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Abstract Voltage-gated Ca2+ channels couple membrane
depolarization to Ca2+-dependent intracellular signaling
events. This is achieved by mediating Ca2+ ion influx or by
direct conformational coupling to intracellular Ca2+ release
channels. The family of Cav1 channels, also termed L-type
Ca2+ channels (LTCCs), is uniquely sensitive to organic Ca2+

channel blockers and expressed in many electrically excit-
able tissues. In this review, we summarize the role of LTCCs
for human diseases caused by genetic Ca2+ channel defects
(channelopathies). LTCC dysfunction can result from struc-
tural aberrations within their pore-forming α1 subunits
causing hypokalemic periodic paralysis and malignant
hyperthermia sensitivity (Cav1.1 α1), incomplete congenital
stationary night blindness (CSNB2; Cav1.4 α1), and Timo-
thy syndrome (Cav1.2 α1; reviewed separately in this issue).
Cav1.3 α1 mutations have not been reported yet in humans,
but channel loss of function would likely affect sinoatrial
node function and hearing. Studies in mice revealed that
LTCCs indirectly also contribute to neurological symptoms
in Ca2+ channelopathies affecting non-LTCCs, such as
Cav2.1 α1 in tottering mice. Ca2+ channelopathies provide

exciting disease-related molecular detail that led to important
novel insight not only into disease pathophysiology but also
to mechanisms of channel function.
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Introduction

Voltage-gated Ca2+ channels are Ca2+-selective pores linked
to voltage-sensing domains that couple membrane depolar-
ization to intracellular signaling events. Among the three
families of voltage-gated Ca2+ channels (VGCCs; Cav1,
Cav2, and Cav3, [14]), the family of Cav1 channels, also
termed L-type Ca2+ channels (LTCCs), is uniquely sensitive
to organic Ca2+ channel blockers and expressed in many
electrically excitable tissues. LTCCs were first described in
heart and smooth muscle. Today, we know that these
cardiovascular channels are almost exclusively of the
Cav1.2 subtype and their block by clinically used Ca2+

channel blockers (such as nifedipine, amlodipine, verapamil,
and diltiazem) explains most of their therapeutic effects, such
as blood pressure lowering and cardiodepression. In addition
to Cav1.2, three other isoforms (Cav1.1, Cav1.3, and Cav1.4)
exist. Cav1.3 is expressed together with Cav1.2 in many
tissues, such as the sinoatrial node and heart atria, neurons,
chromaffin cells, and pancreatic islets. Available Ca2+

channel blockers inhibit both of these isoforms with similar
affinities, such that their physiological roles could not be
separated pharmacologically. This was possible by geneti-
cally modified mice revealing distinct functions of these two
isoforms based on differences in their biophysical properties
[62, 68]. In particular, Cav1.3 can serve pacemaker functions
in neurons [57], the sinoatrial node [47], and in chromaffin
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cells [49, 50]. In the brain, both isoforms couple neuronal
activity to transcriptional events: Cav1.2 mediates long-term
potentiation and spatial learning and memory in the
hippocampus [55]. Cav1.3 mediates long-term potentiation
in the amygdala and participates in the consolidation of fear
memory [25].

Cav1.1 and Cav1.4 possess a much more restricted
expression pattern, with expression almost exclusively in
skeletal muscle and the retina, respectively. Cav1.1 channels
(which also contain a γ-subunit) carry very slowly
activating Ca2+ inward currents, too slow for providing
Ca2+ to the contractile machinery in response to millisecond
depolarizations eliciting muscle contraction. Although the
fast conformational changes of their voltage-sensing
domains induce pore opening very slowly, they are quickly
transmitted to the sarcoplasmic reticulum (SR) ryanodine
receptors (RyR1), thus serving as fast voltage sensors for
SR Ca2+ release. This seems to be accomplished through a
close physical association of Cav1.1 channels in the T-
tubular membrane and RyR1 in the junctional SR of the
skeletal muscle triads [45].

Transcripts for all four LTCC α1 subunit isoforms and
accessory β3- and β4-subunits are also present in immune
cells [2, 36]. Although reduced expression of Cav1.1, β3,
or β4 was each associated with reduced Ca2+ influx after T-
cell receptor cross-linking in T-cells [52], the exact role of
LTCCs for T-cell signaling remains unknown.

Here, we summarize the role of LTCCs for human diseases
caused by genetic Ca2+ channel defects (channelopathies) in
Ca2+ channel α1 subunits. LTCC dysfunction can result from
structural aberrations within their pore-forming α1 subunit
(L-type Ca2+ channelopathies), such as in retinal Cav1.4 α1
found in patients with incomplete congenital stationary night
blindness (CSNB2), or in skeletal muscle Cav1.1 α1 found
in patients with hypokalemic periodic paralysis (HPP) or
malignant hyperthermia susceptibility (MHS). However,
LTCC dysfunction can also occur in Ca2+ channelopathies
with structural aberrations in the α1 subunit of non-LTCCs
[13] (non-L-type Ca2+ channelopathies), such as Cav2.1 α1
mutations in tottering mice. Ca2+ channelopathies involving
defects of auxiliary subunits (which may not selectively
affect only LTCCs) will not be discussed in this review.

Cav1.1 channelopathies (CACNA1S gene)

Hypokalemic periodic paralysis type 1

Familial HPP is an autosomal dominant disorder caused by
mutations in the pore-forming Cav1.1 α1-(hypokalemic
periodic paralysis type 1,HPP-1) or Na+-channel α-subunit
(Nav1.4, SCN4A gene; HPP-2; see chapter on skeletal muscle
Na+-channel channelopathies in this issue). CACNA1S

mutations are found in about 75% of patients and SCN4A
mutations in about 15% [41]. HPP symptoms generally
manifest around the second decade of life and are character-
ized by hypotonia and attacks of local or generalized skeletal
muscle weakness or paralysis. The frequency of the attacks is
variable. A lower penetrance often occurs in females.
Attacks are accompanied by hypokalemia, and therapeutic
potassium supplementation relieves symptoms. Precipitating
factors are high-carbohydrate meals, insulin intake, acute
stress, sudden exposure to heat or cold, and sudden rest after
exercise. The long-term prognosis is generally good, and
crises may decrease in midlife. However, severely affected
families were reported, and involvement of respiratory
muscles may lead to death [7]. The discovery of single
missense CACNA1S mutations in humans with HPP-1 which
still allow expression of a full-length Cav1.1 α1 subunit
protein suggested that changes in channel gating or channel
expression on the cell surface may account for altered
skeletal muscle function. The most frequent mutations affect
arginine residues in two of the channel's voltage sensors
(R528, R1239; Fig. 1). In contrast to skeletal muscle Na+-
channels, Cav1.1 channels are difficult to express in
heterologous systems [56]. Results from such studies, and
even from recordings of mutant Ca2+ currents from
myotubes cultured from affected patient muscle [69], were
rather controversial and did not reveal a clear unifying
picture of how the reported biophysical changes may explain
the episodic failure of muscle excitability in association with
a decrease in serum potassium.

A fresh perspective for a unified hypothesis for HPP
pathophysiology came from several independent observations.

First, even normal skeletal muscle cells are known to
show a bistable membrane behavior. Initial lowering of
extracellular K+ (Kex) hyperpolarizes, but further lowering
(usually to below 1 mM in normal muscle) then abruptly
(and paradoxically) depolarizes the sarcolemmal membrane
to about -50 to -60 mV [79]. This behavior reflects the
existence of two stable resting membrane potentials (VR),
one near the K+-equilibrium potential (around -80 mV) and
one around -50 to -60 mV resulting from two opposing
conductances: a Ba2+-sensitive inward rectifier K+-current
(which determines the more negative VR) and a linear, non-
selective leak inward current. With decreasing Kex, first
hyperpolarization occurs as expected from the Nernst
equation, but with the inward rectifier conductance declin-
ing the hyperpolarizing K+-current will become smaller
than the depolarizing leak current with decreasing Kex. VR

is then uncoupled from the K+-equilibrium potential and
becomes more depolarized. Accordingly, the sensitivity of
this paradoxical depolarization to Kex-lowering (i.e., a shift
to higher Kex) is increased by either blocking the inward
rectifier K+-current (e.g., by Ba2+) or by enhancing the
depolarizing leak currents. Indeed, HPP muscle fibers are
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more susceptible to K+-lowering than normal muscle [41].
Since K+-channels are not mutated in HPP-1 or HPP-2, the
only possibility is that mutations observed in the pore-
forming subunits of Cav1.1 α1 or Nav1.4 α somehow
increase leak current.

Second, a large number of Nav1.4 α-subunit point
mutations, also outside of the S4 helices, are known to
cause different muscle channelopathies (for review, see
[39]) but as in Cav1.1 α1 for HPP-1, only neutralizing
mutations in S4 arginines cause HPP-2. This strongly
pointed to a specific role of these residues but it was
unclear how the voltage-sensing domains of two different
ion channels with different ion selectivity could account for
the paradoxical depolarization associated with low Kex.

The third and intriguing finding was that mutations of S4
arginines in Shaker K+-channels can create a pore in the
voltage-sensing domain independent of the main K+-
selective pore. This new pore can selectively conduct
protons when mutated to histidine [73] or other cations
when mutated to non-charged amino acids [81]. It was
termed ω-current or gating pore current. Gating of this pore
is voltage-dependent because the position of the S4
arginines strongly depends on the position of the S4 helix
which moves during gating (Fig. 2). Mutating the outer-
most arginine appears to create a pore in the closed state
(Fig. 2a, b) that gets plugged by an inner arginine [74],
once the S4 moves outward and tilts upon depolarization
(Fig. 2c). An opposite voltage dependence would be
expected for a mutation of arginines further inside S4, such
as arginine in position 3 (Fig. 2d). The finding that a single

residue could transform the voltage-sensing domain into a
pore was further strengthened by the fact that the voltage-
gated proton channel Hv1 contains the typical four
transmembrane segments S1–S4 of a voltage-sensing
domain but lacks the two transmembrane segments that
form the classical pore domain in other voltage-gated
channels [82]. Together, these observations paved the way
for studies on HPP-2 and HPP-1, demonstrating that these
mutations indeed induced a gating pore current which
represents the depolarizing conductance predicted from the
susceptibility to “paradoxical” depolarization. For Nav1.4
mutations, this could be directly shown from recordings in
heterologous expression systems [70]. As mentioned above,
heterologous expression is more difficult with Cav1.1.
However, in a series of elegant experiments in myofibers
from HPP-1 patients with R528H and R1239H Cav1.1
mutations, Jurkat-Rott and colleagues [41] measured a non-
selective cation leak of 12–19.5 µS/cm from steady-state
current density–voltage relationships, consistent with the
assumption that the Cav1.1 α1 mutations also induce gating
pore currents. This may also explain the high intracellular
Na+ concentrations found in the muscle of these patients in
vivo and in vitro [41]. However, these experiments do not
allow predictions about the cation selectivity of the Cav1.1
α1 mutations, especially because Cav1.1 α1 mutations to
histidines are expected to conduct only protons, as shown
for corresponding arginine mutations in Nav1.4 and Shaker
K+ channels.

The HPP-1 mutations currently known are illustrated in
Fig. 1. Two additional mutations affecting the first and

Fig. 1 Mutations in Ca2+ channel Cav1.1 α1 subunits identified in
patients with HPP-1 and MHS: a folding model of α1-subunits based
on hydrophobicity analysis is shown. Plus sign indicates several
positive charges in the transmembrane S4 helices within the
hydrophobic repeats I–IV. S4 helices and their positively charged
residues are shown in the enlarged structures. Together with S1, S2,

and S3 helices, they form the four voltage-sensing domains of the
channel controlling the opening and closing of a single pore domain
formed by S5 and S6 helices together with the connecting linkers.
HPP-1 mutations are indicated in red; MHS mutations are shown in
yellow. The location of other positive charges in the S4 domains is
indicated as black circles (plus sign)
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second arginine in S4 of domain III (R897S, R900S) were
discovered more recently [51] and are in agreement with
the gating pore current theory. The first mutation not
affecting a S4 arginine, V876E, was reported in a HPP-1
family in South America [42]. V876E is located within the
transmembrane helix S3 and replaces a hydrophobic
residue by a negative charge. S3 helices are located close
to the S4 helix in different models of voltage-gated cation
channels [90] and help to stabilize the S4 helix. Upon
activation, the S4 helix moves outward, rotates clockwise, and
its extracellular end tilts away from the pore axis (Fig. 2).
Although the relative movements of the adjacent S1–S3
helices with respect to S4 are a matter of debate [90], the
negative charges in these helices (including S3) were shown
to form salt bridges with the S4 positive charges, and these
interactions change dynamically upon gating-induced S4
movements (as shown, e.g., for a “sliding helix model”
[90]). Therefore, a negative charge in the S3 helix is likely to

disturb this delicate network of charges. It is possible that
this leads to conformational changes that create an ion pore
within the voltage sensor. Although this hypothesis needs to
be addressed in future studies, the location of this mutation
outside S4 is not a priori contradicting the gating pore
concept underlying HPP pathophysiology.

Malignant hyperthermia susceptibility

Malignant hyperthermia (MH) is a potentially lethal
autosomal dominant disorder with susceptibility of other-
wise healthy individuals to severe adverse reactions to
volatile anesthetics (e.g., halothane) or depolarizing muscle
relaxants. Exposure to these drugs can quickly lead to
skeletal muscle hypermetabolism resulting from an uncon-
trolled increase in the concentration of free myoplasmic
Ca2+ released from the SR Ca2+ stores [40]. This state
results in skeletal muscle contractures with adenosine

Fig. 2 Simplified scheme illustrating the membrane potential-
dependent conformations of the voltage sensor: only one of the four
voltage-sensing domains is illustrated. S4 helices are shown in green,
positively charged residues (mostly arginines) as blue spheres. In the
closed state, the positively charged S4 helix is pulled inside by the
negative resting potential. The outermost arginine residue (1) interacts
with residues of other helices forming the voltage-sensing domain
(e.g., a key negative charge in S2; [70]) (a). In Shaker K+, Cav1.1, or
Nav1.4 channels, a mutation of arginine in position 1 (1) to an
uncharged residue (e.g., serine or glycine) opens a new permeation
pathway (arrow) as long as the channel is in the closed state (b). Upon
depolarization, the S4 helix is driven outward, rotates, and its

extracellular portion tilts (c). This movement shifts the arginine in
position (3) outward and would close the gating pore induced by a
mutation in position 1. The mechanism can account for the
depolarizing current observed in muscle cells from HPP-1 patients
carrying the Cav1.1 α1 subunit mutations in S4 helices illustrated in
Fig. 1 (HPP-1) or analogous mutations in Nav1.4 (HPP-2, not illustrated,
[51]). Conversely, whenever the sensor is in the open state, mutation of
an arginine in position 3 (3) would enable a gating pore current (d),
which would be closed upon repolarization by inward movement of
arginine 1. Such a mechanism can explain the depolarization-activated
gating pore current conducted by mutant Nav1.4 channels in potassium-
sensitive normokalemic periodic paralysis [70]
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triphosphate-depletion, excessive activation of glycogenol-
ysis and cell metabolism, hypercapnia, hypoxemia and
lactic acid acidosis, and an increase in body temperature.
Rhabdomyolysis occurs with subsequent creatine kinase
elevation, hyperkalemia, cardiac arrhythmias, myoglobinu-
ria, and the possibility of renal failure. Treatment of a crisis
by early administration of dantrolene, an inhibitor of SR
Ca2+ release, substantially reduces mortality. Anesthesia-
induced MH incidence is estimated to about 1:10,000.
However, the true prevalence must be higher because the
clinical penetrance is low. The skeletal muscle ryanodine
receptor RyR1 gene (RYR1) has been identified as the
primary MHS locus and there are about 180 missense
mutations described across RYR1 that co-segregate with
MHS [12]. Several alternative loci have also been pro-
posed, but so far, only the Cav1.1 α1 subunit gene
(CACNA1S) has been identified as an additional causative
gene. HPP-1 and MHS can therefore be considered allelic
diseases. The Cav1.1 α1 mutations associated with MHS
are located in the cytoplasmic linker between repeats III
and IV (R1086H, R1086C [54]) or replace the innermost
arginine in S4 of repeat I (Fig. 1). Because Cav1.1 mainly
serves as the voltage sensor of RyR1 rather than a Ca2+

channel (see above), these mutations may alter the voltage-
dependent signaling between these two Ca2+ channels. In a
porcine model of MHS (RyR1 point mutation), the typical
increased sensitivity to a broad range of pharmacological
stimuli was accompanied by a lower threshold for SR Ca2+

release and contraction [24]. The fast depolarization-
induced conformational changes of Cav1.1 α1 subunits
(also termed dihydropyridine receptors, DHPRs, in muscle)
mechanically activate RyR1 and elicit SR Ca2+ release. In
addition to this orthograde coupling, there is also a
retrograde signaling because the activity of DHPRs is
strongly influenced by its RyR1 interaction. Both forms of
coupling are mediated through a “critical domain” in the
cytoplasmic II–III linker [26]. Obviously, measurements of
MHS mutation-induced effects on Cav1.1-mediated ion
currents appear of limited value. Instead, the functional
coupling needs to be studied, which requires introduction of
the mutated channels into a skeletal muscle environment.
This can either be achieved by homologous expression of
mutant constructs in cultured muscle cells devoid of
Cav1.1 α1 subunits or by engineering of MHS mutations
into the CACNA1S gene in mice. Muscle cells can then be
isolated to monitor changes of Cav1.1-mediated excitation–
contraction coupling. Cav1.1-deficient skeletal muscle
myotubes were successfully used to demonstrate that the
Cav1.1 α1 R1086H mutation lowers the half-maximal
voltage required for the induction of SR Ca2+ release by
about 5 mV and enhances the sensitivity of SR release to
caffeine [24], a drug that is used as a primary diagnostic
measure for MHS. This finding is compatible with a

mutation-induced facilitation of SR Ca2+ release by both
pharmacologic (caffeine) and endogenous (voltage sensor)
activators. Notably, a lower activation threshold for Ca2+

release was also found for RyR1 mutations, including a
heterozygous RyR1 mutation in a MHS mouse model.
Sensitization of Ca2+ release therefore appears as the
unifying principle underlying susceptibility to MH. Given
the strategically important location of the voltage sensor
arginine, it is quite possible that the novel mutation R174W
acts through the same pathophysiological mechanism.

Cav1.3 channelopathies (CACNA1D gene)

So far, no human diseases resulting from mutations in the
CACNA1D gene encoding the Cav1.3 α1 subunit have been
reported. This could be due to the fact that loss-of-function
mutations cause no phenotype in the heterozygous state (as
in mice) but are lethal in the homozygous state. However,
spontaneous gain-of-function mutations may cause a
clinical syndrome compatible with life. In the case of
Cav1.2 (CACNA1C gene), such a scenario leads to Timothy
syndrome (see article in this issue). Homozygous Cav1.2
knockout mice die during development before day 14.5
post-coitum which may be due to their prominent role in
the cardiovascular system [65]. Like for Cav1.2, heterozy-
gous Cav1.3 knockout mice were not distinguishable from
wild type, suggesting that heterozygous loss-of-function
mutations would also be clinically silent in humans.
However, based on data from homozygous Cav1.3 knock-
out mice, it is very likely that complete loss of Cav1.3
function would not be lethal. Homozygous Cav1.3 knock-
outs are viable and have been successfully used to establish
the role of this LTCC isoform for physiology (for review,
see [77]). If Cav1.3 serves a similar role in humans, this
mouse model predicts no clinical symptoms in heterozygous
patients but congenital hearing impairment and sinoatrial
node dysfunction in homozygous individuals. Sinoatrial node
dysfunction is unlikely to be lethal because the bradycardia
and sinoatrial node arrhythmia observed in Cav1.3 knockout
mice are pronounced at rest and largely disappear during
exercise. Such a syndrome may therefore be rare and present
mainly in consanguineous deafness families.

Cav1.4 channelopathies (CACNA1F gene)

Incomplete congenital stationary night blindness type 2

Incomplete congenital stationary night blindness type 2
(CSNB2) is an X-linked form of congenital stationary night
blindness which is caused by mutations in the voltage-gated
calcium-channel gene CACNA1F encoding Cav1.4 LTCCs
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(OMIM: 300110). CSNB2 is characterized by variable and
usually mild clinical symptoms. The term is, however,
misleading because night blindness may not be the major
complaint, unlike in the complete form of stationary night
blindness (CSNB1) which is caused by different genetic
defects either in the nyctalopin (OMIM: 300278) or the
metabotropic glutamate receptor-6 (OMIM: 604096). Typ-
ical symptoms in CSNB2 are moderately low visual acuity,
myopia, nystagmus, and variable levels of night blindness,
but one or more of these symptoms may be absent [6]. The
eye fundus is normal but electroretinograms (ERGs) are
abnormal [83]. CSNB2 patients show a very abnormal dim
scotopic ERG and a typical negative bright-flash ERG
which has large a-waves, but severely reduced b-waves.
Oscillatory potentials are also missing [83]. The ERG data
are compatible with a defect in neurotransmission within
the retina between photoreceptors and second-order neu-
rons [83]. LTCCs are the predominant channels controlling
neurotransmitter secretion at the ribbon synapses of retinal
photoreceptors (see references in [44]) and of cochlear
inner hair cells [62]. These cell types show “tonic”
neurotransmitter release in response to graded changes in
the membrane potential, unlike in most other fast, chemical
synapses in which non-LTCCs (such as Cav2.1 and Cav2.2)
trigger neurotransmitter release during bursts of short action
potentials (“phasic release”) [14]. In the dark, photo-
receptors depolarize to a resting membrane potential of -
36 to -40 mV [17], enhancing tonic release. Light
absorption in the photoreceptor outer segments and closure
of cyclic guanosine monophosphate (cGMP)-gated cation
channels hyperpolarizes the cells to below -55 mV [86].
Release occurs at so-called ribbon-type synapses where Ca2+

channels appear clustered. To support tonic release, retinal
Ca2+ channels must activate rapidly at relatively negative
voltages (below -40 mV) and inactivate slowly [63].
Identification of the genetic defect responsible for CSNB2
led to the discovery of a novel Ca2+ channel α1 subunit,
Cav1.4 (see references in [44]), which carries the disease-
related mutations, and is preferentially expressed in retinal
synapses [5, 16]. It took several years until cloned Cav1.4
channel complexes could be functionally expressed in
mammalian cells [44] to investigate their functional and
pharmacological properties [4, 19, 20, 44, 53, 58, 59].
Similar to photoreceptor Ca2+ currents, recombinant Cav1.4
currents in cultured mammalian cells activate rapidly and
inactivate very slowly during depolarizing pulses. Interest-
ingly, this was due to a very slow voltage-dependent
inactivation accompanied by complete absence of so-
called calcium-dependent inactivation (CDI) [44]. CDI is
considered an important negative feedback mechanism that
protects cells from excess Ca2+ influx [1]. Similar to
Cav1.3, Cav1.4 channels open at more negative membrane
potentials than Cav1.2 [44], allowing the channel to conduct

Ca2+ at potentials negative to -40 mV. Together, inactiva-
tion and activation characteristics of Cav1.4 channels reveal
a substantial window current, which permits ion influx
under constant depolarized conditions. Peloquin and col-
leagues observed that at near physiological temperatures,
inactivation kinetics is accelerated but the window current
is still preserved [58]. These biophysical properties make
them ideally suited for tonic glutamate release from photore-
ceptor terminals. Cav1.4 α1 subunits are expressed at release
sites of mammalian photoreceptors in the outer plexiform
layer [3, 16] and channel loss-of-function would therefore be
expected to decrease photoreceptor neurotransmitter release
capacity, impair signaling to second-order retinal neurons,
and thus explain the ERG abnormalities in CSNB2. Cav1.4
may also contribute to the LTCC currents measured in
bipolar cell terminals, explaining punctate Cav1.4 α1
immunostaining in the mouse inner plexiform layer [5].

So far, more than 40 structural aberrations were
identified in the Cav1.4 α1 subunit gene of CSNB2 patients
(Fig. 3). Most of them are predicted to cause severe
structural changes, such as truncated α1 subunits, unlikely
to support significant channel activity. Moreover, pre-
mature stop codons in regions followed by splice sites at
a distance of 50–55 nucleotides downstream-yield mRNAs
should be eliminated by nonsense-mediated mRNA decay
[48] and thus might not even lead to expression of the
truncated Cav1.4 α1 subunit protein. Due to the X-linked
condition, CSNB2 results in a complete loss of Cav1.4
channel function only in affected males. However, some
missense mutations are unlikely to lead to a complete loss-
of-channel function (Fig. 3). Hoda et al. [32] characterized
a mutation G369D in the pore-lining region of segment IS6
that caused pronounced changes of the channel's inactiva-
tion gating and also shifted the V0.5,act to more negative
voltages compatible with an overall Cav1.4 channel gain-
of-function. Furthermore, ion selectivity was affected,
suggesting that the negative charge introduced by the
G369D mutation at the cytoplasmic side of IS6 not only
affects conformational changes associated with channel
activation but also interferes with cation permeation
through the pore. Interestingly, G369 corresponds to G402
in Cav1.2 α1, which is mutated to serine in some patients
with Timothy syndrome [71] and strongly inhibits voltage-
dependent inactivation (VDI). In Cav1.2, VDI is also
inhibited by mutation of nearby residues such as a serine
residue important for slow inactivation in IS6 and G406 in
Timothy syndrome (G406R) [72]. Obviously, channelopa-
thies in different LTCC α1 subunits have identified a region
forming a critical “hotspot” for channel gating.

Another gain-of-function mutation was discovered in a
New Zealand family showing a similar but more severe
clinical phenotype than in CSNB2. The missense mutation
I745T in the pore helix IIS6 produced a remarkable -30-mV
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shift in the voltage dependence of Cav1.4 channel activa-
tion as well as significantly slower inactivation kinetics
when expressed in tsA-201 cells [31]. This observation
triggered a detailed analysis of the role of the equivalent
residue in Cav1.2 for channel gating [34], indicating that
substitution of this residue destabilizes the closed and favor
the open conformation of the pore. Molecular dynamics
simulations suggest that this may also involve mutation-
induced conformational alterations of other interacting
transmembrane segments [75, 76].

In contrast, no channel activity could be measured for
mutants S229P and W1440X after expression in Xenopus
oocytes, and mutant L1068P yielded currents only in the
presence of the channel activator BayK8644 [32]. Muta-
tions S229P, G369D, and L1068P α1 subunits were
expressed at levels indistinguishable from wild-type chan-
nels, but no protein was detected for the truncation
mutation W1440X after expression in tsA-201 cells [32].
Two other missense mutations, R508Q and L1364H,
reduced protein expression in transfected tsA-201 cells,
which may, although not yet proven, also decrease retinal
Ca2+ current density [33]. However, McRory et al. found
that two missense mutations, G674D and A928D, and the
W1459X truncation mutation in the C-terminus exerted no
detectable changes in the activation, inactivation, or
conductance properties of expressed Cav1.4 channels. For
the mutation G369D, they only found a slight, but
statistically significant increase in the slope factor of the
activation curve and a less pronounced shift of the half-
activation potential with Ca2+ as compared to Ba2+ as
charge carrier. This discrepant finding might be explained
by the fact that their Cav1.4 α1 subunit [44] differed in four
amino acid positions from the human Cav1.4 α1 subunits

used by Hoda et al. [53]. This also includes neutralization
of a negative charge in the IS6 helix which may by required
to “sense” the additional negative charge introduced by the
G369D mutation. The possibility that the mutations affect
Cav1.4 α1 protein expression has not been tested in their
study.

Clinical CSNB2 symptoms might therefore result not
only from complete loss of function and/or decreased
expression of mutant channels with unchanged gating
behavior but also from gating changes including a channel
gain-of-function. The gain-of-function mutations should
promote Ca2+ entry through the channel raising the
important question about how increased channel function
could impair light-induced signaling between photorecep-
tors and second-order neurons. One possible interpretation
is as follows. Because the half-maximal voltage of
activation for retinal LTCCs (and Cav1.4) [44, 53] is
clearly above -40 mV [17, 85], the retinal operating range
of membrane potential changes is at the “foot” of the
LTCC activation curve and thus Ca2+-influx becomes very
small or not measurable [86] at hyperpolarized voltages
(e.g., -55 mV, Fig. 4) during illumination. From the
activation curve, an about 50-fold increase of Cav1.4
inward current can be predicted upon depolarization to -
35 mV. A pronounced negative shift of the activation
curve by a CSNB2 mutation would result in a significant
increase of Ca2+ influx during illumination at negative
voltages, but at the same time, would reduce the increase
upon depolarization, leading to a reduced dynamic range
(Fig. 4). The corresponding change in the dynamic range
of tonic glutamate release could then explain how the
synaptic gain between first- and second-order neurons is
reduced in CSNB2 retinas.

Fig. 3 Mutations in Ca2+ channel Cav1.4 α1 subunits identified in
patients with CSNB2: a folding model of α1 subunits based on
hydrophobicity analysis is shown. Plus sign indicates several positive
charges within the transmembrane S4 helices within the hydrophobic
repeats I–IV. Position of CSNB2 mutations is indicated. Colors

indicate the predicted structural changes: blue, single missense
mutations; yellow, in-frame amino acid deletions or insertions; red,
truncated protein due to single mutations that introduce stop codons.
Black circles refer to mutations that are functionally characterized
[31–33, 53, 59, 67]
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In addition to CACANA1F, mutations in other genes can
also cause incomplete forms of CSNB. Ca2+-binding protein
4 (CaBP4) belongs to a protein family structurally similar to
calmodulin (CaM). It is specifically found in photoreceptor
synaptic terminals [29], modulates Cav1.4 Ca2+ channels by
binding to the C-terminus [29], and the phenotype of
CaBP-/- mice shares similarities with that of CSNB2
patients [29]. It therefore appeared as a disease candidate
in CSNB2 patients without CACNA1F mutations. Zeitz and
colleagues indeed found mutations in CaBP4 that account
for an autosomal recessive form of CSNB2.

A homozygous nonsense mutation in the human gene for
the accessory Ca2+ channel α2-δ4-subunit (CACNA2D4)
was also found in patients with an electronegative electro-
retinogram and an initial diagnosis of night blindness [88].
Detailed clinical examination finally revealed a mild
form of cone dystrophy. In mice, a protein-truncating
frameshift of this subunit leads to abnormal electro-
retinograms, a reduction in the photoreceptor synaptic
layer and a profound loss of synaptic ribbons between
rods and rod bipolar cells [64, 87]. This emphasizes a key
role of this accessory subunit for normal retinal function in
humans and mice.

A truncating CSNB2 mutation reveals an intrinsic gating
modulator in Cav1.4

Upon functional characterization of the CSNB2 C-terminal
truncation mutant K1591X, Singh et al. [67] recently
discovered that the absence of CDI in Cav1.4 channels is
due to its active suppression by a C-terminal inhibitory
domain. Like other VGCCs (such as Cav1.2 and Cav1.3)
Cav1.4 channels are capable of undergoing robust CDI in a
CaM-dependent manner [67] when this inhibitory domain
is removed. In wild-type Cav1.4, this intrinsic gating
modulator resides within the C-terminal tail downstream
of an IQ domain which is required for CaM binding (Figs. 5
and 6). K1591X channels lack this modulator and therefore
exhibit fast CaM-dependent CDI and a more negative
activation voltage range than the wild type. These findings
[67, 27, 84] revealed inhibition of CDI as a novel
modulatory concept that contributes to the fine-tuning of
Cav1.4 gating to prevent inactivation and thus support tonic
neurotransmitter release in sensory cells and normal visual
function in humans. The molecular basis of this modulatory
mechanism itself is discussed controversially. Wahl-Schott
and colleagues postulated binding of the distal C-terminus
(termed ICDI, inhibitor of CDI, in their publication) to the
EF hand motif in the proximal C-terminus, thereby,
uncoupling the EF hand from the Ca2+ sensing apparatus.
Based on their co-immunoprecipitation studies, loss of
CaM-interaction with the C-terminus as underlying mech-
anism was excluded [84]. Instead, Singh and colleagues
[67] postulated that the distal C-terminus (ICDI) binds to a
segment comprising the EF hand, the pre-IQ and the IQ
regions (Fig. 5a). In addition, their functional experiments
also suggested a role for the post-IQ domain. Notably, they
found that deletion of the C-terminal domain not only
restored robust CDI but also induced a strong hyper-
polarizing shift of the voltage dependence of Cav1.4
activation [67]. Therefore, they termed this domain “C-
terminal modulator” (CTM) instead of ICDI, emphasizing
this additional regulatory effect. Protein–protein interac-
tions of C-terminal channel fragments and CaM expressed
in HEK-293 cells measured using fluorescence resonance
energy transfer (FRET), revealed that at resting calcium
concentrations, apo-CaM binds to a C-terminal fragment
containing the known CaM binding domains identified
previously in other L-type Ca2+ channels (pre-IQ, IQ
domains; [23, 60, 94]). Calcification of CaM at higher
Ca2+ concentrations further stimulated CaM binding. In
contrast, when the complete C-terminus was expressed
(also containing the CTM) no apo-CaM binding occurred at
resting Ca2+ concentrations (Fig. 5b) but was restored at
higher Ca2+ concentrations, suggesting that the CTM
modulates pre-association of CaM with the C-terminus.
This could explain the lack of CDI in the wild-type Cav1.4

Fig. 4 Functional CSNB2 mutations in Cav1.4 α1 cause a decreased
dynamic range of photoreceptor signaling: the operation range of
photoreceptors (between -35 mV (dark) and approximately -55 mV
(light) is near the foot of the ICa activation curve at physiological Ca2+

concentrations to ensure Ca2+ influx necessary for tonic glutamate
release (see also text). A hyperpolarizing shift of the current–voltage
relationship (I–V) is predicted to result in higher glutamate release at a
given illumination level, causing a decreased dynamic range of
photoreceptor signaling (here shown for mutation K1591X). Accord-
ing to the L-type current I–V relationship measured in photoreceptors
(black curve [80]), a 13-mV hyperpolarizing shift of the ICa I–V
relationship as observed for K1591X [67] would predict a smaller
increase of ICa and exocytosis (predicted: normal ∼50-fold, K1591X
∼3-fold) when moving from the light (-55 mV) to the dark membrane
potential (-35 mV)
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channel. By generation of different Cav1.4 truncation
mutants, the critical residues comprising the CTM (and
ICDI) were restricted to a stretch of about 25 amino acid
residues within the distal C-terminus, which is highly
conserved between Cav1.4, Cav1.3, and Cav1.2 (Fig. 6).
Further FRET data were recently reported by the Biel group
[27], which support the hypothesis that motifs further
downstream of the EF hand are important for the intramo-
lecular interaction in the Cav1.4 α1 C-terminus. More
recently, David Yue's group confirmed the interference of
the CTM with apoCaM binding. They provided evidence for
a competitive mechanism in which CTM reduces the
apparent affinity for apoCaM for the channel [46]. As the
concentration of the CTM remains constant, the channel
occupancy by apoCaM (and therefore CDI) becomes a
function of the intracellular concentration of CaM.

CSNB2 mutations reveal an intrinsic gating modulator
in Cav1.3

Cav1.4 α1 subunit mutations have provided valuable
insight into the molecular mechanisms underlying the

regulation not only of Cav1.4 but also Cav1.3 LTCCs.
Given the high sequence homology in the C-terminus of
LTCCs (Fig. 6), channel modulation by an intramolecular
C-terminal protein–protein interaction may represent a
general regulatory concept of LTCCs not limited to
Cav1.4. Notably, alternative splicing in exon 42 in the C-
terminus of Cav1.3 channels gives rise to naturally occur-
ring channels with different lengths [35, 66]. Singh and
colleagues [66] exploited the presence of a Cav1.3 CTM by
functionally investigating the two human Cav1.3 α1
subunit splice variants. Similar to the Cav1.4 truncation
mutant K1591X, the short splice form terminates shortly
after the IQ motif, and therefore, also lacks the conserved
region forming the CTM (Fig. 6). Indeed, the existence of a
C-terminal modulation in human Cav1.3 is manifested by
the pronounced gating differences between the long and
short splice variant. This revealed an exciting novel
mechanism by which Cav1.3 channel activity can be
adjusted by splicing. Like Cav1.4 K1491X, the absence of
the CTM in the short splice form led to Cav1.3 channels
that activate and inactivate at lower voltages, resulting in a
hyperpolarizing shift in the window current. Its stronger

Fig. 5 Hypothetical model of Cav1.4 C-terminal modulation. aMotifs
previously demonstrated to be important for CaM modulation of other
Ca2+ isoforms (red: EF hand; green: pre-IQ regions, IQ domain) are
illustrated. In wild-type Cav1.4 channels, the CTM predominantly
interacts with a region comprising the EF hand, pre-IQ, and IQ
domains and thereby inhibits CDI [67]. The CTM and the post-IQ
motif (light blue) are missing in truncation mutant K1591X and
therefore intrinsic CDI of Cav1.4 becomes apparent. CDI is present
after deletion of the last 122 residues which comprises the CTM.

When co-expressed with the truncated channel Cav1:4ΔCTMð Þ, the
CTM-peptide inhibits CDI and restores wild-type gating properties.
This modulation requires the presence of the post-IQ region. In
addition, Singh et al. imply a role of the post-IQ motif for voltage-
dependent inactivation [67]. b As shown in FRET experiments [70],
the Cav1.4 CTM interferes with CaM binding to one or more sites
responsible for CaM pre-association (apo-CaM) in intact cells.
Therefore, interference with CaM coordination is suggested, the likely
mechanism explaining the inhibition of CDI
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CDI also caused more pronounced inactivation of ICa
without affecting the voltage-dependent inactivation (VDI)
time course. Interestingly, this regulation has not been
reported for rat Cav1.3 analogs [89]. Many unique
physiological functions of Cav1.3, including sensory and
neuroendocrine cell signaling [49, 50, 62], pacemaking in
neurons [57] and sinoatrial node cells [47], as well as its
proposed role in the pathology of Parkinson's disease [15,
28] depend on the negative activation range and the amount
of Ca2+ ions entering during plateau [57] or single action
potentials [30]. Accordingly, the Cav1.3-CTM and factors
that modify its activity (such as alternative splicing or
interaction with other proteins [8, 43, 93]) appear as crucial
determinants of electrical excitability. It can be predicted
that the expression of short Cav1.3 channels would allow a
cell to promote Ca2+ entry through Cav1.3 channels at sub-
threshold voltages due to the more negative window
current. Stronger activation at more negative voltages may
also facilitate the onset of upstate potentials in neurons.
Whereas negative activation of an even small Cav1.3
current could trigger pacemaking, faster CDI would limit
Ca2+ entry during ensuing action potentials. This effect may
be important in neurons which are susceptible to Ca2+

toxicity and neurodegeneration in Parkinson's disease [15].

In contrast, the CTM in the long Cav1.3 channels may be
required for longer lasting Ca2+ signals triggered by
stronger depolarization inducing cyclic adenosin mono-
phosphate response element binding protein (CREB)
phosphorylation and synaptic plasticity [92], or in sensory
cells with tonic neurotransmitter release, such as cochlear
inner hair cells or photoreceptors [62, 91] .

Non L-type Ca2+ channelopathies leading to altered LTCC
function

Brain LTCCs are mainly located at somatodendritic locations.
Rather than contributing to fast neurotransmitter release at
nerve terminals, their somatodendritic Ca2+ signals play a
major role in coupling synaptic activity to gene-transcription
through different intracellular signaling pathways (for re-
view, see [18]). These properties allow them to contribute to
synaptic plasticity and control neuronal functions of phar-
macotherapeutic relevance, including drug taking behavior,
mood behavior, and fear memory (for reviews, see [18, 78]).
Due to this special role, the question arises whether
pathological changes in other (i.e., non-L-type) Ca2+ channel
isoforms [14] can lead to secondary changes in LTCC
expression and thereby allow them to contribute to disease-

Fig. 6 Sequence alignment of C-terminal tails of human Cav1.3 and
Cav1.4 L-type channels: a sequence alignment of human Cav1.3
(Genbank accession number EU363339) and Cav1.4 (Genbank
accession number AJ224874) α1 subunits is shown. Sequence identity
(blue) and gaps (-) are indicated. Regions previously shown to be

important for channel modulation by CaM in other voltage-gated Ca2+

channel isoforms are depicted (EF hand, pre-IQ, and IQ domain). The
position of long and short Cav1.3 channels is indicated by black
arrows (Cav1.3L and Cav1.3S, respectively). Position of the Cav1.4
CTM is given in yellow; - indicates residues absent in this sequence
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related processes. This question has already been addressed
in tottering mice, a natural mouse mutant. The tottering
phenotype, an autosomal recessive mouse disease, is
associated with mild ataxia, spontaneous behavioral arrest
associated with synchronous, bilateral cortical polyspike
discharges (resembling human absence epilepsy), and attacks
of paroxysmal dystonia [10, 61]. A missense mutation
(P601L, IIS5-S6 pore-loop) in the Cav2.1 α1 subunit
(forming P/Q-type Ca2+ channels, [14]) was found to
underlie this phenotype (for review, see [61]). Interestingly,
the paroxysmal dystonic symptoms, which can be reproduc-
ibly triggered, e.g., by immobilization stress, are prevented
by subcutaneous or intracerebroventricular injection of
different chemical classes of LTCC blockers, whereas ataxia
is not ameliorated [10]. In accordance with these findings,
dystonic episodes in tottering are also triggered by the LTCC
activator Bay K8644 at doses not affecting wild-type mice
[10]. Biochemical studies revealed significant upregulation
of Cav1.2 α1 subunits in tottering brains. Enhanced
expression is mainly restricted to cerebellar Purkinje cells,
suggesting that LTCCs in these cells can mediate episodic
dystonia. This finding is surprising because LTCC expres-
sion in these neurons is very low, thus mediating only about
7% of the total Ca2+ channel current [21, 38]. L-type currents
increased by 2.2-fold were recorded from tottering Purkinje
cells already at early postnatal stages (P15), indicating
developmental changes preceding the appearance of behav-
ioral deficits [22]. Interestingly, Cav2.1-deficient mice, which
also develop severe dystonia, show an increased contribution
of L-type currents in Purkinje but not in cerebellar granule
cells [38]. Somehow, altered Cav2.1 channel signaling
appears to activate pathways that enhance Cav1.2 (but not
Cav1.3; [38]) LTCC expression. The finding that enhanced
LTCC expression and most likely activity in Purkinje cells
contributes to the paroxysmal dystonia of the tottering
phenotype is in good agreement with the observation that
dystonic episodes lead to neuronal activation in the
cerebellum and its relay nuclei in these mice [9], and that
the dystonic phenotype is absent in tottering mice lacking
Purkinje cells [11].

Further support for an isoform-specific role of Cav1.2
LTCCs in the induction of dystonic behavior comes from a
mouse mutant in that a single targeted mutation within the
dihydropyridine binding pocket eliminates BayK 8644
sensitivity but causes no detectable changes in Cav1.2
function and expression [68]. These mice are completely
resistant to the typical BayK 8644-induced dystonic
behavior observed in wild-type mice [37], indicating that
this drug effect cannot be mediated by Cav1.3 activation
alone but requires Cav1.2 [68].

Taken together, these findings are an important first step
to address the general question about the role of LTCCs for
the pathophysiology of paroxysmal dyskinesias. As dem-

onstrated here, dysregulation of these channels, even in
neurons where they only contribute marginally to total Ca2+

channel currents, can be relevant for disease.

Conclusions

So far, Ca2+ channelopathies have been described for Cav1.1,
Cav1.2, and Cav1.4, but not yet for Cav1.3 LTCCs. Cav1.1
mutations associated with HPP-1 have provided valuable
insight into the function of the voltage-sensing domains of
voltage-gated Ca2+ channels and their dual role as voltage
sensors and ion pores. Although the molecular details of how
α1 mutations sensitize excitation–contraction coupling be-
tween plasmalemmal Cav1.1 and SR RyR1 in skeletal
muscle, and thereby cause susceptibility to MH, are not yet
fully understood, they point to functionally critical regions in
α1 which were not detected in previous mutational studies
investigating the orthograde coupling between these two ion
channels. Finally, Cav1.4 mutations led to the discovery of a
novel intramolecular protein interaction by which LTCCs
modulate their gating behavior. This opened a new field of
research also on Cav1.3 channels, which use this mechanism
to adjust their activity by intracellular Ca2+ activity and
alternative splicing. Given their delicate role in the patho-
physiology of Parkinson's disease, this mechanism may also
become a target for the development of novel therapies.
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