 and 4; and Table 1). This conclusion
is also supported by the observation that genome size scales curvilinearly (concave
downward) with body length or mass in crustaceans, with a positive relationship at
the small end of the body-size range, and an absent or negative relationship at the
large end of the body-size range (see Figure 2 and Table 4). However, why some small
animal taxa (e.g., nematodes, rotifers, oligochaete worms, spiders and some insects)
do not show positive relationships between genome size and body size (see Table 1)
remains a mystery.

3. Organisms with larger genomes (e.g., polyploids) or that have been exposed to low
temperatures during their development tend to show parallel increases in the sizes
of their somatic cells and reproductive propagules, and parallel decreases in their
number (see Figure 5 and Tables A1 and A2). Changes in somatic cell size and number
are, in turn, often related to changes in various developmental and physiological
traits (e.g., rates of growth and metabolism). These patterns suggest that variation in
reproductive strategies may be more intimately linked to variation in somatic cell size
and function than has been hitherto appreciated. Adaptive or phenotypically plastic
changes in reproductive traits may often covary with somatic traits, which should be
considered in future theoretical models of life-history evolution and metabolic ecology.

4. DNA may influence phenotypes via not only informational (genotypic) effects, but
also non-informational, structural or mechanical (nucleotypic) effects. Nucleotypic
effects appear to play a central role in the network of cause-and effect relationships
among genome size, cell size, propagule size and various other physiological and life-
history traits (see Figure 6). Nucleotypic effects and thermally induced phenotypic
plasticity may facilitate the evolution of ‘adaptive syndromes’ (integrated suites of
traits, including the sizes of genomes, cells and propagules, and the rates of growth,
development and metabolism) especially in hot, cold, resource-poor and other kinds
of stressful environments.

5. I promote and further develop a life-history perspective to understanding the evolu-
tion of genome size and its relationship to body size. Genome size may be affected
by not only r-, K-and adversity-selection, but also variation in age- and size-specific
mortality—in particular, the relative mortality of juveniles (MJ) and adults (MA)
(see also Sections 4.7.1 and 4.7.3). I hypothesize that in organisms where MJ/MA is
low, propagule size, cell size and genome size should show strong positive scaling
with body size (as observed in copepods), but in organisms where MJ/MA is high,
propagule size, cell size and genome size should scale weakly with body size or not
at all (as observed in decapods). Furthermore, because of trade-offs between the size
and number of propagules and somatic cells, low MJ/MA should be associated with
weak or absent scaling of propagule and cell number with body size (as observed in
copepods), whereas high MJ/MA should be associated with strongly positive scaling
of propagule and cell number with body size (as observed in decapods) (see Figure 7).
Genome size may both affect and be affected by the evolution of various life-history
traits [103]. I argue that propagule size and number are key (central) traits in this
respect, a view that has not received the attention that it deserves. Propagule size
relates not only to the genotypic fitness of both offspring and parents, but also to
genome size, cell size and many other phenotypic traits, both directly and indirectly
by nucleotypic effects (see Figure 6), and thus, to many kinds of internal (biological)
and external (ecological) factors. As such, propagule size appears to be a ‘hub trait’
that is highly connected to many other traits [371,372] in adaptive syndromes (cor-
relation networks) representing the multiple interfaces of the genotype, nucleotype,
phenotype and ecotype.
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6. Recommendations for Further Research

• Further testing of the SCBH is needed, including rigorous multivariate statistical
analyses of the relationships among genome size, propagule size, cell size, body size,
and various other phenotypic traits in diverse kinds of plants and animals at various
taxonomic levels. These analyses would benefit from using phylogenetically informed
methods, which have not been employed in the preliminary analyses of crustaceans
presented in my article.

• Why genome size and body size are sometimes negatively correlated (Table 1) has not
been addressed in my study, and deserves further investigation. Perhaps, negative
relationships occur because larger size is sometimes associated with smaller (rather
than larger) cells (and thus supporting genomes), a hypothesis that should be tested.

• Experiments involving manipulations of, or artificial selection on the sizes of genomes,
cells, propagules and (or) adults are needed to identify and disentangle cause-and-
effect relationships (including the mechanisms underlying nucleotypic effects).

• Further syntheses of genomic theory with life-history and metabolic scaling theory are
likely to be worthwhile. For example, theory regarding the origin(s) of genome-size
diversity would benefit from explicit inclusion of life-history theories regarding the
evolution of propagule size and number, and of cell-size-based metabolic scaling
theory. Life-history and metabolic scaling theory may also benefit from explicit
inclusion of genome-size-related nucleotypic effects (e.g., [205]).

• Scaling analyses of genome size and many other traits have focused mostly on adult
size as the independent variable. Analyses based on the sizes of immature ontogenetic
stages (as done in the present study) may provide new insights. As Bonner [154]
emphasized, it is important to study organisms in the context of their whole life cycles,
not just as adults.
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.3390/biology10040270/s1, Table S1 Crustacean data on body mass, egg mass and genome size.
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Appendix A

Tables A1 and A2 provide ancillary information that helps support arguments made
in Sections 4.3–4.5, 4.7 and 5.

Table A1. Studies showing significant positive associations between sizes of various types of reproductive propagules or
gametes and sizes of somatic cells in various taxa of plants and animals.

Taxon Propagule/Gamete 1 Propagule/Gamete 2 Cell Type 1 Cell Type 2 Source

PLANTS
Bryophyta (mosses)

Octoblepharurn
albidum Spore Leaf [373]

Polypodiopsida
(ferns) Spore Stomata [35]

Dryopteris
filix-mas-Gruppe Spore Stomata [374]

https://www.mdpi.com/article/10.3390/biology10040270/s1
https://www.mdpi.com/article/10.3390/biology10040270/s1
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Table A1. Cont.

Taxon Propagule/Gamete 1 Propagule/Gamete 2 Cell Type 1 Cell Type 2 Source

Angiospermae Pollen Seed Stomata [166]
Allium oleraceum Pollen Stomata [375]

Arabidopsis thaliana Seed Embryo Seed coat [168,169]
Seed Stomata Leaf epidermis

Brassica campestris Pollen Stomata [376]
B. rapa Pollen Seed Stomata [377]

Bromus inermis Pollen Stomata [378]
Catharanthus roseus Pollen Seed Stomata [379,380]
Chamomilla recutita Pollen Seed Stomata [381]

Convolvulus
pluricaulis Pollen Seed Stomata Leaf epidermis

1 [382]

Cyamopsis
psoraloides Pollen Stomata [383]

Cyclamen persicum Pollen Stomata [384]
Dactylis glomerata Seed Stomata [385]
Echinacea purpurea Pollen Seed Stomata [386]
Eriotheca species Pollen Stomata [387]

Fagopyrum
tataricum Pollen Seed [388]

Glycine max Pollen Seed Stomata [389,390]
Hemerocallis

varieties Pollen Stomata [131]

Hemerocallis flava Pollen Stomata [391]
Hylocereus species Pollen Seed 2 Stomata [134]

Hyoscyamus
muticus Seed Stomata [392]

Jatropha curcas Pollen Seed Stomata [393]
Lactuca sativa Pollen Seed Stomata [394]

Lagerstroemia indica Pollen Seed Stomata [395]
Lathyrus sativus Pollen Seed Stomata [396]

Lavandula
angustifolia Seed Stomata [136]

Lepidium sativum Seed Stomata [397]
Linum species Pollen Seed Stomata [398]

Lolium multiflorum Seed Stomata [39]
Lolium perenne Seed Leaf epidermis [137]

Malus × domestica Pollen Stomata [138]
Miscanthus species Pollen Stomata [399]
Nicotiana species Seed Stomata Leaf epidermis [40]

Nigella sativa Seed Stomata [400]
Ocimum basilicum Pollen Stomata [401]

Oryza sativa Seed Spikelet hull
epidermis [402,403]

Phaseolus vulgaris Pollen Seed Cotyledon Stomata 3 [167,216,404]
Phlox amabilis Pollen Stomata [405]

Physalis species Pollen Stomata [406]
Pisum sativum Seed Cotyledon [139]
Plantago media Pollen Seed Stomata [407]

P. ovata Pollen Seed Stomata [408]
P. psyllium Pollen Seed Stomata [409]

Pyrus pyrifolia Pollen Stomata [140]
Raphanus sativus Pollen Stomata [410]
Rhipsalis baccifera Seed Stomata [411]
Sesamum indicum Pollen Stomata [412]

Tanacetum
parthenium Pollen Seed Stomata Root meristem [413]
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Table A1. Cont.

Taxon Propagule/Gamete 1 Propagule/Gamete 2 Cell Type 1 Cell Type 2 Source

Trachyspermum
ammi Pollen Seed Stomata [414,415]

Trifolium species Pollen Stomata [416]
Vicia species Seed Cotyledon [144]
Vicia villosa Pollen Stomata [417]

Vigna species Pollen Seed Stomata [418]
Viola × wittrockiana Pollen Seed [419]

Ziziphus jujuba Pollen Stomata [420]

INVERTEBRATE
ANIMALS
Arthropoda

Insecta
Bombyx mori Egg Serosa [421]

VERTEBRATE
ANIMALS

Actinopterygii
(ray-finned fishes)

Cobitus Egg Erythrocyte [314]
Misgurnus

anguillicaudatus Egg Sperm [422]

Anura (frogs) Egg Gastrula [423]
Rana species Egg Epidermis Lens 4 [261]
Mammalia
Rodentia Sperm Liver [153]

1 Additionally, leaf palisade cells. 2 Seed mass is positively or negatively associated with sizes of pollen and stomatal cells. 3 Additionally,
hypocotyl and root endodermis cells. 4 Additionally, cartilage, muscle, rectum and other cell types.

Table A2. Effects of polyploidy on cell or propagule (or gamete) size and number in various taxa of unicellular and
multicellular organisms.

Taxon Cell Size Cell Number Propagule Size Propagule
Number Source

UNICELLULAR
ORGANISMS

Prokaryotes POS [424,425]
Fungi

Saccharomyces cerevisiae POS [426–428]
Bacillariophyceae

(diatoms)
Thalassiosira species POS [29]

Ciliophora
Stentor coeruleus POS [34]

MULTICELLULAR
ORGANISMS

PLANTS
Bryophyta (mosses)

Bryum varieties POS [429]
Octoblepharum albidum POS POS [373]
Polypodiopsida (ferns) POS POS [107,430]

Asplenium species POS [431]
Asplenium trichomanes x

viride-Bastarde POS [432]
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Table A2. Cont.

Taxon Cell Size Cell Number Propagule Size Propagule
Number Source

Dryopteris margina POS [433]
Dryopteris

filix-mas-Gruppe POS POS [374]

Woodwardia virginica POS [433]

Angiospermae POS POS NEG [113,166,172,189,
434]

Abelmoschus species POS NEG [435]
Acacia mearnsii POS NEG [436]

Actinidia deliciosa POS [437]
Andropogon species POS [438]

Aegilops neglecta POS NEG [439]
Allium oleraceum POS NEG POS [375]

A. sativum POS NEG [440]
Anthurium andraeanum POS NEG [441]

Arabidopsis thaliana POS POS [169,442–445]
Arachis species POS [446]

Asparagus officinalis POS NEG [447]
Atriplex confertifolia POS NEG [201]
Averrhoa carambola POS [448]

Bletilla striata POS [449]
Brachiaria ruziziensis POS [450]
Brassica campestris POS NEG POS [376]

B. oleracea POS [451]
B. rapa POS POS [377]

Bromus inermis POS NEG POS [378]
Buddleja macrostachya POS NEG [452]

Calendula officinalis POS NEG [453]
Camellia sinensis POS NEG [454]
Cannabis sativa POS NEG [455]

Carthamus tinctorius POS [456]
Catharanthus roseus POS NEG POS [379,380]
Cattleya intermedia POS NEG [457]

Centella asiatica POS [458]
Chaenomeles japonica POS [459]

Chamerion (Epilobium)
angustifolium POS NEG POS [460,461]

Chamomilla recutita POS POS [381]
Chrysanthemum carinatum POS [462]

Chrysanthemum
(Dendranthema ×

grandiflorum)
NO NO [463]

Citrulus lanatus POS NEG [464]
Citrus clementine POS NEG [465]

C. limonia POS [466]
C. reticulata POS NEG [467]

Clematis heracleifolia POS NEG [468]
Coffea species POS NEG [469]

Convolvulus pluricaulis POS NEG POS NEG [382]
Crataegus species POS [470]

Cyamopsis psoraloides POS NEG POS NEG [383]
Cyclamen persicum POS POS [384]
Cynodon dactylon POS NEG [471]
Dactylis glomerata POS POS NEG [385,472]
Datura stramonium POS NEG [473]

Dendrobium cariniferum POS NEG [474]
Dioscorea zingiberensis POS [475]
Dracocephalum kotschyi POS [476]
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Table A2. Cont.

Taxon Cell Size Cell Number Propagule Size Propagule
Number Source

Echeveria ‘peerless’ POS NEG [477]
Echinacea purpurea POS NEG POS [386]
Eragrostis curvula POS [478]
Eriotheca species POS POS [387]

Fagopyrum tataricum POS [388]
Festuca arundinacea POS NEG [479]

Fragaria vesca POS NEG [480]
Gerbera jamesonii POS NEG [481]

Glycine max POS NEG POS NEG [389,390]
Glycyrrhiza glabra POS [456]

Hemerocallis varieties POS POS [131]
Hemerocallis flava POS POS [391]
Hibiscus syriacus POS NEG [482]
Hordeum vulgare POS [483]
Humulus lupulus POS [484]

Hylocereus species POS/NO 1 NEG 1 [133]
Hylocereus species POS NEG POS/NEG 2 NEG 2 [134]

Hyoscyamus muticus POS POS [392]
Impatiens balsamina POS NEG [485]

Isatis indigotica POS POS [486]
Jatropha curcas POS NEG POS/NEG 3 [393]
Lactuca sativa POS POS [394]

Lagerstroemia indica POS NEG POS [395,487]
Lathyrus sativus POS NEG POS NEG [396]

Lavandula angustifolia POS POS [136]
Lepidium sativum POS NEG POS [397]

Lilium davidii POS NEG [488]
Linum species POS POS [398]

Lobularia maritima POS NEG [489]
Lolium species POS [490]

Lolium multiflorum POS POS [39,491]
L. perenne POS [491]

Lycium ruthenicum POS NEG [492]
Malus × domestica POS POS [138]
Mentha canadensis POS NEG [493]

Medicago sativa POS NEG [494]
Miscanthus species POS POS [399,495]

Morus alba POS NEG [496]
Musa species POS NEG [497]

Musa acuminata POS NEG [498]
Nicotiana species POS NEG POS [40]

Nigella sativa POS POS [400]
Ocimum basilicum POS NEG POS [401]

O. kilimandscharicum POS NEG [499]
Onosma species POS [500]

Opuntia mesacantha POS [501]
Oryza sativa POS [502]

Paeonia varieties POS [503]
Papaver bracteatum POS NEG [504]

Paulownia tomentosa POS NEG [505]
Pennisetum species POS NEG [506]

Petroselinum crispum POS NEG [507]
Phaseolus vulgaris POS NEG POS [404]

Phleum species POS [508]
Phlox amabilis POS POS [405]

Physalis species POS POS [406]
Pinellia ternate POS NEG [509]
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Table A2. Cont.

Taxon Cell Size Cell Number Propagule Size Propagule
Number Source

Plantago media POS POS NEG [407]
P. ovata POS POS POS [408]

P. psyllium POS NEG POS [409]
Platanus acerifolia POS NEG [510]

Plumbago auricalata POS NEG [511]
Pogostemon cablin POS NEG [512]
Poncirus trifoliata POS [513]
Populus varieties POS [514]

Populus tremuloides POS [305]
Primula sieboldii POS [515]
Pyrus pyrifolia POS POS NEG [140]

Ramonda species POS [141]
Raphanus sativus POS POS [410,516]

Rhododendron fortunei POS NEG [517]
Ricinus communis POS POS [518]

Robinia pseudoacacia POS NEG [519]
Salix species POS [520]

Salix viminalis POS [521]
Salvia officinalis POS NEG [522]

Secale cereale, Triticum
aestivum and hybrids POS NEG [523]

Sesamum indicum POS NEG POS [412]
Solanaceae POS [524]

Setaria italica POS NEG [525]
Solanum phurela POS [526]
Sorghum bicolor POS NEG [527,528]

Spathiphylum walisii POS NEG [529]
Tagetes erecta POS NEG [530,531]

Tanacetum parthenium POS NEG POS [413]
Taraxacum species POS NO [532]
Thalictrum alpinum POS NEG [533]

Themeda triandra POS NO/POS 4 [534]
Thymus persicus POS NEG [535]

Tradescantia canaliculata POS NEG [190]
Trachyspermum ammi POS NEG POS NEG [414,415]
Trichosanthes dioica NEG [536]
Trifolium species POS POS [416]

Tripleurospermum species POS [537]
Triticum species POS NEG POS [538,539]
Vanilla planifolia POS [540]

Viburnum species POS NEG [541]
Vicia cracca POS [542]

V. faba POS NEG [543]
V. villosa POS NEG POS [417]

Vigna species POS NEG POS [418]
Viola × wittrockiana POS NEG [419]

Zantedeschia varieties POS [544]
Zea mays POS [545]

Zingiber officinale POS [546]
Ziziphus jujuba POS NEG POS [420,547]

INVERTEBRATE
ANIMALS
Mollusca
Bivalvia

Crassostrea gigas POS NEG [146]
Mulinia lateralis POS NEG [217]
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Table A2. Cont.

Taxon Cell Size Cell Number Propagule Size Propagule
Number Source

Gastropoda
Bulinus POS [548]

Potamopyrgus antipodarum POS [549]
Arthropoda
Crustacea
Anostraca

Artemia parthenogenetica NEG [550]
A. salina POS NO/NEG5 [551]

Cladocera
Daphnia pulex complex POS NEG [218,313]

Decapoda
Penaeus chinensis POS NEG [204]

Insecta
Bombyx mori POS NEG POS [421,552]

VERTEBRATE
ANIMALS

Actinopterygii (ray-finned
fishes) POS [553,554]

Acipenser baeri POS [555]
Carassius auratus POS [556,557]

C. gibelio POS NEG [558]
Cobitus species POS POS NEG [222,314]

Cobitis biwae POS [559]
Ctenopharyngodon idella ×
Hypophthalmichthys nobilis

hybrids
POS [560]

Cyprinus carpio POS NEG [561]
Danio rerio POS NEG [562,563]

Dicentrarchus labrax POS [564]
Gasterosteus aculeatus POS NEG [199]

Ictalurus punctatus POS [565]
Misgurnus anguillicaudatus POS [422]

M. fossilis POS [566]
M. mizolepis POS [567]

Oncorhynchus kisutch POS NEG POS [568,569]
O. mykiss POS NEG [570,571]

Oreochromis varieties POS [572]
Oreochromis aureus POS [573]
Plecoglossus altivelis POS NEG [574]
Pleuronectes platessa POS NEG [575,576]
Poeciliopsis species POS [577]
Pomoxis annularis POS [578]
Rhodeus ocellatus POS NEG [579]
Salmo gairdneri POS [580]

S. salar POS NEG [568,581]
S. trutta POS [582]

Salvelinus fontinalis POS [583]
Stizostedion varieties POS [584]

Tilapia aurea POS [585]
Tinca tinca POS NEG [586]

Anura (frogs)
Bufo viridis complex POS [587]

Hyla species POS [588]
Hyla versicolor complex POS POS [589,590]

Neobatrachus species POS [200]
Odontophrynus species POS [591]

Odontophrynus americanus POS [592]
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Table A2. Cont.

Taxon Cell Size Cell Number Propagule Size Propagule
Number Source

Pleurodema species POS [591]
Pelophylax (Rana) species POS [593]

Pelophylax esculentus POS [284]
Xenopus laevis POS [594]

Caudata (salamanders)
Ambystoma species POS NEG [595]

Ambystoma jeffersonianum
complex POS [596]

Ambystoma
laterale-texanum hybrid

complex
POS [347]

Triturus viridescens POS NEG [196,597]
Mammalia
Rodentia POS [153]

Mus musculus POS NEG [197,198,202,258]
1 Increased ploidy is associated with larger pollen, and fewer seeds of similar size. 2 Increased ploidy is associated with larger pollen and
fewer seeds with either higher or lower mass. 3 Increased ploidy is associated with larger pollen and seeds having greater structural size,
but lower mass. 4 Effect of ploidy on seed production depends on temperature and moisture. 5 Effect of ploidy on cell number depends on
tissue type.

Appendix B

Table A3 presents data used to calculate the mean ratios of juvenile mortality relative
to adult mortality (MJ/MA) in copepod and decapod crustaceans, as depicted in Figure 7.
The MJ/MA ratios were calculated by dividing the average MJ by the average MA for each
taxonomic group. Sample sizes for nauplii, copepodids, adult copepods, larval decapods
and adult decapods are 19, 10, 12, 5, and 21, respectively.

Table A3. Instantaneous natural mortality rates (d−1) 1 of larval juveniles (MJ) and adults (MA) of
copepod and decapod crustaceans.

Species MJ MA Source

COPEPODA
Acartia clausi 0.2243 (N) [598]
A. hudsonii 0.063 [599]

A. tonsa 0.7606 (N) 0.6 [598–600]
Calanus glacialis 0.11 (C) [601]
C. finmarchicus 0.13 (N) 0.102 [602–606]

0.097 (C)
C. helgolandicus 0.426 (N) 0.1175 [598,602,607]

C. pacificus 0.065 [608]
C. spp. 0.0975 (N) [609]

0.052 (C)
Centropages typicus 0.2398 (N) [598]

Clausocalanus furcatus 1.0165 (N) 0.485 [603]
0.314 (C)

Diaptomus clavipes 0.365 (N) 0.23 [603]
0.014 (C)

D. negrensis 0.53 (N) 0.80 [603]
0.878 (C)

Eurytemora affinus 1.01 (N) 0.265 [598–600]
Euterpina acutifrons 0.2322 (N) [598]
Oithona amazonica 0.11 (N) 1.2 [603]

0.844 (C)
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Species MJ MA Source

O. helolandica 0.1233 (N) [598]
O. nana 0.0399 (N) [598]

O. similis 0.0194 (N) 0.0718 [601,603,609,610]
0.02 (C)

Paracalanus parvus 0.0874 (N) [598]
Pseudocalanus elongatus 0.04 (N) [611]

0.03 (C)
P. newmani 0.11 (N) 0.0965 [612,613]

P. sp. 0.05 (N) [600]
0.05 (C)

DECAPODA
(Shrimp)

Acetes japonicas 0.00644 [614]
Crangon crangon 0.00945 [615,616]

Litopeneaus schmitti 0.00662 [617]
Macrobrachium equidens 0.00737 [618]

M. macrobrachion 0.0092 [619]
M. völlenhovenii 0.00764 [620,621]

Palaemon adspersus 0.00593 [622]
Pandalus jordani 0.04865 (Z) 0.00436 [600,623,624]

P. borealis 0.00253 [625,626]
Penaeus duorarum 0.22 (Z) [600]

P. latisulcatus 0.00386 [627,628]
P. semisulcatus 0.00658 [629]

(Lobsters)
Panulirus interruptus 0.018 (Z) [600]

P. penicillatus 0.000986 [630]
(Crayfish)

Astacus leptodactylus 0.00158 [631]
(Crabs)

Callinectes sapidus 0.00240 [632]
Cancer magister 0.0161 (Z) 0.00440 [600,633,634]

C. pagurus 0.00155 [635]
Chionoecetes bairdi 0.000562 [636]

C. opilio 0.00146 [636–638]
Lithodes aequispinus 0.00145 [639]

Pagurus spp. 0.062 (L) [640]
Paralithodes camptschaticus 0.00140 [639,641]

P. platypus 0.000515 [639]
1 Instantaneous (daily) natural mortality rates (M) were calculated typically as M = ln(N0/Nt)/-t, where N0 is the
initial number of individuals in a cohort and Nt is the number of surviving individuals after the time interval t in
days (e.g., [600]). These rates excluded effects of human harvesting. Although mortality rates were estimated at
various temperatures and other environmental conditions, major differences of MJ/MA between copepods and
decapods are apparent. Averages were calculated for species with multiple values. N = nauplii. C = copepodids.
Z = zoea. L = larvae.
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36. Herben, T.; Suda, J.; Klimešová, J.; Mihulka, S.; Říha, P.; Šímová, I. Ecological effects of cell-level processes: Genome size,
functional traits and regional abundance of herbaceous plant species. Ann. Bot. 2012, 110, 1357–1367. [CrossRef]

37. Gallagher, R.V.; Leishman, M.R.; Miller, J.T.; Hui, C.; Richardson, D.M.; Suda, J.; Trávníček, P. Invasiveness in introduced
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