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Introduction
Since the launch of the Human Genome Project in 1990, massive amounts of genomic 
data have emerged, and bioinformatics appeared. With the advent of the post-genomic 
era, the focus of life science research has shifted from genomics to proteomics [1]. Pro-
tein complexes take part in a variety of biological processes including: cell cycle regu-
lation, differentiation and protein folding [2]. With the development of Biotechnology, 
a great number of ways to get protein-protein interaction network (PPIN) appeared, 
such as X-ray crystallography, Nuclear magnetic resonance (NMR) [2, 3] tandem affinity 
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purification [4, 5] (TAP), various massspectrometry techniques such as native, cross-
linked [6] (CX or XL), ion mobility [7, 8] two-hybrid system [9] and protein micro 
array. Therefore, predicting protein complexes in PPI networks has gradually become a 
research hotspot [10].

Protein complexes are groups of proteins that interact with each other at the same time 
and place, forming a single multimolecular machine [11]. Due to its essential role in the 
understanding of cellular organizations and functions, such as replication, transcription 
and the control of gene expression, etc [4, 12, 13]. One of the purposes of studying PPIN 
is to obtain protein complexes or functional modules in the network. However, experi-
mentally determining protein complex data are still somewhat limited as they are largely 
obtained through small-scale experimental techniques, which are time-consuming and 
tedious [14]. At the same time, many large-scale PPIN have been constructed with the 
advances of high-throughput technologies. Therefore, predicting protein complexes in 
PPIN through computational algorithms can provide reliable guidance and help for bio-
logical experiments.

A protein-protein interaction network can be modeled as an undirected graph. 
The vertices in the graph represent proteins, and the edges represent the interactions 
between proteins. Therefore, the problem of protein complex prediction can be approxi-
mated as a graph theory problem. The predecessors proposed some computational algo-
rithms to predict protein complexes in PPI networks. Most of these protein complexes 
identification methods are based on the principle that densely linked regions in the PPI 
network correspond to actual protein complexes [15]. Therefore, the protein complex 
prediction problem can be further regarded as the problem of detecting densely linked 
regions in PPIN [16, 17].

Subject to biological technology, researchers usually conduct in-depth research on 
smaller proteins. At the same time, small protein complexes also play an irreplaceable 
role in life activities. For example, PSD-95 consists of 6 proteins and plays an impor-
tant role in synaptic plasticity and the stabilization of synaptic changes during long-
term potentiation [18]. CD44 consists of 8 proteins and participates in a wide variety 
of cellular functions including lymphocyte activation [19], recirculation and homing 
[20], hematopoiesis [21], and tumor metastasis [22]. PKM2 consists of 8 proteins and 
is expressed in most human tumors [23]. BRD4 consists of 5 proteins and most cases of 
NUT midline carcinoma involve translocation of the BRD4 with NUT genes [24]. So, 
predicting smaller protein complexes may provide more help for biological research. But 
up to now, there is not a specifical method to identify the complex whose size is no more 
than ten effectively from PPIN. And the performances of traditional methods are not so 
satisfying and promising.

Therefore, we designed the BOPS algorithm to specially predict smaller protein com-
plexes. The BOPS algorithm means “Based On PPIN Segmentation”. The basic idea of 
BOPS is to divide the PPIN according to the reliability of the interaction. The BOPS algo-
rithm divides the original graph into some small networks and enumerates connected 
subsets of small PPINs to check if subsets are protein complexes. Finally, BOPS success-
fully transforms the problem of predicting protein complexes into a problem of judg-
ing whether a subgraph is a protein complex, thereby greatly improving the prediction 
effect. We evaluate BOPS compared to the state-of-the-art methods. The experimental 
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results show that the BOPS algorithm has achieved very great results for complexes with 
not exceeding ten.

Related work
Generally, the computational methods for protein complex prediction can be divided 
into three main categories: network-based, biological-context-aware, and specialized 
methods [2, 25]. Network-based approaches exploit the network structure to detect pro-
tein complexes and Biological-context-aware approaches combine topo-logical and gene 
information as functional information to detect complexes. However, all of them try to 
predict protein complexes of various sizes. Therefore, the approaches developed to pre-
dict small complexes are summarized as “specialized methods”.

Among the three main categories, there are many studies in this field of network-
based algorithms. These algorithms are based solely on PPIN. The network-based algo-
rithms can be further divided into agglomerative methods and divisive methods. For 
example, CFinder [26], PEWCC [27] and ClusterONE [28] are all classic network-based 
algorithms which use agglomerative methods. CFinder is based on subgraph merge to 
predict protein complexes. The ClusterONE first selects the protein with the highest 
degree from the PPI network as the seed node and uses the greedy algorithm to add or 
remove protein to form a highly aggregated subgraph. The PEWCC assesses the reliabil-
ity of the interaction data, then predicts protein complexes based on the concept of the 
weighted clustering coefficient. MCL [29] is the representative algorithm using divisive 
method. This method detects dense subgraphs as predicted complexes in a given PPIN 
by simulating random walks. To simulate the random walk (flow), MCL uses “expansion” 
(controls the spread of the flow) and “inflation” (controls the spread of the flow) opera-
tion iteratively.

Some methods are based on PPIN and some additional biological insights [30]. The 
number of these methods is not so large, and the most famous algorithm is COACH 
[31]. The protein complex has a combination feature, and the protein complex is com-
posed of a core and some attachments. The proteins in the core part have high levels of 
co-expression and functional similarity [4]. Therefore, the COACH is based on this the-
ory and has two steps. First, the core structures of the proteins are determined according 
to the neighboring relationships of the proteins, and then the proteins in the core struc-
tures are expanded to get attachments according to the biological significance. Kouhasr 
et al [32] improved COACH to be compatible with weighted PPI networks for protein 
complex detection. They proposed a new method WCOACH based on Gene Ontol-
ogy structure as an optimized version of COACH. Recently a new method called GANE 
based on Gene Ontology attributed network embedding was proposed to predict pro-
tein complexes [33]. This method learns the vector representation for each protein from 
a GO attributed PPI network. Then, it uses the clique mining method to generate candi-
date cores. For each seed core, its attachments are the proteins with a correlation score 
that is larger than a given threshold.

The smaller protein complex contains fewer proteins, so the topology in the PPI net-
work is not obvious. All of the aforementioned methods try to predict protein complexes 
of various sizes and densities. Those general algorithms cannot efficiently find specific 
types of complexes, particularly sparse and small ones [2]. These complexes are riddled 
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with various challenges in the course of prediction, particularly when only topological 
information of the PPIN is available. Therefore, the special-purpose strategies devel-
oped to address this problem are classified as “specialized methods”. CPredictor2.0 is a 
method to detect “very small complexes” (size not exceeding three) [34]. The method 
groups proteins of similar functions, then uses the Markov clustering algorithm to dis-
cover clusters in each group and merge some of them. The merged clusters as well as the 
remaining clusters constitute the set of detected complexes.

Method
Problem statement and notation

A PPIN can be represented as a graph G = (V ,E,W ) . The PPIN has |V| proteins which 
are indicated by vertices. And the PPIN has |E| interactions which are indicated by 
edges. Additionally, W reflects the weights of the interactions. The protein complex can 
be represented as a subset of proteins with high cohesion in the graph. As a result, the 
protein complex prediction problem can be regarded as a graph theory problem. There-
fore, in "Method", we will mainly use graph theory to describe BOPS algorithm, thereby 
enhancing rigor of the paper.

An undirected edge can be represented as e = (xe, ye,we) , where xe and ye are end-
points of e, and we represents the weight of e. The cntv represents the number of edges 
from vertex v, which is the degree of vertex v without weight. The sumv represents the 
sum of the weights of all edges from vertex v, which is the degree of vertex v with weight.

Algorithm overview

The BOPS algorithm for protein complex prediction is a three-step procedure. First, 
the BOPS algorithm calculates the balanced weights, and replaces the original weights 
with balanced weights (3.3). Second, the BOPS algorithm divides the graphs larger than 
MAXP until the original PPIN is divided into small networks (3.4.1) and the details is 
described in (3.4.2). Third, the BOPS algorithm enumerates every connected subset of 
each small network (3.5.1), calculates the cohesion of each connected subset (3.5.2), 
identifies potential protein complexes based on cohesion and removes those that are 
similar (3.5.3). Figure 1 shows the overall flow of the algorithm to identify complexes in 
a PPIN.

Calculation of balanced weights

PPIN is obtained by many biological experiment methods. The weight reflects the reli-
ability of interactions. Based on previous studies in yeast, each complex is composed of 
a core and attachments [4]. Proteins in the core interact with each other closely, which 
decides the main biological function of the complex. Some proteins are bound to the 
core to complete their function. These proteins are called attachments.

(1)cntv =
xe=v

1

(2)sumv =
∑

xe=v

we



Page 5 of 20Lyu et al. BMC Bioinformatics          (2022) 23:405 	

The proteins in the core usually have a high level of interaction with a large number of 
proteins in the same core. But the attachment usually only interacts with a small number 
of proteins in the core, and the level of interaction is low. Because the BOPS algorithm 
only uses cohesion to determine whether a set of proteins is a complex, the BOPS algo-
rithm adjusts the weights of edges according to the core-attachment biological structure. 
Indeed, the BOPS algorithm calculates balanced weights to balance the importance of 
the original edge weight and core-attachment structure. For an edge e, we define its bal-
anced weight bwe as follows:

Parameter β is used in the calculation of balanced weights. The default value of β is 1.5. 
When the β is 1, the BOPS algorithm will not change original weights. When β is large, 
biological structure information will affect the performance of our method significantly. 
The value range of this parameter is from 1.0 to 2.0.

When the interaction e is between the core and an attachment, one of sumxe and sumye 
will be small, and since the value is used as a denominator, the balanced weight of e 
becomes larger than the original weight. As a result, the BOPS algorithm indirectly con-
siders the core-attachment structure in the balanced weights.

Splitting the original graph

An overview of the graph segmentation process

The BOPS algorithm constructs an empty queue, and pushes the original graph into it. 
As long as the queue is not empty, the algorithm pops the head element, a graph every 
time, and then checks whether its size is greater than MAXP. If the size of the graph 
does not exceed MAXP, the BOPS will no longer split this graph. If the size of the graph 
is greater than MAXP, the BOPS algorithm will split it and push the subgraphs into the 
back of queue. When the queue is empty, the size of all graphs are all not greater than 
MAXP.

(3)bwe =
1

2

(

we
β

sumxe
β−1

+
we

β

sumye
β−1
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Fig. 1  The description of the BOPS algorithm
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The MAXP represents the maximum number of proteins in each graph after splitting 
the original graph into small graphs. The larger MAXP is, the better result is. The time 
complexity is O(2MAXP) approximately. We recommend set MAXP to 20 when detecting 
small complexes.

The details of segmentation

The details of the splitting process is described below. The algorithm deletes some edges 
to make the graph disconnected, and simultaneously makes sure the highest weight of 
the deleted edges are minimized. The cost is defined as follow:

Removing some edges is equivalent to deleting all the edges and adding back some 
edges. In the same way, deleting some edges to make the graph split into two parts, is 
equivalent to removing all edges and adding back some edges to make the graph join 
into two parts.

Indeed, the BOPS algorithm firstly removes all the edges from the graph into the array 
and sorts them from largest to smallest by edge weight. Then, BOPS adds the edges back 
to the graph, one at a time. The BOPS maintains a classic data structure called disjoint 
set union to support queries of the connectivity of the graph. If the edge that is currently 
being added causes the graph to become connect, It is proved that this edge must be 
removed if the graph is to be divided at minimum cost. In this case, BOPS removes this 
edge completely.

Detecting possible protein complexes

Enumerating connected subsets

The connected subsets of each graph may be protein complexes. After splitting the origi-
nal graph into small graphs, all graphs do not exceed MAXP. Therefore, the BOPS algo-
rithm can enumerate all connected subsets of each graph to calculate their cohesion, 
which is used for filtering the potential complexes. In this way, we convert a generative 
problem into a decision problem.

The BOPS algorithm uses breadth-first search to obtain all connected subsets in graph 
G = (V ,E,BW ) . Then for each connected subgraph, the algorithm will compute its 
cohesion.

Calculation of sets’ cohesion

In a protein complex, a protein should interact with most of other proteins. As a result, 
the BOPS algorithm uses (cntx + 1)/|V | to reflect the number of proteins which interact 
with protein x. (cntx + 1)/|V | reflects the proportion of proteins interacting with pro-
teins x in the current complex. The BOPS adds 1 to the numerator because the protein is 
always interacting with itself.

At the same time, a protein should have high level of interactions with other proteins. 
Therefore, the BOPS algorithm uses sumx to reflect the level of interaction of protein x.

As a result, the algorithm uses sumx × (cntx + 1)/|V | to measure the denote the pos-
sibility of protein x in the complex.

(4)cost = max
{

bwe

}

(e ǫ deleted edges)
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Finally, the algorithm averages the possibility of each protein in the set to reflect the 
cohesion of the entire set.

V, |V|, sumx and cntx here only consider vertices in the set, and edges whose endpoints 
are all in the set.

Detecting protein complexes

The BOPS algorithm calculates the cohesion of every complexes in each graph and ranks 
the complexes from most cohesive to least cohesive. Then the BOPS iterates through all 
the complexes, if one complex is similar to complexes which have larger cohesion, it will 
be deleted. Finally, the algorithm takes the most cohesive half of the candidates as the 
final result.

Time complexity analysis

The bottleneck of the algorithm is enumerating the connected subset of all graphs 
and calculating the cohesion. The graph G = (V ,E,W ) can be divided into at most 
|V |/MAXP graphs (e.g. The size of each graph is MAXP). The maximum size of each 
graph is MAXP (e.g. Each graph reaches an upper limit in size). The number of con-
nected subset of each graph is 2MAXP (e.g. Any two points are connected to each other).

As a result, the time complexity of calculating cohesion is O(MAXP), the 
time complexity of calculating cohesion of all connected subsets of one graph is 
O(MAXP× 2MAXP ), the time complexity of calculating all connected subset of all graphs 
is O(V × 2MAXP ) and the time complexity of BOPS is O(V × 2MAXP).

According to our experiments in "Experimental result and analysis" section, the results 
of conventional data sets can be finished in less than 20 minutes, which is consistent 
with the time complexity analysis. The hardware environment is Intel Core i5-9500 @ 
3.00GHz.

The intention of algorithm design

Detecting protein complexes in PPIN is a generative problem. However, judging whether 
a connected set of protein is a protein complex is a decision problem. Usually, a decision 
problem is easier than a generative problem. Therefore, we convert a generative problem 
into a decision problem by splitting PPIN into small networks and enumerating con-
nected subsets. The algorithm is summarized as the pseudo-code shown in Algorithm 1.

(5)Cohension(V ) =
1

|V |
∑

xǫV

sumx ×
cntx + 1

|V |
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Experimental result and analysis
First, we present the details of baseline methods : GANE [33], WCOACH [32], Clus-
terONE [28] , PEWCC [27], CPredictor [34], MCL [29] and CFinder [26]. Second, We 
introduce the evaluation metrics. Third, we systematically evaluate the performance of 
our method compared to 7 baseline algorithms in yeast PPINs. Fourth, we discuss the 
effect of parameters and the effect of graph segmentation. Fifth, we test the adaptabil-
ity of BOPS with various sizes and other species. Sixth, we evaluate the reasonability 
and validity of the predicted complexes by their p-values under GO terms of biological 
process.

The details of baseline methods

•	 MCL Markov clustering is a representative graph-based clustering algorithm. It uti-
lizes the random walk theory to discover the cluster core nodes and Markov chains 
rule to translate between within-cluster and across-cluster. MCL does not require 
the number of clusters to be known in advance.

•	 CFinder CFinder is an approach to analyzing the main statistical features of the inter-
woven sets of overlapping communities. Unlike the BOPS split the subgraph by the 
greed method, CFinder uses the greedy method to form clusters for finding maximal 
cliques with at least k vertices.

•	 ClusterONE ClusterONE is a clustering method with overlapping neighborhood 
expansion. It is a greedy method to predict protein complexes. In each iteration, it 
selects a node as the core node and extends it through the other node to increase the 
density of the cluster. Differing from the up-bottom method BOPS, ClusterONE is a 
bottom-up clustering method.
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•	 PEWCC​ PEWCC is a kind of graph mining algorithm. Firstly, PEWCC assesses the 
reliability of the interaction data, then predicts protein complexes based on the con-
cept of weighted clustering coefficient. BOPS and PEWCC methods are considered 
the reliability for the interaction of proteins.

•	 WCOACH WCOACH proposes a semantic similarity measure between proteins, 
based on Gene Ontology structure, which is applied to weigh PPI networks. It 
improved the well-known method COACH, which has been improved to be compat-
ible with weighted PPI networks for protein complex detection.

•	 CPredictor CPredictor is a method to detect “very small complexes” (size not exceed-
ing three). The method groups proteins of similar functions and then uses the 
Markov clustering algorithm to discover clusters in each group and merge some of 
them. The merged clusters, as well as the remaining clusters, constitute the set of 
detected complexes. BOPS predicts that the number of proteins in the small complex 
does not exceed ten. So BOPS is more universal than CPredictor.

•	 GANE GANE is a method to predict protein complexes based on Gene Ontology. 
First, it learns the vector representation for each protein from a GO attributed PPI 
network. Then, it uses the clique mining method to generate candidate cores. Similar 
to BOPS, it selects the proteins with more significant correlation scores as predicted 
proteins.

Evaluation metrics

To formally evaluate the performance of our method, we use the same evaluation met-
rics as other methods [27, 35]. In the beginning, we need to assess the quality of one 
predicted protein complex by comparing it with the protein complexes in the reference 
set. P denotes the set of predicted protein complexes from one method, and B denotes 
the set of gold standard protein complexes. And p ∈ P is an identified protein complex; 
b ∈ B is a known protein complex. The neighborhood affinity score NA(p, b) is defined 
as:

where Vp is the set of proteins in the predicted protein complex p and Vb is the set of pro-
teins in the reference protein complex b. Following the previous studies when NA(p,b) is 
not less than 0.25, we consider the p and b are matched [36].

Based on the neighborhood affinity score, Ncp is defined as the number of predicted 
protein complexes that match at least one reference protein complex, and Ncb is the 
number of the reference protein complexes that matches at least one predicted protein 
complex.

(6)NA(p, b) =
|Vp ∩ Vb|2

|Vp| × |Vb|

(7)Ncp =
∣

∣

{

p|p ∈ P, ∃b ∈ B, NA(p, b) ≥ ω
}∣

∣

(8)Ncb =
∣

∣

{

b|b ∈ B, ∃p ∈ P, NA(p, b) ≥ ω
}∣

∣
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In Eqs.  (7) and (8), ω is a threshold parameter, which is typically specified to be 0.25. 
The first three measures used in experiments for evaluating the performance of different 
methods are Precision, Recall, and F-score [37]. They can be defined as follows:

Precision is the rate of predicted protein complexes that match at least one reference 
complex, which is used to assess the quantity of matched predicted complexes Recall is 
the rate of reference protein complexes that match at least one predicted complex, which 
is used to assess the quantity of matched reference complexes. F-score is the harmonic 
mean of Recall and Precision, which is used to assess the overall performance for the 
quantity of matched complexes.

The other three measures used in experiments are clustering-wise sensitivity (Sn), 
clustering-wise positive predictive value (PPV) and geometric accuracy (ACC) [38, 
39]. Given an identified complex p in predicted cluster P and a known complex b in 
gold reference cluster B. Tpb is defined as the number of proteins that can be found 
both in the reference set Vband predicted set Vp.

Sn is the rate of the maximum-sum number of matched proteins to the total number of 
proteins in the set of the reference protein complex. PPV is the rate of the maximum-
sum number of matched proteins to the total matched number of proteins in the set of 
the predicted protein complex. So, Sn and PPV are defined as follows:

ACC is the geometric mean of Sn and PPV, which is used to assess the overall perfor-
mance for the quality of matched complexes.

The third metric we used is the maximum matching ratio (MMR) [28], which is based 
on a maximal matching between gold standard complexes and predicted complexes in 
a bipartite graph. The bipartite graph is the two sets of nodes representing the reference 
and predicted complexes, respectively, and an edge connecting a reference complex with 
a predicted one is weighted by the overlap score between the two. MMR offers a natu-
ral, intuitive way to compare predicted complexes with a gold standard and it explicitly 

(9)Precision =
Ncp

|Vp|
, Recall =

Ncb

|Vb|

(10)F-score = 2 ·
Precision× Recall

Precision+ Recall

(11)Tpb =
∣

∣

{

Vp ∩ Vb

}∣

∣

(12)Sn =
∑|B|

b=1
max

|P|
p=1

{

Tpb

}

∑|B|
b=1

|b|

(13)PPV =
∑|P|

p=1 max
|B|
b=1

{

Tpb

}

∑|P|
p=1

∑|B|
b=1

Tpb

(14)ACC =
√
Sn× PPV
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penalizes cases when a reference complex is split into two or more parts in the predicted 
set, as only one of its parts is allowed to match the correct reference complex.
F-score , ACC and MMR are useful in the sense that they assess how well a protein 

complex detection method is able to rediscover the known complexes. They are meas-
ured in the range [0, 1] and a high value indicates a good quality of detection [40].

Performance comparison in the yeast PPINs

Data sets and gold standard

We conduct experiments on four PPI networks: Krogan-core [5], Krogan-extended 
[5], Gavin [41], Collins [42]. The detailed information of these four datasets is shown 
in Table  1. To compare the identified complexes with the known complexes, we have 
constructed a benchmarking set as the gold standard by selecting the protein complexes 
which have at most ten proteins from MIPS, CYC2008, SGD, Aloy and TAP06. There-
fore, there are 596 protein complexes in the reference set [25].

Performance comparison

To evaluate the effectiveness of our proposed mothed, we compare it with other seven 
protein identification methods: GANE [33], WCOACH [32], ClusterONE [28], PEWCC 
[27], CPredictor [34], MCL [29] and CFinder [26]. The parameters of these methods 
are set as the recommended values as mentioned in their original papers [43]. For our 
method, we set the β to 1.5. For fairness, we filter out the predicted protein complexes 
whose sizes are not more than 10 in all methods. All experimental results are listed in 
Table 2. According to the section of evaluation metrics, considering both F-score , ACC 
and MMR are overall evaluation metrics, so the best scores of F-score , ACC and MMR 
are highlighted in bold for easy comparison.

According to the data in Table 2, we observed that BOPS obtains the best scores for 
F-score , ACC and MMR in all datasets. The result of F-score is 3.2% higher than that of 
the second method on average. The result of ACC is 7.5% higher than that of the sec-
ond method on average. The result of MMR is 40.6% higher than that of the second 
method on average. It illustrates that the overall accuracy of protein complexes identi-
fied by BOPS is better than prevalent algorithms in the field of small protein complexes. 
What’s more, both Recall, Sn and MMR rank first in all datasets. So, BOPS covered more 
real protein complexes relatively. In other words, it has a high quantity and quality for 
matched complexes with respect to the reference set.

But BOPS do not achieve the highest Precision and PPV. For these datasets, 
WCOACH is the best for Precision. WCOACH is a semantic similarity measure 

Table 1  The Yeast PPIN datasets used in the experiment

PPIN #Proteins #Interactions Edge weight 
average

Edge weight 
variance

PPIN density

Krogan-core 2708 7123 0.67978 0.06407 0.00194

Krogan-extended 3672 14317 0.41552 0.10200 0.00212

Gavin 1855 7669 0.35643 0.01996 0.00446

Collins 1622 9074 0.78214 0.03310 0.00690
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between proteins, based on Gene Ontology structure. The complexes detected by 
WCOACH generally had more proteins, so the number of small complexes is very 
rare, which leads to the high “hitting accuracy” relatively.

As for PPV, MCL algorithm utilizes random walk theory and Markov chains rule. It 
divides PPI network into many dense subgraphs; thus, every protein only belongs to 
one specific complex. So, the PPV is higher than our method. But the Precision and 
Recall of ours are all over than MCL.

BOPS achieved the highest MMR, indicating that the predictions matched the gold 
standard quite naturally. This shows that BOPS does not rely on increasing similar 
prediction results to improve the values of F-value and ACC, and BOPS has high bio-
logical experimental significance. And For comparing these methods more visually, 

Table 2  Performance comparision

PPIN Method #Predicated F-score Precision Recall ACC​ Sn PPV MMR

Krogan-core BOPS 704 0.558
1st 0.463 0.701 0.528

1st 0.610 0.457 0.332
1st

GANE 140 0.539
2nd 0.636 0.467 0.442 0.485 0.403 0.182

WCOACH 70 0.382 0.729 0.259 0.320 0.317 0.322 0.084

ClusterONE 551 0.407 0.332 0.524 0.489
2nd 0.513 0.466 0.223

2nd

PEWCC​ 177 0.468 0.599 0.385 0.387 0.414 0.361 0.165

CPredictor 155 0.520
3rd 0.703 0.413 0.412 0.400 0.425 0.188

3rd

MCL 337 0.349 0.279 0.464 0.480
3rd 0.478 0.482 0.164

CFinder 108 0.372 0.528 0.288 0.364 0.289 0.457 0.120

Krogan-extended BOPS 778 0.538
1st 0.476 0.620 0.482

1st 0.533 0.420 0.288
1st

GANE 183 0.496
3rd 0.579 0.434 0.421

3rd 0.453 0.390 0.174

WCOACH 97 0.390 0.701 0.270 0.342 0.325 0.361 0.095

ClusterONE 910 0.398 0.374 0.427 0.433
2nd 0.456 0.411 0.197

2nd

PEWCC​ 225 0.436 0.524 0.373 0.367 0.407 0.331 0.143

CPredictor 180 0.507
2nd 0.689 0.401 0.395 0.401 0.390 0.175

3rd

MCL 419 0.250 0.203 0.326 0.418 0.368 0.475 0.111

CFinder 118 0.261 0.39 0.196 0.302 0.209 0.436 0.071

Gavin BOPS 832 0.668
1st 0.585 0.777 0.560

1st 0.727 0.431 0.435
1st

GANE 182 0.593 0.604 0.582 0.480 0.500 0.461 0.211

WCOACH 199 0.654
3rd 0.859 0.528 0.465 0.531 0.407 0.258

3rd

ClusterONE 200 0.653 0.770 0.567 0.514
3rd 0.568 0.465 0.249

PEWCC​ 203 0.656
2nd 0.768 0.573 0.489 0.592 0.404 0.404

2nd

CPredictor 180 0.527 0.722 0.415 0.417 0.408 0.427 0.195

MCL 231 0.516 0.463 0.582 0.523
2nd 0.570 0.479 0.205

CFinder 115 0.550 0.713 0.448 0.457 0.468 0.447 0.175

Collins BOPS 794 0.614
1st 0.506 0.779 0.550

1st 0.707 0.428 0.422
1st

GANE 126 0.607
2nd 0.675 0.552 0.493 0.528 0.461 0.221

WCOACH 65 0.465 0.800 0.328 0.362 0.325 0.403 0.121

ClusterONE 178 0.604
3rd 0.607 0.602 0.531

2nd 0.563 0.501 0.264
2nd

PEWCC​ 97 0.548 0.732 0.438 0.449 0.459 0.440 0.167

CPredictor 150 0.506 0.640 0.418 0.426 0.402 0.452 0.196

MCL 160 0.591 0.594 0.589 0.520
3rd 0.525 0.516 0.250

3rd

CFinder 102 0.529 0.676 0.435 0.450 0.401 0.506 0.195
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we plot Fig.  2 to show the F-score of each method. BOPS always obtains the high-
estF-score . Overall, the performance on the task of small protein complex identifica-
tion is very promising. It obtains better results in both F-score , ACC and MMR in all 
datasets.

We recommend the applicability of each algorithm. If you need protein complex predic-
tion to guide biological experiments, BOPS will be the best choice. But if you are short on 
funds and can only detect fewer protein complexes, then WCOACH will be the best choice. 
WCOACH has few predictions, but a high hit rate. When funding is replenished, the BOPS 
predictions can be used to detect more complexes.

The effects of parameter settings

Accuracy of graph segmentation algorithm

According to "Method", our method can be summarized as three steps. Firstly, it divides the 
PPI network into many subgraphs. This step will make the original network unrecoverable. 
Therefore, the quality of the segmented subgraphs affects the final performances directly. 
For evaluating the accuracy of this step, we define the expected regression ratio(ERR)to 
represent the accuracy of segmentation. Analogous to the definition of neighborhood affin-
ity score NA(p, b) , we define regression degree score RD(b, s) as follows

where Vb is the set of proteins in the reference protein complex B and Vs is the set of pro-
teins in the PPI sub-network. When RD(p, b) is not less than 0.25, we consider the b is 
recalled. Based of regression degree score, we define expected regression ratio (ERR) in 
Eps. 16 to evaluate the accuracy of segmentation:

(15)RD(b, s) =
|Vs ∩ Vb|

|Vb|

(16)ERR =
∣

∣

{

b|b ∈ B, ∃n ∈ N ,RD(b, n) ≥ ω
}∣

∣

∣

∣

{

b|b ∈ B,RD(b,M) ≥ ω
}∣

∣

Fig. 2  Comparison with six protein complex identification algorithms in terms of F-score . Each bar height 
reflects the value of the F-score
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where δ is specified to be 0.25 typically. b is a reference complex in the reference complex 
set B. n is a segmented PPI subgraph in the PPI subgraph set N. M is the original PPI 
network. We set the β change from 1.0 to 2.0 using a 0.2 increment, and get the result of 
ERR in four databases. At the same time, we execute the segmentation randomly and get 
the result as a reference. These results are listed in Table 3.

As shown in Table 3, the subgraphs divided by our method can obtain a much higher 
ERR than random. The expected regression ratio first increases and then decreases as the 
β increases and peaks at 1.4 or 1.6. Therefore, we set 1.6 as the default value and range 
from 1.4 to 1.6 as recommended an interval of β . When set default, the values are even 
more than 0.96 in the Gavin and Collins. It indicates our method achieves a high accu-
racy in these PPI networks. More than 96% of expected reference complexes are reserved 
in sub-networks. At the same time, we found the Recall in Gavin and Collins are more 
than Krogan-core and Krogan-extended. These results also confirmed the reliability of 
the data in Table 3. However, the ERR in Krogan-extended is 0.88. It is the least value in 
all networks. The reason why about 12% of the expected recall complexes are destroyed 
may be due to the large edge weight variance and the low PPIN density in the Krogan-
extended. Considering in one graph, if the distribution of edge weights is discrete there 
are more edges will be deleted and if the graph is relatively sparse the possibility of delet-
ing the correct edge will be increased. But compared with random segmentation, our 
method takes advantage of the weight and topology and achieves superior performance 
(0.880 vs 0.149).

The effect of β on performance of BOPS

As described before, there is only one parameter in BOPS: β . In order to investigate how 
the different parameters affect the performance of the protein complex identification [1, 
44]. We try β changing from 1.0 to 2.0 to detect complexes in four datasets respectively. 
Considering that F-score generally reflect the accuracy of prediction sets, in Fig. 3, we 
plot the F-score with different parameters.

As the Fig. 3 shows, the value of the F-score shows a trend of increasing first and 
then decreasing. For Krogan-core and Krogan-extended datasets, the F-score reaches 
a peak when the balanced index is 1.4. For Gavin and Collins datasets, the F-score 
reaches a peak when the balanced index is about 1.8. That is because the values of 
edge weight variance in Krogan-core and Krogan-extended are higher than Collins 
and Gavin. The higher the balanced index is, the more discrete of the modified edge 
weights are. For Collins and Gavin datasets with more concentrated weights, a larger 
β is conducive to make the modified weights more decentralized, which is convenient 
for subsequent graph segmentation. Overall, when the balanced index is 1.5, it has a 

Table 3  ERR on the four datasets

PPIN Random β = 1.0 β = 1.2 β = 1.4 β = 1.6 β= 1.8 β = 2.0

Krogan-core 0.444 0.764 0.901 0.917 0.921 0.903 0.877

Krogan-extended 0.149 0.733 0.856 0.870 0.888 0.861 0.863

Gavin 0.770 0.928 0.953 0.973 0.966 0.959 0.957

Collins 0.751 0.922 0.967 0.969 0.964 0.964 0.955



Page 15 of 20Lyu et al. BMC Bioinformatics          (2022) 23:405 	

good performance on the four datasets. For different datasets, we encourage to use a 
suitable balanced index according to edge weight variance in BOPS.

Adaptability of BOPS

The performance of BOPS on complexes of all sizes

In the previous section, we evaluate the performance of BOPS with small protein 
complexes identification. In order to make the experimental data more comprehen-
sive, we compare it with other methods in the field of total protein complexes. Con-
sidering ACC is used to evaluate the overall performance in the field of quality, when 
one small identified complex is matched to a large reference complex, although all 
of the predicted proteins can be found in the reference complex, the Sn will be very 
low. This situation is inconsistent with our original intention. Thus, ACC is not a fair 
reference standard. Therefore, we evaluate F-score with a set of gold standard protein 
complexes (789 protein complexes totally). The results are listed in Table 4. Overall, 
the performance of BOPS is better than most algorithms with respect to the whole 
protein complexes.

Fig. 3  The performances and quality of BOPS with different setting of β

Table 4  Performance comparision on four datasets(include large protein complexes)

Krogan-core Krogan-
extended

Gavin Collins

#Predicated F-value #Predicated F-value #Predicated F-value #Predicated F-value

BOPS 710 0.596
3rd 793 0.582

2nd 851 0.729 813 0.737
2nd

GANE 208 0.674
1st 251 0.603

1st 182 0.594 202 0.759
1st

WCOACH 308 0.510 528 0.466 406 0.739
3rd 247 0.649

ClusterONE 600 0.476 972 0.456 240 0.769
2nd 207 0.701

PEWCC​ 283 0.600
2nd 464 0.548

3rd 401 0.772
1st 277 0.705

3rd

CPredictor 168 0.577 190 0.534 207 0.637 172 0.614

MCL 376 0.412 483 0.311 253 0.587 183 0.686

CFinder 114 0.412 120 0.234 137 0.628 113 0.575
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Performance comparison in the Homo Sapiens PPIN

The STRING database [45] aims to integrate all known and predicted associations 
between proteins, including both physical interactions as well as functional associa-
tions. BioGRID [46] is a biomedical interaction repository with data compiled through 
comprehensive curation efforts. An unweighted Homo sapiens PPIN is obtained from 
BioGRID, which contains 206930 interactions. And interactions in PPIN are assigned 
weights based on STRING database. If an interaction can not be found in STRING data-
base, it will be removed from PPIN. In that way, a weighted Homo sapiens PPIN is con-
structed, and the detail is shown in Table 5.

BOPS is compared to PEWCC and ClusterONE which are the second best in the Yeast 
experiment. The parameter β is still set to the default value of 1.5. And the gold standard 
is Corum [47]. The result shows in Table 6. In the Homo sapiens PPIN, BOPS shows the 
best overall performance. BOPS has strong adaptability between different species.

Biological significance of the identification protein complex

To assess the biological sense of the predicted protein complexes generated by BOPS, we 
calculate the Min P-value by the tool GOTermFinder [48]. P-value is defined as follows:

where a predicted complex C contains k proteins in the functional group F and the whole 
PPI network contains |V| protein. The functional homogeneity of a predicted complex is 
the Min P-value overall of the possible functional groups. A predicted complex with a 
low functional homogeneity indicates it is enriched by proteins from the same function 
group [49]. So, the collective occurrence of these proteins in a complex does not occur 
merely by chance [50].

We counted the distribution of the negative logarithm of the P-value of the unmatched 
protein complexes predicted and plotted it into Fig.  4. The heatmap shows that most 
P-values of BOPS are less than 1e-5, which indicates that these unmatched complexes 
in krogan-extended also have high biological significance. In addition, the P-values 
of GANE and WCOACH are small compared to BOPS, which may be because these 

(17)P−value = 1−
k−1
∑

i=0

(

|F |
i

)(

|V | − |F |
|C| − i

)

(

V
C

)

Table 5  The Homo sapiens PPIN datasets used in the experiment

PPIN #Proteins #Interactions Edge weight average Edge weight variance PPIN density

HomoSTRING 8654 97674 0.84259 0.03680 0.00261

Table 6  Performance comparision in Homo sapiens PPIN

Method #Predicated F-score Precision Recall ACC​ Sn PPV F-score + ACC​

BOPS 2140 0.307 0.296 0.318 0.274 0.395 0.190 0.581
1st

PEWCC​ 1584 0.346
1st 0.321 0.374 0.211 0.567 0.079 0.557

ClusterONE 798 0.141 0.175 0.118 0.298
1st 0.268 0.331 0.439
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methods consider GO information in the process of the complex prediction. In a word, 
the predicted results of BOPS showed a higher biological function.

Conclusion
In this paper, a protein complex prediction algorithm based on graph segmentation, 
BOPS is proposed. Firstly, the BOPS algorithm calculates the balanced weight. Secondly, 
the BOPS algorithm divides the original PPIN into small networks. Thirdly, the BOPS 
algorithm enumerates the connected subset of each small network and determines 
whether it is a protein complex based on the cohesion of the subset.

The experimental performance proves that the BOPS algorithm can obtain the best 
results when identifying small protein complexes. And the performance of BOPS is bet-
ter than most algorithms for the whole protein complexes. In addition, we constructed 
a weighted Homo sapiens PPIN based on STRINGdb and BioGRID, and provided more 
data for related research.

At the same time, we convert a generative problem into a decision problem by splitting 
PPIN into small PPINs and enumerating connected subsets. We have succeeded in seg-
menting PPIN, retaining most of the protein complexes. We believe that graph segmen-
tation can be combined with many other algorithms to make better results in the future. 
And the way to solve problems by converting a generative problem into a decision prob-
lem is firstly introduced into protein complex prediction. We believe that this method 
will have greater application prospects in the future.

In the future, we will attempt to improve the performance of BOPS, develop a better 
graph segmentation algorithm, apply the convert way to more problems, and focus on 
combining the identified proteins’ structural information with BOPS to assess the struc-
tural compatibility of predicted protein complexes.

Fig. 4  The heatmap of unmatched complexes’ P-values
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