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Abstract
Purpose The acute effect of loading on bone tissue and physiology can offer important information with regard to joint function
in diseases such as osteoarthritis. Imaging studies using [18F]-sodium fluoride ([18F]NaF) have found changes in tracer kinetics in
animals after subjecting bones to strain, indicating an acute physiological response. The aim of this study is to measure acute
changes in NaF uptake in human bone due to exercise-induced loading.
Methods Twelve healthy subjects underwent two consecutive 50-min [18F]NaF PET/MRI examinations of the knees, one
baseline followed by one post-exercise scan. Quantification of tracer kinetics was performed using an image-derived input
function from the popliteal artery. For both scans, kinetic parameters of Ki

NLR, K1, k2, k3, and blood volume were mapped
parametrically using nonlinear regression with the Hawkins model. The kinetic parameters along with mean SUVand SUVmax

were compared between the pre- and post-exercise examinations. Differences in response to exercise were analysed between
bone tissue types (subchondral, cortical, and trabecular bone) and between regional subsections of knee subchondral bone.
Results Exercise induced a significant (p < <0.001) increase in [18F]NaF uptake in all bone tissues in both knees, with mean SUV
increases ranging from 47% in trabecular bone tissue to 131% in subchondral bone tissue. Kinetic parameters involving
vascularization (K1 and blood volume) increased, whereas the NaF extraction fraction [k3/(k2 + k3)] was reduced.
Conclusions Bone loading induces an acute response in bone physiology as quantified by [18F]NaF PET kinetics. Dynamic
imaging after bone loading using [18F]NaF PET is a promising diagnostic tool in bone physiology and imaging of biomechanics.
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Introduction

Acute loading of bone tissue is thought to stimulate bone
formation and is of growing interest clinically and in the
study of bone physiology. Abnormal bone physiology is
not only a key element in joint disease and osteoporosis,
but skeletal fragility is directly related to mortality [1–3]
and risk of fracture [4]. Studies of bone adaptation to
loading have shown that stress on bone cells and
strain-mediated fluid flow are crucial in regulating bone
metabolism [5–11]. However, the acute response of load-
ing in bone is still poorly understood and difficult to
measure in humans in vivo.

Molecular information from PET has shown promise in
early detection of metabolic abnormalities of bone metab-
olism in osteoarthritis [12, 13], associations to bone pain
[12–16], and early indication of bone degradation in dis-
eases such as osteoarthritis [14] and osteoporosis [17]. PET
has also been used to demonstrate changes in glucose up-
take and blood flow in bone marrow in response to exercise
loading [18–20]. [18F]-sodium fluoride ([18F]-NaF) is a
well-established bone-seeking agent which may serve as
a marker to study bone turnover. In particular, kinetic
modeling of dynamic [18F]NaF uptake can quantify bone
physiology including bone perfusion (K1), bone minerali-
zation (k3), and tracer plasma clearance (Ki). Animal stud-
ies [8, 21–24] have shown both an acute hyperemia [22,
24] and a large increase in [18F]-NaF standard uptake
values (SUV) in response to acute loading, which lasts up
to 7 days after loading [21, 22, 24]. Furthermore, this re-
sponse has been positively correlated with the force inten-
sity of the applied load on the bone [21]. The dynamics of
[18F]NaF uptake after acute bone loading have not been
reported in humans. To date, human studies of bone adap-
tation to loading have been based on changes in structure
and mineral density over periods of weeks and months of
high-impact exercise. The aim of this study is to evaluate
quantitative measures of [18F]NaF uptake and tracer kinetics
to assess the acute physiological vascular and metabolic re-
sponse of bone to loading in the human knee using PET/MRI.

Methods

Subject population

The study was approved by the Stanford University
Insti tutional Review Board (Stanford University,
Administrative Panels for the Protection of Human
Subjects). All subjects were informed about the nature of the
study and provided written consent prior to participating. The
knee joints of 12 healthy subjects (seven females, five males;
age: 34 ± 7 years; body-mass index: 23.1 ± 3.3 kg/m2) were
scanned using [18F]NaF PET/MRI before and after
performing one-legged step-up and drop–land exercises.

Exercise protocol

After a baseline PET/MRI scan, subjects performed an exer-
cise protocol consisting of 100 repetitions of stepping up on a
25-cm stool using the right leg (step-up), followed by a
straight-legged drop jump landing on the left leg (drop–land)
(Fig. 1) at a rate of approximately 15 steps a minute. The
drop–land exercise induces a high bone-strain magnitude
and strain rate, and effectively strengthens bone in humans
via a bone adaptation response [25]. The PET/MRI scan was
repeated immediately after exercise.

Bilateral PET/MRI imaging

Simultaneous PET and MRI scanning was performed at base-
line prior to exercise and post-exercise. Scanning was per-
formed on a 3 T whole-body time-of-flight PET/MRI hybrid
system (GE Healthcare, Milwaukee, WI, USA) with a 16-
channel flexible phased-array wrap coil (NeoCoil,
Pewaukee,WI, USA) around each knee [26]. Both knees were
scanned in one PET bed (field of view = 26 cm) in list mode
for 50 min immediately after hand injection of 93 ± 2 MBq of
[18F]NaF. After exercise, prior to the second injection, 3 min
of additional PET scan time was acquired to estimate activity
remaining from the first injection. This residual NaF activity

Fig. 1 Exercise protocol. Subjects performed 100 repetitions involving stepping up on a 25 cm stool with their right leg and jumping down and landing
on their left leg.
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was then subtracted from the images used for post-exercise
time activity curves and SUV images.

MRI data of both knees was acquired simultaneously
with PET data, and included sequences for MR-based
attenuation correction (MRAC) and magnetic resonance
angiography (MRA). MRA data was acquired using a
3D GRE sequence with imaging parameters: TR/TE =
21/2.1 ms, slices = 18, slice thickness = 1.2 mm, and flip
angle = 15°. Data for MRAC [27] were acquired using a
2-point Dixon fat-water, T1-weighted fast spoiled gradi-
ent echo sequence with acquisition parameters: TR/TE1/
TE2 = 4.1/1.1/2.2 ms; FOV = 50 × 37.5 cm; matrix =
256 × 128; slice thickness/overlap = 5.2/2.6 mm; 120
images/slab; scan time = 18 s.

Kinetic modelling

Dynamic PET frames were reconstructed to derive the image-
derived input function (IDIF) and time–activity curves as pre-
viously described [28]. Frame times were 40 × 1 s, 13 × 10 s
and 23 × 2 min for the IDIF and 8 × 2 s, 24 × 2 min for r the
time–activity curves. Reconstructions were performed using
time-of-flight OSEM with three iterations and 21 subsets in-
cluding corrections for attenuation, scatter, randoms, and
dead-time.

The IDIF was derived from [18F]NaF activity (kBq/ml)
within the popliteal arteries of the knees on the PET/MRI as
previously described [28]. Voxels with the highest 10% of
NaF activity within the arteries, as determined by the MRA,
were included in IDIF analysis. To compare with the IDIF at
steady-state, a 3-ml venous blood sample was taken 50 min
after the first injection and measured in a well counter. At this
point, arterial and venous blood concentrations are assumed to
have equilibrated [29].

Time–activi ty curves were fi t ted to the three-
compartmental (two tissue) tracer kinetic model described
by Hawkins et al. [30], which consists of a vascular (blood)
compartment, a fluid extravascular bone tissue compartment,
and a compartment representing fluoride binding into the bone
matrix. Data-fitting using the nonlinear regression (NLR)
method was used to estimate rate constants K1, k2, and k3.
This was performed on a ROI basis using COMKAT software
and voxelwise using PMOD software to produce parametric
maps. Estimates of blood volume, partial volume effects, and
dispersion were included in the model. The rate of total plas-
ma clearance, Ki

NLR, was determined from calculated rate
constants using the equation:

Ki
NLR ¼ K1 � k3= k2 þ k3ð Þ

For comparison, Ki values were also obtained using the
graphical PATLAK method (Ki

PAT) [31].

Bone segmentations and regions of interest (ROIs)

Cortical bone was defined as the long bone of the femur and
tibia 6–8 cm from the centre of the joint space, excluding sites
of tendon insertion. Trabecular bone ROIs in the proximal
tibia and femoral condyle of the knee joint were drawn for
both legs, maintaining a distance of 3 mm from the
subchondral bone. Subchondral bone of the femur was further
segmented into five regions: trochlea, medial and lateral cen-
tral and posterior regions.

In addition, we identified focal areas with abnormally high
increases in post-exercise uptake. These subchondral bone
ROIs consisted of four or more adjacent voxels with an abso-
lute SUV increase after exercise greater than two standard
deviations above the mean SUV increase. Abnormal focal
ROIs were termed ROIfocal and were applied to pre- and
post-exercise SUVand kinetic parameter maps for analysis.

Statistical analysis

A single mixed effects model was created to perform three
analyses on the measured parameters SUV, SUVmax, Ki

NLR,
K1, extraction fraction (k3/(k2 + k3)), k2, k3, and blood volume
using general linear regression, a Laplacian fit method and
with subjects set as a random effect. The first analysis tested
for a significant effect of exercise on the parameters of interest
(fixed effect = pre- or post-exercise scan, dependant variable =
mean ROI values for given parameter). The second incorpo-
rated an ANOVA test of regression coefficients for significant
differences in the response to exercise between cortical,
subchondral, and trabecular bone tissues and between the
step-up/drop–land legs (fixed effects = tissue type and leg, de-
pendant variable = change in parameter ROI values after ex-
ercise). The third analysis also included an ANOVA test for
regional differences in response to exercise between
subchondral ROIs and step-up vs drop–land leg (fixed ef-
fects = subchondral ROI and leg, dependant variable = change
in subchondral ROI values after exercise). Reported p-values
were corrected for eight comparisons (number of parametric
values tested) using a Bonferroni correction. Correlations
between SUV, Ki

NLR, and Ki
Pat were analysed using least

products linear regression with a Pearson’s adjusted R2

value to evaluate goodness of fit. Image co-registration,
ROI analysis, calculations, and statistical analysis were
performed with software created in MATLAB 2016b
(MathWorks, Natick, MA, USA).

Results

Exercise induced a response in [18F]NaF kinetics in all bone
tissues (Fig. 2 and Fig. 3), with increases in SUV, SUVmax,
Ki, blood volume, and k2, along with a decrease in extraction
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fraction in all bone tissues (p < 0.001). In cortical bone, k3
increased after exercise as opposed to a post-exercise decrease
of k3 in trabecular and subchondral bone (p < 0.01). SUV
increases were lowest in cortical bone (47%) and highest in
subchondral bone (131%) (p < 0.001). SUV increases were
significantly higher in the step-up (right) knee (p < 0.05).
Absolute and relative changes in SUV values and kinetic pa-
rameters for cortical, subchondral, and trabecular bone are
presented in Table 1. On an individual level, regional varia-
tions in SUV increases (Fig. 3) and changes in kinetic

parameters (Fig. 4) were observed between medial–lateral
compartments as well as between step-up (right) and drop–
land (left) legs.

However, on a group level, significant differences in in-
creases were only observed in SUV, Ki, K1, and blood volume
of subchondral bone between the step-up leg (p < 0.05) and
the drop–land leg (Fig. 5). All compartments of subchondral
bone within each knee showed significant (p < 0.05) post-
exercise changes of SUV and all kinetic parameters (Fig. 6)
with the exception of blood volume and k2. The patella had

Fig. 2 [18F]NaF SUV images for
one subject at baseline and post
exercise. Example images from
each leg of one subject before and
after exercise. SUV values
increased significantly in all
subjects after performing the one
leg step-up (right leg) and one leg
drop–land (left leg) exercise.
SUV increases were higher in the
step-up leg and varied regionally
throughout the bone tissues of the
knee (p < 0.05)

Fig. 3 Percentage increase in NaF uptake in the step-up (right) leg and
drop–land (left) leg after exercise in one subject. Mean value projection
image of SUV changes in subchondral and cortical bone for one subject.
Spatial distributions for a given subject, such as the higher medial versus

lateral difference in this subject, were evident and varied greatly between
individuals. On a group level, SUV valueswere higher in the right step-up
leg and regional differences in subchondral ROIs were significant within
each knee (p < 0.05)
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the highest absolute changes in SUV and kinetic parameters
(p < 0.05) of all the subchondral ROIs, as well as the largest
differences between the step-up and drop–land legs (Fig. 6).

Higher post-exercise Ki
NLR values were measured in all

tissues. This was driven by increases in K1 values that
exceeded the decreases in extraction fraction. An increase in
fluoride flux back to blood plasma (k2) in all tissues

contributed to a decrease of overall extraction fraction (k3/
(k2 + k3)). The decrease in extraction fraction was found to
be inversely proportional to K1 increases (R2 = 0.43,
p < 0.01) (Fig. 7).

Ki and SUV values were highly correlated (R2 > 0.8) both
before and after exercise, although the correlation coefficient
was altered due to a relatively larger increase in SUV values

Fig. 4 Changes in kinetic parameters after exercise in one subject. After
exercise, an increase in measured Ki, K1, and k2 values and a decrease in
k3 values were obtained using NLR fitting. The opposing changes in k2
and k3 values both contribute to a decrease in extraction fraction (Ex)
from near total extraction at baseline (k3/(k2+k3) ≈1) to a range of 0.35–
0.8. Above are parametric maps for one subject at baseline and after

exercise. Individuals had diverse patterns of activation including visible
asymmetry between the step-up and drop–land leg in the post-exercise
parametric maps. In subchondral bone, changes in SUVand values of all
kinetic parameters, except blood volume and k2, varied significantly be-
tween the subregional ROIs

Table 1 Absolute and relative post-exercise increases in parametric values

Cortical Subchondral Trabecular

SUV *† 0.38 ± 0.3 (47%) 0.83 ± 0.4 (131%) 0.6 ± 0.3 (117%)

SUVmax* 1.1 ± 0.9 (46%) 1.8 ± 0.7 (121%) 1.1 ± 0.5 (103%)

Ki
NLR* ml/min/100 ml 0.15 ± 0.2 (17%) 0.6 ± 0.3 (92%) 0.46 ± 0.2 (78%)

K1* (perfusion)
ml/min/100 ml

1.61 ± 1.3 (86%) 1.38 ± 0.8 (176%) 1.2 ± 0.9 (180%)

k2* 0.4 ± 0.3 (264%) 0.14 ± 0.24 (533%) 0.21 ± 0.26 (604%)

k3* 0.16 ± 0.21 (102%) −0.21 ± 0.22 (−23%) −0.13 ± 0.20 (−23%)
k3

k3þk2
* (extraction fraction) −0.18 ± 0.16 (−34%) −0.23 ± 0.18 (−25%) −0.25 ± 0.24 (−28%)

Blood* (%vol) 1.3 ± 0.39 (317%) 1.0 ± 0.36 (1051%) 0.96 ± 0.37 (981%)

Mean (± standard deviation) absolute change in SUV, and kinetic parameters for cortical, subchondral, and trabecular bone tissues of the knee. Relative
increases in parentheses are percentage increase from baseline value. * Denotes significant differences in absolute post-exercise change between tissues
types are marked, while † denotes significant difference in tissue response between step-up and drop–land leg (p < 0.05 ). In these tissues, K1 has been
found to be equivalent to perfusion [28]. All pre- and post-exercise measures for all parameters are presented in supplementary material.
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than Ki
NLR values. Prior to exercise, the regression slope of

Ki
NLR against SUV was 85, whereas after exercise the slope

increased to 105 (Fig. 7). The correlation between Ki
NLR and

Ki
pat remained unchanged in both conditions (Fig. 8).
Increases in [18F]NaF uptake parameters did not always

follow a regional or compartmental pattern. Eight ROIfocal
were identified in the post-exercise [18F]NaF PET images of
six subjects (Fig. 9). Of these, three of the focal points already
had significantly higher activity (Fig. 9c) than the surrounding
subchondral tissue at baseline, and five were unremarkable at
baseline (Fig. 8a, b). The relative mean increase in SUV was
342% (209–518%) for the focal points appearing normal at
baseline, and 111% (82–180%) for the focal points which
were identifiable at baseline .

Differences between venous blood samples and IDIF
values measured at 50 min were on average within 0.2 KBq/
ml, which corresponds to a coefficient of variation (CV) of
12%. Comparing the computed IDIF between repeated acqui-
sitions across 12 subjects, a CVof 8.4%was observed at 2 min
after injection, 10.6% at 10 min, and 9.9% at 25 min. The
input function of the second injection was on average 0.25
KBq/ml higher than the first injection throughout the 50-min
time period across all subjects.

Discussion

In this study, we evaluated kinetic modeling of dynamic
[18F]NaF PET uptake to detect changes in bone physiology
after an acute exercise bout. In healthy volunteers, exercise
induced a significant change in uptake parameters, suggesting
that [18F]NaF PET may provide a sensitive measure of the
metabolic and hemodynamic response of bone to acute joint
loading. Notably, the difference in exercise task performed by
the right and left leg (step-up vs drop–land) was reflected in
quantifiable differences of the patellar acute response between
the two knees. Other regional differences were observed in
parameter changes throughout the subchondral bone of each
knee, suggesting discrepancies in the mechanical loading of
these subsections. Further, focal areas of elevated [18F]NaF
PET uptake may identify regions where there is an inconsis-
tent response of the bone–cartilage unit to loading in areas that
appear normal on MRI. Some focal points were evident prior
to exercise andmaintained a similar elevated uptake compared
to surrounding tissue post exercise, and others were not evi-
dent until post exercise. These findings suggest that kinetic
modeling of [18F]NaF PET may provide a promising non-
invasive method to study the effects of acute loading on bone

Fig. 5 Parametric values at rest and after step-up drop–land exercise.
SUV, Ki, K1, k2, and blood volume increased significantly in all three
bone tissues, in both legs, after exercise (p < 0.01). In cortical bone,l k3
increased while k3 decreased in subchondral and trabecular bone

(p < 0.01). In all tissues, extraction fraction (k3/(k2+k3)) decreased signif-
icantly (p < 0.01) due to k2 changes being proportionally larger than k3.
Outliers are presented as ’+’
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remodeling, which may increase our understanding of the ef-
fects of loading on bone and joints in healthy individuals as
well as in patients with arthritis/arthrosis.

The changes in kinetic parameters observed included large
increases in perfusion, as measured by fluoride influx (K1),
and blood volume which coincided with a decrease in the rate
of fluoride extraction k3/(k3 + k2) (Table 1 and supplementary
material). This combination is indicative of a hyperemia ef-
fect, where an increased delivery of substrates exceeds con-
sumption during a vascular response to stimulation. Changes

of blood volume from near zero at baseline to a volume frac-
tion of 1–2% after exercise indicate a vasodilation of the cap-
illary bed as well. In humans, blood flow increases of 130% at
the mid femur have been reported for bone, bone marrow
included [19], as have increases in blood volume in the tibia
[32] during exercise. Further, the exercise-induced hyperemia
in bone marrow has been shown to be in part regulated by
opposing vasodilators (nitric oxide, prostaglandin, and aden-
osine) and vasoconstricting factors such as the α-
adrenoreceptor. [20, 33]. Although clinical bone-loading stud-
ies using [18F]NaF are sparse, our findings are similar to pre-
vious animal studies. Rat forelimbs were found to have in-
creases in the rates of fluoride influx (K1 by 113%), fluoride
metabolism (Ki by 133%), and fluoride incorporation into
bone (k3 by 13%), as well as an increase in bone blood flow
(26%) in cortical bone after heavy loading [24]. Discrepancies
in the magnitude of change reported previously and this study
may be due to differences in type and magnitude of loading,
timing of the post-exercise scanning, and/or differences in
bone physiology between rats and humans. Another study of
[18F]NaF SUV values in the shaft of the rat forelimb reported
an increase of 50% immediately after bone loading with com-
parable force magnitudes, which is similar to the 47% increase
we measured in cortical bone [21]. However, the same study
also observed increases in SUV to be greater with higher load-
ing forces and that SUV values continued to increase over
time peaking 4–7 days after loading. Time delays of up to
5 days have been registered between a single period of

Fig. 6 Distribution of sub-regional changes in subchondral bone
[18F]NaF uptake parameters. The patella region of subchondral bone
had larger increases in SUV (p < 0.01) and Ki (p < 0.01) than the mean
increases in subchondral bone. The patella also had significant differences

in SUV and Ki between step-up (right) and drop–land (left) legs
(p < 0.05). All p-values are corrected for 20 comparisons using a
Bonferroni correction. Outliers are presented as ’+’

Fig. 7 Relationship between the change in K1 and the change in
extraction fraction. An inverse relationship was observed between the
change in bone perfusion (K1) and the change in extraction fraction
after exercise (ΔExtraction fraction= −12 × ΔK1 − 0, R2=0.43, p <0.01)
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mechanical loading in vivo and observed increases of collagen
and mineral apposition on surface of the loaded bone matrix
[7]. Similarly, increased blood flow in the rat ulna has been
found to peak 5 days after loading [22]. It should be noted that
the aforementioned studies used bone-loading devices as op-
posed to the more physiologic type of exercise in the present

study. Such loading studies also tend to employ loads that
exceed forces under normal exercise, which means the time
and load dependency of a measured response in bone requires
more study. Still, the interconnection of vascular fluctuations
in bone with an anabolic effect on bone remodelling has been
established [34–36].

a

b

Fig. 8 Relationship between Ki
NLR and Ki

pat as well as Ki and SUV a
before and b after acute loading. KiNLR and Kipat maintained a similar
correlation before and after exercise. However, the correlation between Ki

and SUV changed significantly (p < 0.01). The slope for the linear
correlation between KiNLR and SUV increased from 81 (a) to 105 (b)
with little change in goodness of fit (R2 = 0.84 and 0.82 respectively)

Fig. 9 Examples of high uptake
ROIafp post-exercise. In six of the
12 healthy subjects, a total of
eight focal points of high uptake
were identified in post-exercise
[18F]NaF PET SUV images such
as the three examples given. The
images represent cases of the fo-
cal region being visible prior to
exercise and a maintaining a
similar ratio to surrounding tissue
after exercise as well as cases
where the focal point was unre-
markable prior to exercise (b), or
barely discernible (c).
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The changes in [18F]NaF kinetics, total uptake, and SUV
induced by exercise in this study suggest a localised response
in bone tissue that may be load-dependant, with high inter-
subject variability. Although the step-up and jump–landing
exercises are functionally different, they result in a similar
loading environment in the knee joint. The tibiofemoral joint
experiences compressive forces from both ground reaction
forces and muscle forces, while the patella experiences tensile
forces from the quadriceps and compressive forces through its
articulation with the trochlea. Stair ascent and descent are
similar biomechanical tasks to the step-up and jump–landing
exercises. There are slight differences in peak ground reaction
forces between stair ascent:(1.1 bodyweights) versus stair de-
scent (1.4 bodyweights), but both involve peak quadriceps
forces of 2.4 bodyweights [37]. As a result, the right and left
tibiofemoral joints may have experienced similar loading, but
the right patella may have transmitted greater quadriceps
forces than the left. In this study, both legs showed the highest
SUV and Ki

NLR increases in the patella, which may corre-
spond with the large forces transmitted through the patella.
The right patella, however, demonstrated higher SUV and
Ki

NLR than the left, which may be explained by the greater
quadriceps forces in the step-up activity. The whole-body bio-
mechanics of the two tasks are similar, but tissue-level strains
have high inter-subject and spatiotemporal variability [37].
Differences in movement dynamics, varus/valgus alignment,
muscle strength, and coordination strategies could all contrib-
ute to a high degree of inter-subject variability in forces ap-
plied on the bones. Even if the applied forces were identical
between subjects, local bone strain is also dependent on the
geometry and microstructure of each individual’s bones,
resulting in further variability. We also observed intersubject
discrepancies in the spatial distribution of kinetic/SUV chang-
es, which may reflect inter-subject differences in bone strain.
Furthermore, these discrepancies imply that the physiological
mechanisms responsible for the altered kinetics are locally
regulated, as opposed to a uniform increase in flow to the
bones of the knee region.

SUV values increased more than Ki values even though the
two were correlated before and after exercise. One reason for
this bias could be the 0.25 KBq/ml extra blood activity (an
increase of approx 10% during the 30 to 50 min time period)
after the second injection. SUVmay also be artificially elevat-
ed due to a reduction in the extraction of fluoride in other areas
of the body, such as the kidneys. Exercise is known to reduce
blood flow to other areas of the body, including the kidneys,
via activation of the sympathetic nerve system [38]. Increasing
the proportion of fluoride available to bone tissue in the knee
would not alter Ki, as it is accounted for by the input function.
SUV, on the other hand, is calibrated to the injected dose and
does not account for remaining activity in the blood from the
first injection or for changes in fluoride extraction elsewhere
in the body including the kidneys [38].

Findings of focal areas in subchondral bonewith abnormal-
ly high increases in 18F-NaF uptake after exercise, ROIfocal,
are of particular interest. Many of these regions showed no
abnormalities in 18F-NaF uptake compared to adjacent regions
at baseline pre-exercise or structural subchondral bone abnor-
malities on MRI. This suggests that 18F-NaF PET may iden-
tify regions where there is an improper response of the bone–
cartilage unit to acute loading in areas that appear structurally
normal on MRI. Biomarkers that can effectively assess early
breakdown of joint function, before structural changes are
seen, are crucial for the development and evaluation of
disease-modifying treatments, and increased 18F-NaF uptake
detected after acute loading may be a promising candidate.
Longitudinal studies are necessary to identify the relationship
of these regions of increased uptake after acute joint stress and
the pathophysiology of bone and cartilage degeneration in
these regions.

There are several limitations in this study. First, the
study was designed for high loading of the knee joint to
ensure detection of an eventual osteogenic response from
exercise. The study design is, for this reason, limited in its
ability to interpret the relationship between the amount of
stress applied to bone tissue and the corresponding re-
sponse. The exercise paradigm included both high strain
magnitudes and high strain rates on the knee joint [7], and
used the maximum number of cycles reported to ensure
saturation of mechanostimulation [5]. To determine the re-
lationship between the stress applied to bone and the
resulting response, all three of these elements would have
to be varied in a controlled fashion.

This study used a cross-sectional analysis of healthy vol-
unteers with no symptoms or history of knee injury or pain.
Further, no histopathology was acquired in ROIs with abnor-
mal focal increases in uptake after exercise. While increased
bone activity detected by 18F-NaF after acute loading is sug-
gestive of higher bone loading due to a breakdown of proper
joint function, longitudinal studies or histopathology are need-
ed to confirm degenerative changes in these areas. A study
focusing on patient groups with known pathology would help
assess the utility of stimulating bone tissue in diagnostics. The
number of subjects in this study is also small, which limits its
ability to identify factors such as BMI, varus/valgus align-
ment, disease, or activity level that could alter the kinetics in
bone tissue. The exercise in this study is also inappropriate for
many patient groups. A paradigm designed for patients could,
however, induce a similar response, given that ~95% of the
osteogenic effect can be achieved after climbing only ~20 to
40 steps (~2000 μƐ in compression) [5, 39, 40].

Furthermore, there are technical limitations to consider.
Kinetic studies are more complicated than conventional imag-
ing, requiring more computation, expertise, and the robust
determination of an input function. The IDIF methods used
in this study have previously been shown to correlate with
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late-stage venous blood measures and to be reproducible.
Further, input function values in this study correspond well
with literature values for arterial sampling [29], but using ar-
terial sampling is still considered a gold standard. The use of
two consecutive injections was accounted for, but may create
an adverse bias in the results, as blood activity levels from the
second injection were slightly higher than the first. The blood
volume measured by this method is difficult to verify inde-
pendently in humans with a gold standard. Lastly, despite the
numerous advantages from combining PET imaging with
MRI in knee examinations, PET/MR is also known to under-
estimate SUV values by approximately 10% due toMR-based
attenuation correction of its PET images [41].

The ability to image the physiological response of bone
tissue to loading would be a valuable clinical tool.
Decreased mechanosensitivity in bone tissue has been identi-
fied in osteoporosis [42, 43] and patients with spinal cord
injury [32], and to decline in the general population with age
[44–46]. Medicinal treatment or therapies employing
mechanostimulation including exercise [47], muscle stimula-
tion [6, 48], vibration therapy [49], or drug treatment [17, 50]
could better be imaged using [18F]NaF PET. For prostate and
breast cancer, studies have shown bone-loading exercise to be
a safe and viable suppressant of tumor growth in bone metas-
tasis [51, 52]. The use of kinetics, even at rest, haa been prov-
en to be clinically feasible and has the potential to offer more
information. For instance, Ki has been shown to be highly
reproducible in the human spine [53, 54] and to be more
valuable in monitoring osteoporosis patients than SUV values
[55]. Subchondral bone changes that are present prior to and
during the development of OA have demonstrated increased
bone blood flow and bone remodeling in [18F]NaF PET stud-
ies [15]. An association between pain and mean normalized
standardized uptake values (SUV) has been established in
different bone types [12, 15, 16], and increased [18F]NaF
SUV values may precede visible lesions [12, 14]. Thus, de-
tecting early changes in bone remodeling and bone physiolo-
gy with [18F]NaF kinetics could help in understanding dis-
ease. In those cases where pathology causing elevated SUV
is poorly understood or where there is weak contrast to healthy
bone, the response of bone tissue to mechanostimulation
could further elucidate dysfunction.

Conclusions

Loading acutely alters bone physiology affecting
[18F]NaF-PET kinetics, with a local response depending
on tissue, site, and exercise. Our data support previous
evidence of mechanostimulation initiating an early hyper-
emia phase in bone adaptation. These findings suggest that
kinetic modeling of [18F]NaF PET may provide a non-
invasive method to study the effects of acute loading on

joint biomechanics and bone remodeling, which may have
large implications for our understanding of early stages of
arthritis/arthrosis.
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