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Copy number variants (CNVs), which are a class of structural variant, can be
important in relating genomic variation to phenotype. The primary aims of this
study were to discover the common CNV regions (CNVRs) in the dual-purpose
XinJiang-Brown cattle population and to detect differences between CNVs inferred
using the ARS-UCD 1.2 (ARS) or the UMD 3.1 (UMD) genome assemblies based on
the 150K SNP (Single Nucleotide Polymorphisms) Chip. PennCNV and CNVPartition
methods were applied to calculate the deviation of the standardized signal intensity
of SNPs markers to detect CNV status. Following the discovery of CNVs, we used
the R package HandyCNV to generate and visualize CNVRs, compare CNVs and
CNVRs between genome assemblies, and identify consensus genes using
annotation resources. We identified 38 consensus CNVRs using the ARS
assembly with 1.95% whole genome coverage, and 33 consensus CNVRs using
the UMD assembly with 1.46% whole genome coverage using PennCNV and
CNVPartition. We identified 37 genes that intersected 13 common CNVs (>5%
frequency), these included functionally interesting genes such as GBP4 for which an
increased copy number has been negatively associated with cattle stature, and the
BoLA gene family which has been linked to the immune response and adaption of
cattle. The ARS map file of the GGP Bovine 150K Bead Chip maps the genomic
position of more SNPs with increased accuracy compared to the UMD map file.
Comparison of the CNVRs identified between the two reference assemblies
suggests the newly released ARS reference assembly is better for CNV
detection. In spite of this, different CNV detection methods can complement
each other to generate a larger number of CNVRs than using a single approach
and can highlight more genes of interest.
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INTRODUCTION

Copy number variants are structural variants caused by
insertions, deletions, duplications, and translocations of DNA
fragments (Stankiewicz and Lupski, 2010). The length of CNVs
range from 50 bp to several Mbp and can be located on all
chromosomes (Pirooznia et al., 2015; Lye and Purugganan,
2019). In cattle, the reported genome coverage of CNVs
ranges from 1 to more than 10% depending on the detection
strategies and the breed of cattle investigated in the study (Prinsen
et al., 2016; Letaief et al., 2017; Kommadath et al., 2019). CNVs
can intersect genes which can alter their structure and expression,
and many investigations on human disease suggest that copy
number variation could be the source of pathogenesis
(Stankiewicz and Lupski, 2010). Some studies also suggest that
CNVs could explain part of the missing heritability problem in
genome-wide association studies on some complex traits (Hay
et al., 2018; Génin, 2020). CNVs can influence the linkage
disequilibrium between SNPs in the same region, and
therefore identifying CNVs could help to improve the
accuracy of SNP imputation (Couldrey et al., 2017). CNVs can
be inherited and can contribute to genomic diversity that could be
informative in evaluating the evolution of different animal breeds
(Bickhart et al., 2016). The inclusion of CNV information in
genomic evaluation models might improve the accuracy of
animal evaluation (Hay et al., 2018). Therefore, studying
CNVs in a breed could help us to better understand this
population.

Xinjiang-Brown (XJ-Brown) cattle are a dairy and beef
dual-purpose breed and are a valuable germplasm resource in
the field of cattle breeding. The breed is often used for
crossbreeding with local cattle breeds and has a large
number of hybrid progeny in China (Zhou et al., 2019).
While many CNVs have been reported in studies of several
different dairy and beef populations (Prinsen et al., 2016;
Couldrey et al., 2017; Letaief et al., 2017), there has been
limited research on CNVs in XJ-Brown cattle. Exploring the
copy number variation in this breed may help reveal the
impacts of natural and artificial selection of its long breeding
history and could also provide useful reference information
on CNVs for closely related cattle breeds. Most CNV studies
in cattle populations have used the UMD 3.1 (UMD)
reference genome but recently the newer ARS-UCD 1.2
(ARS) version has been released. The ARS reference
genome reported higher continuity, accuracy, and
completeness compared to the previous assembly (Rosen
et al., 2020). However, given some researchers will
continue to use the UMD reference genome in their future
work, it is still necessary to provide results on both assembly
versions. To better understand the genomic variation of XJ-
Brown cattle and provide comprehensive CNV results, we
conducted CNV detection analyses on both the ARS and the
UMD assemblies using PennCNV (Wang et al., 2007a) and
CNVPartition (Illumina. GenomeStudio, 2021) methods with
150k SNP genotyping data. We contrasted CNVs, CNV
regions (CNVRs), and genes located in CNVRs across

genome assemblies and CNV detection methods, and we
provide detail on the consensus genes we detected.

METHODS

Animals, Genotyping and Quality Control of
the Custom Genotyping Cluster File
Xinjiang-Brown (XJ-Brown) cattle is a dual-purpose composite
breed with ancestral introductions from Kazakh cattle, Brown
Swiss cattle, Alatau cattle and Kostroma cattle (Fu et al., 2017).
This study included 403 female XJ-Brown cattle as described in a
previous GWAS study (Zhou et al., 2019). These animals were
sampled from breeding herds which have contributed thousands
of bulls to the XJ-Brown population for decades. The study
animals were born between 2003 and 2016 with a mean birth
year of 2011.

All 403 animals in the study were genotyped on the GGP
Bovine 150K SNP BeadChip using the iScan System. SNP
genotyping was performed using GenomeStudio (Illumina.
GenomeStudio, 2021) based on SNP signal intensity data, the
SNPmanifest file, and the official standard cluster file. The default
reference genome for the GGP Bovine 150k Beadchip provided in
the manifest file is UMD. The chip supplier, NeoGen, provided a
bpm format map file with ARS coordinates allowing us to make a
complete comparison of the results derived from the UMD and
ARS genome assemblies.

CNV detection can be impacted by genotyping batch effects.
To reduce the batch effect in CNV detection, two custom cluster
files of the UMD and ARS versions were trained on the genotypes
of XJ-Brown cattle as instructed in an Illumina technical note
(Custom, 2017). Initially, three quality control steps were taken:
first, we removed individuals with a call rate less than 0.98;
second, we removed the SNPs with a call rate less than 0.95;
third, we eliminated animals with abnormally large CNV regions
on chromosomes. These filters resulted in 386 individuals, and
136,771 SNPs remaining. The cluster file was then trained on
autosomes and sex chromosomes separately.

We used the newly trained custom cluster files to call
genotypes, and this was followed by another quality control
step. We removed samples with a call rate less than 0.95
leaving 397 individuals, and removed SNPs with call rate less
than 0.90. This resulted in 137,945 SNPs remaining in the UMD
version, and 138,331 SNPs remained in the ARS version. The
map, genotype, Log R Ratio and B Allele Frequency information
for these remaining individuals and SNP were exported into the
Final Report for further analysis.

Detection of CNVs
PennCNV (Wang et al., 2007a) and CNVPartition (Illumina.
GenomeStudio, 2021) methods were used to discover the CNVs
in both the UMD and the ARS datasets. The two methods aim to
detect CNVs based on the deviation status of the Log R Ratio
(LRR) and the B Allele Frequency (BAF). Quality control was
performed in GenomeStudio (Illumina. GenomeStudio, 2021) to
ensure the two methods used the same dataset.
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CNVPartition (Illumina. GenomeStudio, 2021) is a plug-in for
GenomeStudio, and requires a trained custom cluster file, as well
as signal intensity data and the SNPmanifest file (containing map
information) to infer CNV. We selected the GC wave adjust
function, set the sex chromosome option to false, the minimum
probe count to 3 and the confidence threshold to the default value
of 35.

PennCNV (Wang et al., 2007a) software requires four input files
including a signal intensity file (containing three columns: SNPName,
LRR and BAF), a SNP Map file (containing three columns: SNP
Name, Chromosome, Position), a PFB file and a GC-Content file. The
PFB file was produced with the compile_pfb.pl function in PennCNV,
the GC-Content file was calculated as the percentage of GC content
both 1MB upstream and downstream of the SNP locus in the bovine
reference genome (UCSC Genome Browser Downloads, 2013).
Additional PennCNV arguments included the “-lastchr” 29 and
“-confidence” flags. After the results of the first run, the -fraction
0.2 and -bp flags were used to combine the adjacent CNVs that had a
gap size less than 20% of the total length of the CNVs, then the
samples with a standard deviation of LRR larger than 0.30, a BAF drift
greater than 0.005 and a wave factor larger than 0.1 or smaller than
-0.1 were removed via filter_cnv.pl functions.

Summary of CNVs and Generation of CNV
Regions
TheR packageHandyCNV (Zhou et al., 2021)was used to summarize
CNVs and generate CNV regions (CNVRs). The cnv_clean() function
was used to convert the CNV results into a standard format andmake
basic summaries. The argument “drop_length � 5” was used to
discard the CNVs larger than 5Mb. The cnv_summarise_plot()
function was used to make the CNV distribution, frequency and
length group plots. The call_cnvr() function was used to generate
CNVRs for all results, this method merges CNVs that overlap by at
least one bp into a CNVR and reports the frequency of each CNVR.
Then, the CNVR distribution map was created using the cnvr_plot()
function. A gain CNVR indicates the region only contains duplicated
CNVs which comprise more than two copies, a loss CNVR indicates
the region only contains deleted CNVs of zero copies or one copy, and
a mixed CNVR indicates that the region contains at least one
duplicated CNV and at least one deleted CNV.

Comparison of CNVs, CNVRs, and
Consensus CNVRs
Our analyses produced four final CNV results, we aimed to make
comparisons and find the consensus CNVRs among them. The
functions compare_cnv() and compare_cnvr() in HandyCNV (Zhou
et al., 2021) were used to make detailed reports. These reports include
the comparison of results on both the individual and the population
levels as well as comprehensive comparison plots. Consensus CNVRs
in this study were defined as CNVRs that passed the common
frequency threshold (Sample size ≥ 20) in the union sets of
CNVRs. The union sets of CNVRs were generated with the
call_cnvr() function by combining the CNVs identified using
PennCNV and CNVPartition together on the same reference
genome. Then, the consensus CNVRs were identified as

overlapping regions in the final CNVR distribution map by
assigning that consensus list to the overlap_cnvr argument in the
cnvr_plot() function.

Annotation of Genes and Consensus Genes
The get_refgene() function was used to annotate genes for CNVs
and CNVRs based on formatted reference gene lists of UMD and
ARS from the UCSC website (UCSC Genome Browser
Downloads, 2013) . The call_gene() function was used to
annotate genes for each version of CNV results. The gene
frequency was obtained during the annotation process by
counting the total number of CNVs that were annotated to
intersect the gene. The consensus genes were defined as genes
that had passed the common threshold (sample size ≥ 20 which
was calculated by the lowest sample size of 393 multiplied by
0.05). Then, the compare_gene() function was used to produce a
comparison plot for the consensus genes.

Visualization of Interesting CNVRs
CNV identification methods detect a deviation of BAF and LRR to
distinguish different types of copy number, visualization of CNV
via the BAF and LRR plots are a direct way to check and validate
the CNVs. The functions cnv_visual() and plot_cnvr_panorama()
were used to visualize CNVs and high frequency CNVRs. To
explore the results, we used these functions to customize the CNV
plot by chromosome, sample, region of interest and target gene.

Comparison with Known Cattle CNV
Databases and Results from the Literature
To compare these results to known cattle CNV databases, a total of
nine studies on CNVs of other cattle breeds were downloaded (all of
which are UMD reference genome results). Among them, eight CNV
results were downloaded fromDGVa database (Database of Genomic
Varia, 2019) and one CNVR result was extracted from the literature
(RaphaëllePrinsen, 2017). The DGVa database (Database of Genomic
Varia, 2019) contains CNV results from dozens of cattle breeds. Here,
the strategy fromButty et al. (2020) was adopted to process these data,
which combined all of the CNV results in DGVa database (Database
of Genomic Varia, 2019) to generate a large CNVR list and then
compared this list with our results. Xinjiang Brown cattle are closely
related to Brown Swiss cattle, therefore, the results of a Brown Swiss
cattle population (RaphaëllePrinsen, 2017) were selected for
comparison. In addition, the quality of the reference genome
assembly may lead to false positive results in the detection of
CNVs. Zhou et al. (2016a) reported nine false positive results of
CNVR caused by assembly error in UMD reference genome, and
these regions were investigated in this study.

RESULTS

Differences in Number of Single-Nucleotide
Polymorphism Between Assemblies
After quality control, 137,945 SNPs and 138,331 SNPs remained
in UMD and ARSmaps, respectively. In comparing the twomaps,
there were 122,963 SNPs (89.1%) located on the same
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chromosome, 264 SNPs (0.2%) had an unknown position in both
UMD and ARS maps, 13,769 SNPs (10.0%) had an unknown
position in the UMDmap, and 545 SNPs (0.4%) had an unknown
position in the ARSmap (Table 1). The number of SNPs available
for CNV detection on each autosome in the ARS version was
larger than that in UMD version, the SNP density ranged from
50–63 SNPs/Mb to 45–57 SNPs/Mb, respectively (Figure 1A).
Another difference of the SNPs between the two assemblies were
their physical locations. For example, while most SNPs were
consistent in both assemblies, some SNPs were on different
chromosomes, and some were on the same chromosome but
in a completely different order (Figure 1B).

Copy Number Variant Statistics From
PennCNV and CNVPartition
Four sets of CNV results were produced in further analysis. After
quality control, 3,686 CNVs were identified from PennCNV with the
ARSmap (Penn-ARS), 1,293CNVs fromCNVPartitionwith theARS
map (Part-ARS), 3,200 CNVs from PennCNV with the UMD map
(Penn-UMD), and 1,239 CNVs from CNVPartition with the UMD
map (Part-UMD). The results from using an ARSmap detectedmore
CNVs than using the UMD map. The average number of CNVs per
individual were 9.50, 3.42, 8.27, and 3.39 (Table 2), and the largest
number of CNVs per individual were 86, 22, 80, and 15 in Penn-ARS
(Figure 2A), Part-ARS (Figure 2B), Penn-UMD (Figure 3A), and
Part-UMD (Figure 3B) results, respectively.

All methods detected more deletions than duplications, and all
methods identifiedmore three-copy CNVs than four-copy CNVs.
PennCNV detected more one-copy than zero-copy deletions
whereas the CNVPartition detected more zero-copy than one-
copy deletions (Table 2). PennCNV detected considerably more
CNVs than CNVPartition, but the average length of each CNV
type identified by PennCNV was much smaller than those
identified by CNVPartition. We observed the number of one-
and three- copy CNVs are much higher than zero- and four-copy
CNVs in the PennCNV results and the number of zero- and
three- copy CNVs are higher than one- and four- copy CNVs in
the CNVPartition results (Figure 2 and Figure 3).

COPY NUMBER VARIANT REGION
RESULTS

There were 931, 279, 821 and 246 CNVRs with total lengths of
150.1 Mb (about 5.5% of the genome coverage), 211.3 Mb (about

7.8% of the genome coverage), 135.0 Mb (about 5.0% of the
genome coverage), and 199.2 Mb (about 7.3% of the genome
coverage) from the Penn-ARS, Part-ARS, Penn-UMD, and Part-
UMD results, respectively (Table 3). There were fewer mixed
CNVRs compared with duplication and deletion CNVRs across
all CNVR results, but on average, mixed CNVRs had longer
length. The ranges of CNVR sizes are from 3.4 kb to 3.4 Mb,
4.0 kb to 4.8 Mb, 3.4 kb to 4.0 Mb, and 4.5 kb to 4.8 Mb for the
Penn-ARS, Part-ARS, Penn-UMD, and Part-UMD results,
respectively.

Some 954 and 841 CNVRs with a total length of 312.0 Mb
(about 11.7% genome coverage) and 291.2 Mb (about 10.9%
genome coverage) were in the combined ARS and UMD
CNVR lists. The genome coverage of CNVRs on BTA 13, 18
and 26 was less than 5%, the coverage of CNVRs on BTA 27 and
28 was greater than 20% in this sample. There were 38 and 33
CNVRs that passed the consensus frequency threshold (sample
size > 20) in the ARS and UMD lists, the total length was
52.84 Mb (about 1.95% genome coverage) and 38.99 Mb
(about 1.46% genome coverage), respectively (Table 3). The
CNVR distribution map of the complete and the consensus
regions in the ARS and UMD maps are presented in Figure 4,
respectively.

Comparison of Copy Number Variants and
Copy Number Variant Regions in Different
Results
The comparisons were made on both individual and population
levels between each pair of CNV results. All results showed that
the overlap rate at the population level was higher than that at the
individual level.

In the ARS reference genome results, the percentage of
overlapped CNVs was 17.3% of Penn-ARS compared to 47.3%
of Part-ARS on the individual level (Figures 5A and D), and
54.4% compared to 81.1% on the population level (Figures 5B
and E), respectively. In addition, there were 253 CNVRs in Penn-
ARS that intersected with 182 CNVRs in Part-ARS, and the total
length of overlapped region was 49.29 Mbp corresponding to
32.85% and 23.33% length of the Penn-ARS and Part-ARS results,
respectively. We observed similar results when comparing
overlapping CNVRs between the Penn-UMD and Part-UMD
results (Figure 6). After examining the intersection between the
two consensus CNVRs lists, 27 CNVRs were identified that
overlapped in 38 and 33 consensus CNVRs in ARS and UMD
versions, which comprised about 71.1% and 81.8% of the two

TABLE 1 | Summary of the difference of single-nucleotide polymorphism (SNP) number between UMD 3.1 and ARS 1.2 assemblies.

Type Number of SNPs % In UMD map % In ARS map

Same chromosome 122,963 89.1 88.9
Both unknown chromosomes 264 0.2 0.2
Different chromosomes 297 0.2 0.2
Unknown chromosome in UMD map 13,769 10.0 10.0
Unknown chromosome in ARS map 545 0.4 0.4
Not found in UMD map 493 0.4
Not found in ARS map 107 0.1
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FIGURE 1 | Comparison of single-nucleotide polymorphism (SNP) map between the UMD 3.1 and ARS-UCD 1.2 version. (A) SNP number and density difference
between the twomaps on each chromosome. Blue and red lines indicate the SNP density of the ARS and UMDmaps, respectively. Blue bars and red dots represent the
quantity of SNP in Athe RS and UMD maps, respectively. (B) SNP position difference between the two maps on each chromosome. Blue points indicate the SNP
matching on same chromosomes in the two maps, while the red points do the opposite. The points not on the diagonal line indicate that the order of SNPs in the
two maps differ greatly on the chromosome.
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TABLE 2 | Statistical description of copy number variant (CNV).

Version Number
of individuals

CNVs
per individual

Type CNV value Number
of CNVs

Average
length

Min length Max length

Penn-ARS 388 9.50 Deletion 0 147 65,640 9,932 343,728
1 1,891 105,691 1,181 968,527

Duplication 3 1,604 159,282 5,381 3,181,506
4 44 285,225 17,406 1,846,515

In total 3,686 615,839 33,900 6,340,276
Part-ARS 378 3.42 Deletion 0 688 137,420 4,070 986,737

1 84 327,775 14,229 3,184,065
Duplication 3 482 786,912 20,505 4,883,451

4 39 510,859 32,823 4,994,072
In total 1,293

Penn-
UMD

387 8.27 Deletion 0 75 57,264 9,932 343,900
1 1,642 118,284 107 917,761

Duplication 3 1,446 165,302 107 4,018,040
4 37 267,263 17,392 1,385,828

In total 3,200
Part-UMD 365 3.39 Deletion 0 754 148,699 4,510 1,204,452

1 59 375,120 14,229 3,440,849
Duplication 3 409 840,778 4,908 4,867,751

4 17 634,036 58,524 2,336,934
In total 1,239

Note. Unit of CNV, length is bp.

FIGURE 2 | (CNVs) summary plot. (A) The results of the Penn-ARS version. (B) The results of the Part-ARS version. In each panel, a shows the total number of
CNVs in each individual that were detected; b shows the frequency of copies of CNVs in different length groups; c shows CNVs states and distribution on chromosomes.
The lines indicate the quantity of CNVs, bar plot presents the length distribution.
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consensus CNVRs lists, respectively. There were 44 non-
overlapped consensus CNVRs in all results.

Only the results on UMD could be compared with the known
datasets, therefore, all positions mentioned in this section are UMD
coordinates. A total of 9,934 CNVRs were generated from CNV lists
in the DGVa database (Database of Genomic Varia, 2019), with a
total length of 745.42Mbp, involving Holstein, Montbeliard,
Normande, Hereford, Charolais, Simmental and other cattle
breeds. We identified a total of 565 CNVRs (about 67.2%) in our
study were overlapped with 1,369 CNVRs in the DGVa database,
and the length of the overlapped regions was 134.45Mbp,
accounting for 46.2% of the total length of XJ-Brown cattle’s
CNVRs. We found no intersection between 276 of our CNVR
and the DGVa datasets (Database of Genomic Varia, 2019).

We compared our results with those identified in Brown Swiss
cattle and found 141 CNVRs in XJ-Brown cattle overlapped with
215 CNVRs in Brown Swiss cattle with a total length of 37.5 Mbp,
accounting for 12.9% of the CNVR length in this experiment and
65.6% of Brown Swiss cattle’s CNVR length. Among the 276
CNVRs that had no intersection with DGVa datasets (Database
of Genomic Varia, 2019). only nine overlapped with the Brown
Swiss cattle’s CNVRs, and the remainder were unique to the XJ-

Brown population. In addition, there were three CNVRs
(CNVR_70, CNVR_601 and CNVR_609) in our results which
overlapped with the false positive regions that were reported by
Zhou et al. (2016a), however they were all low-frequency CNVRs.

CNVRs with relatively higher frequency are presented in Table 4,
which suggests these higher frequency regions are more likely to be
detected by the twomethods and aremore likely to overlap with other
breeds. There is only one CNVR in the higher frequency list in XJ-
Brown cattle that has no intersection to both the DGVa (Database of
Genomic Varia, 2019) and the Brown Swiss cattle (RaphaëllePrinsen,
2017) datasets. This CNVR was CNVR_146 and was located on
BTA4:72297257-72561411 in the Combined-UMD result.

An Example Showing the Difference of
Single-Nucleotide Polymorphisms in a The
Same Consensus Copy Number Variant
Region
Some CNVRs could be cross-validated between the four detection
methods, however, we observed that the samples in which CNVs
are detected may differ between CNV detection methods and
between genome assemblies. The differences between reference

FIGURE 3 | CNVs summary plot. (A) The results of the Penn-UMD version. (B) The results of the Part-UMD version. In each panel, a shows the total number of
CNVs in each individual that were detected; b shows the frequency of copies of CNVs in different length groups; c shows CNVs states and distribution on chromosomes.
The lines indicate the quantity of CNVs, bar plot presents the length distribution.
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genomes may be due to the different number and order of SNPs that
were used to detect the CNVRs.We present a CNVRonBTA15 as an
example to illustrate these differences (Supplementary Table S1;
Figure 7). This CNVR was identified by all methods and a total of
22 unique SNPs in the two maps were found in the four results.
However, the number of SNP, start SNP and end SNP were slightly
different in each result. In this example, Penn-ARS (CNVR_622, BTA
15:78.99–79.58Mb) consisted of 19 SNPs, Penn-UMD (CNVR_561,
BTA 15:80.28–80.84Mb) consisted of 15 SNPs, Part-ARS
(CNVR_180, BTA 15:79.05–79.61Mb) consisted of 11 SNPs, and
Part-UMD(CNVR_156, BTA 15:80.33–80.94Mb) consisted of 10
SNPs (Supplementary Table S1). The differences in CNVR
breakpoints were not only due to the different reference genomes,
the order and location of SNPs on the assemblies, but also the
detection methods that were used. For instance, on the ARS
assembly, Penn-ARS has five SNPs more in the start region than
Part-ARS, but one SNP less in the end region, this variation
demonstrates the differences in the two detection methods applied.
As can be seen from the visualization results of these CNVRs
(Figure 7), the additional SNPs in the two results were only
detected in a few samples; The results on the UMD assembly had
similar trends to the ARS results.

The SNP differences between different reference genomes could
also be observed through this example. In this CNVRonBTA15, there
was one SNPwith unknown position in the ARSmap but six SNPs in

the UMDmap. In addition, two SNPs had a different order in the two
genome assemblies.Whenwe ignored themissing SNPs in this region,
the BovineHD1500023413 was located on the fifth loci in ARS map,
but on the ninth loci in the UMD map; Another SNP,
BovineHD1500023509 was located on the 11th loci in the ARS
map, but on the 80th position in the UMD map (Supplementary
Table S1).

In view of the two observations above, the samples detected in
each result were also different. In example, a total of 86 samples
were detected by Penn-ARS, 60 samples were detected by Part-
ARS, 56 samples were detected by Penn-UMD and only 32 samples
were detected by Part-UMD. When Penn-ARS and Part-ARS
results were combined, a total of 106 non-duplicated samples
were found, and when Penn-UMD and Part-UMD results were
combined, a total of 63 independent samples were found.When all
the results are combined, a total of 120 unique samples were
obtained (Supplementary Table S1). It shows that different
methods can be verified and complementary to each other, and
the results combined with multiple strategies can provide more
selection samples for the subsequent experimental design.

Consensus Genes
The ARS union set (a combined set of Penn-ARS and Part-ARS
results) had 1428 genes annotated in 463 CNVRs, and among these,
277 genes were annotated in 24 consensus CNVRs. After filtering

TABLE 3 | Statistical description of copy number variant region (CNVR).

Version Type Number Average length Min length Max length Total length Genome coverage (%)

Penn-ARS Gain 307 106,284 7,206 2,426,132 32,629,256 1.2
Loss 463 121,986 3,431 968,527 56,479,353 2.1
Mixed 161 378,640 15,108 3,420,406 60,960,964 2.2
In total 931 150,069,573 5.5

Part-ARS Gain 96 1,310,063 20,505 5,080,301 125,766,089 4.6
Loss 147 99,070 4,070 968,527 14,563,277 0.5
Mixed 36 1,971,563 44,203 4,835,353 70,976,269 2.6
In total 279 211,305,635 7.8

Combined ARS Gain 287 161,168 7,206 3,138,636 46,255,265 1.7
Loss 480 113,190 4,070 968,527 54,331,035 2.0
Mixed 187 1,131,005 20,469 5,080,301 211,497,977 7.9
In total 954 312,084,277 11.7

Consensus CNVRs ARS Gain 4 148,824 229,172 46,380 595,294 0.02
Loss 4 80,857 159,698 26,551 323,428 0.01
Mixed 30 1,730,655 4,835,353 100,561 51,919,642 1.91
In total 38 52,838,364 1.95

Penn-UMD Gain 279 103,115 4,908 762,447 28,769,176 1.1
Loss 404 123,590 3,435 831,734 49,930,465 1.8
Mixed 138 407,952 107 4,018,040 56,297,398 2.1
In Total 821 134,997,039 5.0

Part-UMD Gain 83 1,294,741 22,216 4,867,751 107,463,480 4.0
Loss 128 138,870 4,510 1,300,277 17,775,377 0.7
Mixed 35 2,112,119 76,295 4,751,595 73,924,154 2.7
In Total 246 199,163,011 7.3

Combined UMD Gain 247 216,945 10,881 4,228,858 53,585,459 2.0
Loss 424 125,080 4,510 1,340,962 53,033,728 2.0
Mixed 170 1,085,658 107 486,7751 184,561,914 6.9
In total 841 291,181,101 10.9

Consensus CNVRs UMD Gain 3 165,020 201,664 146,498 495,059 0.02
Loss 5 67,551 97,170 26,545 337,754 0.01
Mixed 25 1,526,193 4,451,428 63,835 38,154,832 1.43
In total 33 38,987,645 1.46
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FIGURE 4 | (CNVRs) distributionmap. (A) The CNVRmapwith the ARS version. (B) The CNVRmapwith the UMD version. The underlines with purple color indicate
the consensus CNVRs between the two detection methods. The percentage number represent the coverage of CNVRs on each chromosome.
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these genes by frequency (>5%), a total of 26 genes (about 9.4%)
remained in the ARS union set (Supplementary Table 2). A total of
1,370 genes were annotated in 417 CNVRs in the UMD union-set. Of
these genes, 272 were annotated in 18 consensus CNVRs
(Supplementary Table 3). After filtering the genes by their
frequency, only 31 genes (about 11.4%) remained in the UMD
union set. Combining results between assemblies resulted in 37
unique genes, of which 20 genes had common frequency in both
the ARS and UMD results (Figure 8), six genes only had common
frequency in ARS, and the remaining 11 genes only had common
frequency in UMD results. All 37 consensus genes were in 11 and 12
CNVRs in the combined ARS and UMD results, respectively. The
most frequent CNVR was CNVR_845 (BTA 23:
25,560,755–25,730,370) and was identified in the ARS analyses, it
intersected the BLA-DQB, LOC100848815 and BOLA-DRB3 genes.

DISCUSSION

The Difference of SNP between the UMD
and ARS Maps of Bovine GGP 150K
Beadchip and Its Effect on CNV Detection
SNP intensity based CNV detection methods are heavily
influenced by SNP density and the order of the SNPs on each

chromosome. In this study, two main differences were observed
between SNPs on the UMD and ARS maps that affected CNV
detection on the Bovine GGP 150k Beadchip. The first difference
is the total number of SNPsmapped to chromosomes. Approximately
10% of the SNPs in the UMD SNP manifest file had no physical
position on the UMDmap and were discarded before CNVdetection.
Many of these missing SNPs did have a physical position on the ARS
SNP manifest file resulting in 13,769 additional SNPs available for
CNV detection. This difference in SNP density between reference
genomes likely influenced the differences we observed in CNV
detection on the same CNV regions. This demonstrates the
importance of checking how many SNPs are available before CNV
detection, if there are many missing SNPs, then it may be better to try
to use a well-assembled map file or an up-to-date reference assembly.

The second difference between genome assemblies is how SNP
positions differed between ARS andUMDmaps of the SNP chip. The
SNP order on chromosomes differed between the UMD and ARS
maps, as observed in Figure 1, this is likely due to the relative assembly
quality of the reference genomes. CNV detection methods required at
least three continuous SNPs with the same status to detect a CNV,
therefore, the detection of the CNVs may be interrupted by the order
of SNPs on a chromosome (Wang et al., 2007a). Due to the shortage of
SNP information in the default UMDmanifestfile of this BovineGGP
150KBeadchip, using theARS assemblywhendetectingCNVs for this
SNP chip is suggested.

FIGURE 5 | Comparison of CNVs and CNVRs between the Penn-ARS and Part-ARS results. (A) and (D) are the CNVs comparison results on individual levels. (B)
and (E) are the CNVs comparison results on population level. The percentage in red indicates the proportion of the number of CNVs with different states to the total
number of CNVs. The percentage in blue indicates the proportion of the number of overlapping CNVs to each CNV state group. (C) and (F) are the CNVRs comparison.
The percentage in orange represents the proportions of overlapping length of CNVRs to the total length of each type group.
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In this study, the consensus CNVRs from the two methods for
ARS and UMD were reported. While, the ARS reference genome
has become the main reference genome in recent studies (Butty
et al., 2020; Hu et al., 2020), the official map file distributed for
this GGP 150K SNP chip is still the UMD version. As such,
reporting CNVRs for XJ-Brown cattle in both versions can
provide more complete reference for others who are using the
same SNP panel.

Comparison of CNV and CNVR Results of
Different Methods
The two methods PennCNV (Wang et al., 2007a) and
CNVPartition (Illumina. GenomeStudio, 2021) were used to

detect CNVs in this study. We chose these methods because
they are commonly used in CNV research, and many studies have
verified that the CNVs detected by them are reliable through
qPCR validation (Zhang et al., 2014;Wu et al., 2015; Prinsen et al.,
2016; Ma et al., 2017; Upadhyay et al., 2017). While CNVRs with
the higher frequency tended to have higher validation success rate
(Upadhyay et al., 2017) in both methods, the algorithms of the
two methods have their own advantages and disadvantages and
thus their results can complement each other.

CNVs can be compared at the individual level or the
population level. The comparison between individuals can
detect the similarity between different methods, while the
comparison at the population level can verify the
repeatability of CNVs (Zhou et al., 2021). CNVR is the

FIGURE 6 | Comparison of CNVs and CNVRs between the Penn-ARS and Part-ARS results. (A) and (D) are the CNVs comparison results on individual levels. (B) and
(E) are the CNVs comparison results on population level. The percentage in red indicates the proportion of the number of CNVs with different states to the total number of
CNVs. The percentage in blue indicates the proportion of the number of overlapping CNVs to eachCNV state group. (C) and (F) are the CNVRs comparison. The percentage
in orange represents the proportions of overlapping length of CNVRs to the total length of each type group. Comparison of CNVRs to known CNV datasets.

TABLE 4 | Cross-validation results of CNVR with a sample size greater than 20 in different methods.

Version Sample ≥ 20 N of overlap N of non-overlap Overlap proportion (%)

Penn-ARS vs. Part-ARS 31 28 3 90.3
Part-ARS vs. Penn-ARS 14 14 0 100.0
Penn-UMD vs. Part-UMD 28 27 1 96.4
Part-UMD vs. Penn-UMD 14 13 1 92.9
Combined-UMD vs. Database of Genomic Varia (DGVa) 33 32 1 97.0
Combined-UMD vs. (Brown Swiss) BS 33 29 4 87.9

Note. The numbers in the table correspond to the result of the name with bold type in the version column.
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union set of CNVs in all samples, which represents of the entire
population. Therefore, comparing CNVR usually refers to
differences on the population-level. When comparing CNVs

or CNVRs between detection methods, the proportion of
overlapped CNVs and CNVRs can be used to compare
results more clearly. On the same reference genome, the

FIGURE 8 | Consensus genes among different results. There are 20 genes in red color that are shown at high frequency in both the ARS and UMD results.

FIGURE 7 | Example of the consensus CNVR that detected by all inference strategies. (A) is the visualization result of CNVR of Penn-ARS. (B) is the visualization
result of CNVR of Part-ARS. (C) is the visualization result of CNVR of Penn-UMD. (D) is the visualization result of CNVR of Part-UMD.
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two methods showed lower consistency at the individual level,
such that only 15%–17% of CNVs detected using PennCNV
overlapped with 37%–47% of CNVs detected using
CNVPartition. The proportion of overlapped CNV numbers
at population level was much higher, such that 53%–54% of
PennCNV results overlapped with 76%–81% of CNVPartition
results. The proportion of CNVR results overlapped by the two
methods was also relatively low at 23%–33%. Overall, the
consistency of the two methods is low at the individual
level, but the repeatability is high at the population level. In
particular, the CNVR regions with high frequency had a large
proportion of concordance between the two methods.

Consensus CNVRs in Xinjiang Brown Cattle
and Their Comparison with Known
Databases
The consensus CNVRs were defined as the CNVRs in the same
reference genome that passed the common frequency
threshold (Frequency ≥ 0.05) in the union sets of CNVs
from the two detection methods. There are two advantages
to get consensus CNVR in this way. First, combining multiple
CNV results in the same reference genome together to then
generate CNVRs will generate the complementary CNVRs list
directly. Second, the common thresholds will exclude some
low frequency CNVRs and keep the most reliable results.

The CNV results collected from the DGVa database are on the
UMD reference genome. Therefore, this study only used the
UMDunion set to compare with it. The comparison results of this
study showed that CNVRs with a detection rate greater than 5%
of the sample size were also observed in either the two detection
methods or the previously reported studies. After comparing the
results of this study with the DGVa or Brown Swiss datasets, we
identified a large number of population-specific CNVR, but we
could not confirm that these regions were XJ-Brown specific
CNVs. This may be because the reference data cited is limited, or
because the reliability of low frequency CNVRs is unknown. Even
with a high frequency CNVR, there is no way to confirm whether
a region is breed-specific, because accurate genotyping of CNVs
cannot be obtained from SNP chip data. However, the SNP chip
has low cost advantages so large sample sizes can be obtained, and
it can still provide some valuable information to infer copy
number variation. According to the results of this study, the
higher the frequency of CNVR, the higher the accuracy of the
results. Therefore, it is suggested that the regions with higher
population frequency should be preferentially selected for
subsequent analysis when using the PennCNV or
CNVPartition methods to detect CNV.

Consensus Genes between ARS and UMD
Versions and Functional Annotation
CNVs can delete or duplicate genes and those changes may
impact gene expression and protein function (Fukunaga et al.,
2020), therefore identifying these genes is an important part of
CNV studies. Here the consensus gene was defined as an
annotated gene that intersected at least one CNVR in our

results and passes the frequency threshold (occurring in
>5% of samples). This approach has two advantages. First, it
can filter out the lower frequency genes that may cause false
positive results. Because the breakpoints of CNVs of samples
are typically not identical in a CNVR, some genes may have low
frequency even when located in a high frequency CNVR. As
mentioned in the annotation of consensus CNVR results, only
9.4% and 11.4% genes with high frequency CNV status were in
the consensus CNVRs. Second, our approach can help to
compare the CNVR results between different reference
genomes. For example, in this study, the consensus CNVRs
were the common CNVRs in two detection methods but they
are different in ARS and UMD. This is because some CNVRs
failed to convert their coordinates between ARS and UMD
results, so that these CNVRs cannot be directly compared
between references. We assumed most genes have a unique
name and are consistent in different reference genome
databases, comparing the frequency of genes by gene names
provided an opportunity to make comparison between
different CNVR results from the different reference genomes
(ARS and UMD). We were more interested in the genes that
have structural variants intersecting at higher frequencies.

We identified 37 consensus genes which were predicted to be
impacted by a CNVR in at least one of our analyses. Several
genes have been reported to intersect CNVs in previous cattle
studies, such as the GBP4 (Guanylate binding protein 4) gene.
GBP4 is an immune related gene, and structural variants
intersecting GBP4 have been reported at common
frequencies in multiple cattle populations (Sciences, 2017;
Cao et al., 2018; Zhou et al., 2016b). An increased copy
number of GBP4 gene was associated with decreased mRNA
expression levels of GBP4 and GBP2 genes and associated with
significant negative impacts to adult cattle stature (Cao et al.,
2018). BLA-DQB, BOLA-DRB3 and LOC100848815
(Synonyms: BOLA-DQA1) genes located at BTA 23:
25,560,755–25,730,370 bp (ARS) are members of bovine
leukocyte antigen (BoLA) gene families and have been
associated with immune response and adaption in cattle
studies (Rastislav and Mangesh, 2012; Mei et al., 2020).
Several studies have investigated the frequency of CNVs of
BoLA genes and these have been linked to immune-related
phenotypes (Wang et al., 2007b; Fukunaga et al., 2020). The
MAPK8IP3, NME3, MRPS34, SPSB3, NUBP2 genes are in a
mixed type CNVR located on BTA 25: 208,098–1,769,456 bp
(ARS). They have been reported as being related to circulating
IGF-binding protein-3 (IGFBP-3) concentration in a genome-
wide meta-analysis in human studies (Teumer et al., 2016).
Structural variation of the LOC782061 (Synonyms: AKR1C4)
gene on BTA 13: 43,322,783–43,433,183 (ARS) which is one of
the aldo-keto reductase family members and has been shown to
relate to expression level during the Bovine estrous cycle (Forde
et al., 2011) and in key stages of cattle embryo development
(Forde et al., 2009). The consensus CNVR_75 (BTA 2:
27,318,294–27,979,992, ARS version) contains four high
frequency genes which are the NOSTRIN, CERS6, MIR2353
and STK39 genes. CERS6 is involved in lipid and sphingolipid
metabolism pathways, and is potentially involved in endocrine
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control of lactation in dairy cows (McFadden and Rico, 2019).
The identification of genes intersected by CNVs at high
frequencies in XJ-brown cattle present areas of further
research into the potentially functional impacts of the CNV.

CONCLUSION

In summary, two CNV detection methods were employed in
this study to infer CNVs on each of the ARS-UCD 1.2 and UMD
3.1 genome assemblies. The detailed comparisons of CNVs,
CNVRs and annotated genes presented are the most complete
CNV results reported in XJ-Brown cattle. A significant
proportion of SNP are missing their location in the default
UMD 3.1 map file of the GGP Bovine 150k Beadchip, which
suggests that improved detection of CNV can be obtained by
using the ARS-UCD 1.2 reference genome. A total of 44
common consensus CNVRs were identified with high
agreement between reference genomes, and 37 consensus
genes were annotated in all CNVRs list, and these results will
be helpful for the subsequent experimental design of functional
verification of genes impacted by CNVs.

DATA AVAILABILITY STATEMENT

The CNV lists and entire R script of post-analysis of CNVs in this
study can be found at GitHub repositories https://github.com/JH-
Zhou/R-Script-of-CNVs-in-XJBrown-Cattle

ETHICS STATEMENT

Ethical review and approval were not required for the animal
study. Written informed consent was obtained from the owners
for the participation of their animals in this study.

AUTHOR CONTRIBUTIONS

JZ, LL and YS conceived the research idea. JZ prepared the draft
of the study. JZ and LL performed the data analysis. ER first
reviewed the manuscript for grammar and improved the accuracy
of the descriptions. DG provided the instructions for the analysis.
XH provided part of the genotyping data. ER, DG, YS, LL, and XH
reviewed the final version of the manuscript.

FUNDING

JZ was funded by the China Scholarship Council. YS was
supported by the China Agricultural Research System of MOF
and MARA.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.747431/
full#supplementary-material

REFERENCES

Bickhart, D. M., Xu, L., Hutchison, J. L., Cole, J. B., Null, D. J., Schroeder, S. G., et al.
(2016). Diversity and Population-Genetic Properties of Copy Number
Variations and Multicopy Genes in Cattle. DNA Res. 23, 253–262.
doi:10.1093/dnares/dsw013

Butty, A. M., Chud, T. C. S., Miglior, F., Schenkel, F. S., Kommadath, A., Krivushin,
K., et al. (2020). High Confidence Copy Number Variants Identified in Holstein
Dairy Cattle fromWhole Genome Sequence and Genotype Array Data. Sci. Rep.
10, 8044. doi:10.1038/s41598-020-64680-3

Cao, X.-K., Huang, Y.-Z., Ma, Y.-L., Cheng, J., Qu, Z.-X., Ma, Y., et al. (2018).
Integrating CNVs into Meta-QTL Identified GBP4 as Positional Candidate for
Adult Cattle Stature. Funct. Integr. Genomics 18, 559–567. doi:10.1007/s10142-
018-0613-0

Couldrey, C., Keehan, M., Johnson, T., Tiplady, K., Winkelman, A., Littlejohn, M.
D., et al. (2017). Detection and Assessment of Copy Number Variation Using
PacBio Long-Read and Illumina Sequencing in New Zealand Dairy Cattle.
J. Dairy Sci. 100, 5472–5478. doi:10.3168/jds.2016-12199

Custom (2017). Cluster File Creation for Improved Copy Number Analysis.
Availableat: www.illumina.com/techniques/microarrays/array-data-.

Database of Genomic Variants Archive (2019). Database of Genomic Variants
Archive. Availableat: https://www.ebi.ac.uk/dgva/data-download.

Forde, N., Beltman, M. E., Duffy, G. B., Duffy, P., Mehta, J. P., O’Gaora, P., et al.
(2011). Changes in the Endometrial Transcriptome during the Bovine Estrous
Cycle: Effect of Low Circulating Progesterone and Consequences for Conceptus
Elongation. Biol. Reprod. 84, 266–278. doi:10.1095/biolreprod.110.085910

Forde, N., Carter, F., Fair, T., Crowe, M. A., Evans, A. C. O., Spencer, T. E., et al.
(2009). Progesterone-Regulated Changes in Endometrial Gene Expression
Contribute to Advanced Conceptus Development in Cattle1. Biol. Reprod.
81, 784–794. doi:10.1095/biolreprod.108.074336

Fu, X., Lu, L., Huang, X., Wang, Y., Tian, K., Xu, X., et al. (2017). Estimation of
Genetic Parameters for 305 Days Milk Yields and Calving Interval in Xinjiang
Brown Cattle. As 08, 46–55. doi:10.4236/as.2017.81004

Fukunaga, K., Yamashita, Y., and Yagisawa, T. (2020). Copy Number Variations in
BOLA-DQA2 , BOLA-DQB , and BOLA-DQA5 Show the Genomic Architecture
andHaplotype Frequency ofMajor Histocompatibility Complex Class II Genes in
Holstein Cows. HLA 96, 601–609. doi:10.1111/tan.14086

Génin, E. (2020). Missing Heritability of Complex Diseases: Case Solved? Hum.
Genet. 139, 103–113. doi:10.1007/s00439-019-02034-4

Hay, E. H. A., Utsunomiya, Y. T., Xu, L., Zhou, Y., Neves, H. H. R., Carvalheiro, R.,
et al. (2018). Genomic Predictions Combining SNP Markers and Copy Number
Variations in Nellore Cattle. BMC Genomics 19. doi:10.1186/s12864-018-4787-6

Hu, Y., Xia, H., Li, M., Xu, C., Ye, X., Su, R., et al. (2020). Comparative Analyses of
Copy Number Variations between Bos taurus and Bos indicus. BMC Genomics
21, 682. doi:10.1186/s12864-020-07097-6

Illumina. GenomeStudio.(2021). Illumina. GenomeStudio. Availableat: https://
www.illumina.com/techniques/microarrays/array-data-analysis-experimental-
design/genomestudio.html.

Kommadath, A., Grant, J. R., Krivushin, K., Butty, A. M., Baes, C. F., Carthy, T.
R., et al. (2019). A Large Interactive Visual Database of Copy Number
Variants Discovered in Taurine Cattle. Gigascience 8. doi:10.1093/
gigascience/giz073

Letaief, R., Rebours, E., Grohs, C., Meersseman, C., Fritz, S., Trouilh, L., et al.
(2017). Identification of Copy Number Variation in French Dairy and Beef
Breeds Using Next-Generation Sequencing. Genet. Sel. Evol. 49. doi:10.1186/
s12711-017-0352-z

Lye, Z. N., and Purugganan, M. D. (2019). Copy Number Variation in
Domestication. Trends Plant Sci. 24, 352–365. doi:10.1016/j.tplants.2019.01.003

Ma, Q., Liu, X., Pan, J., Ma, L., Ma, Y., He, X., et al. (2017). Genome-wide Detection
of Copy Number Variation in Chinese Indigenous Sheep Using an Ovine High-
Density 600 K SNP Array. Sci. Rep. 7, 912. doi:10.1038/s41598-017-00847-9

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 74743114

Zhou et al. CNV in XJ-Brown Cattle

https://github.com/JH-Zhou/R-Script-of-CNVs-in-XJBrown-Cattle
https://github.com/JH-Zhou/R-Script-of-CNVs-in-XJBrown-Cattle
https://www.frontiersin.org/articles/10.3389/fgene.2021.747431/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.747431/full#supplementary-material
https://doi.org/10.1093/dnares/dsw013
https://doi.org/10.1038/s41598-020-64680-3
https://doi.org/10.1007/s10142-018-0613-0
https://doi.org/10.1007/s10142-018-0613-0
https://doi.org/10.3168/jds.2016-12199
http://www.illumina.com/techniques/microarrays/array-data-
https://www.ebi.ac.uk/dgva/data-download
https://doi.org/10.1095/biolreprod.110.085910
https://doi.org/10.1095/biolreprod.108.074336
https://doi.org/10.4236/as.2017.81004
https://doi.org/10.1111/tan.14086
https://doi.org/10.1007/s00439-019-02034-4
https://doi.org/10.1186/s12864-018-4787-6
https://doi.org/10.1186/s12864-020-07097-6
https://www.illumina.com/techniques/microarrays/array-data-analysis-experimental-design/genomestudio.html
https://www.illumina.com/techniques/microarrays/array-data-analysis-experimental-design/genomestudio.html
https://www.illumina.com/techniques/microarrays/array-data-analysis-experimental-design/genomestudio.html
https://doi.org/10.1093/gigascience/giz073
https://doi.org/10.1093/gigascience/giz073
https://doi.org/10.1186/s12711-017-0352-z
https://doi.org/10.1186/s12711-017-0352-z
https://doi.org/10.1016/j.tplants.2019.01.003
https://doi.org/10.1038/s41598-017-00847-9
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


McFadden, J. W., and Rico, J. E. (2019). Invited Review: Sphingolipid Biology in the
Dairy Cow: The Emerging Role of Ceramide. J. Dairy Sci. 102, 7619–7639.
doi:10.3168/jds.2018-16095

Mei, C., Junjvlieke, Z., Raza, S. H. A., Wang, H., Cheng, G., Zhao, C., et al. (2020).
Copy Number Variation Detection in Chinese Indigenous Cattle by
Whole Genome Sequencing. Genomics 112, 831–836. doi:10.1016/
j.ygeno.2019.05.023

Pirooznia, M., Goes, F. S., and Zandi, P. P. (2015). Whole-genome CNV Analysis:
Advances in Computational Approaches. Front. Genet. 06. doi:10.3389/
fgene.2015.00138

Prinsen, R. T. M. M., Strillacci, M. G., Schiavini, F., Santus, E., Rossoni, A., Maurer,
V., et al. (2016). A Genome-wide Scan of Copy Number Variants Using High-
Density SNPs in Brown Swiss Dairy Cattle. Livestock Sci. 191, 153–160.
doi:10.1016/j.livsci.2016.08.006

Raphaëlle Prinsen, T. M. M. (2017). CNV Detection and Association Studies in the
Brown Swiss Cattle Breed. Via Celoria, Italiy: University of Milan.

Rastislav, M., and Mangesh, B. (2012). BoLA-DRB3 Exon 2 Mutations Associated
with Paratuberculosis in Cattle. Vet. J. 192, 517–519. doi:10.1016/
j.tvjl.2011.07.005

Rosen, B. D., Bickhart, D. M., Schnabel, R. D., Koren, S., Elsik, C. G., Tseng, E., et al.
(2020). De Novo assembly of the Cattle Reference Genome with Single-
Molecule Sequencing. Gigascience 9. doi:10.1093/gigascience/giaa021

Sciences (2017). CNV Detection and Association Studies in the Brown Swiss Cattle
Breed.

Stankiewicz, P., and Lupski, J. R. (2010). Structural Variation in the Human
Genome and its Role in Disease. Annu. Rev. Med. 61, 437–455. doi:10.1146/
annurev-med-100708-204735

Teumer, A., Qi, Q., Nethander, M., Aschard, H., Bandinelli, S., Beekman, M., et al.
(2016). Genomewide Meta-analysis Identifies Loci Associated with IGF -I and
IGFBP -3 Levels with Impact on Age-related Traits. Aging Cell 15, 811–824.
doi:10.1111/acel.12490

Ucsc Genome Browser Downloads. (2013). Ucsc Genome Browser Downloads.
Available at: https://hgdownload.soe.ucsc.edu/downloads.html#cow. (Accessed
August 29, 2021)

Upadhyay, M., da Silva, V. H., Megens, H. J., Visker, M. H. P. W., Ajmone-Marsan,
P., Bâlteanu, V. A., et al. (2017). Distribution and Functionality of Copy
Number Variation across European Cattle Populations. Front. Genet. 8, 108.
doi:10.3389/fgene.2017.00108

Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S. F. A., et al. (2007).
PennCNV: An Integrated Hidden Markov Model Designed for High-
Resolution Copy Number Variation Detection in Whole-Genome SNP
Genotyping Data. Genome Res. 17, 1665–1674. doi:10.1101/gr.6861907

Wang, K., Sun, D. X., and Zhang, Y. (2007). Identification of Genetic Variations of
Exon 2 of BoLA-DQB Gene in Five Chinese Yellow Cattle Breeds. Int.
J. Immunogenet. 34, 115–118. doi:10.1111/j.1744-313x.2007.00654.x

Wu, Y., Fan, H., Jing, S., Xia, J., Chen, Y., Zhang, L., et al. (2015). A Genome-wide
Scan for Copy Number Variations Using High-Density Single Nucleotide
Polymorphism Array in Simmental Cattle. Anim. Genet. 46, 289–298.
doi:10.1111/age.12288

Zhang, H., Du, Z.-Q., Dong, J.-Q., Wang, H.-X., Shi, H.-Y., Wang, N., et al. (2014).
Detection of Genome-wide Copy Number Variations in Two Chicken Lines
Divergently Selected for Abdominal Fat Content. BMC Genomics 15, 517.
doi:10.1186/1471-2164-15-517

Zhou, J., Liu, L., Chen, C. J., Zhang, M., Lu, X., Zhang, Z., et al. (2019). Genome-
wide Association Study of Milk and Reproductive Traits in Dual-Purpose
Xinjiang Brown Cattle. BMC Genomics 20. doi:10.1186/s12864-019-6224-x

Zhou, J., Liu, L., Lopdell, T. J., Garrick, D. J., and Shi, Y. (2021). HandyCNV:
Standardized Summary, Annotation, Comparison, and Visualization of CNV,
CNVR and ROH. CNVR and ROH. doi:10.1101/2021.04.05.438403

Zhou, Y., Utsunomiya, Y. T., Xu, L., Hay, E. H. A., Bickhart, D. M., Alexandre, P. A.,
et al. (2016). Genome-wide CNVAnalysis Reveals Variants AssociatedwithGrowth
Traits in Bos indicus. BMC Genomics 17, 419. doi:10.1186/s12864-016-2461-4

Zhou, Y., Utsunomiya, Y. T., Xu, L., Hay, E. H. a., Bickhart, D. M., Sonstegard, T. S.,
et al. (2016). Comparative Analyses across Cattle Genders and Breeds Reveal
the Pitfalls Caused by False Positive and Lineage-Differential Copy Number
Variations. Sci. Rep. 6, 29219. doi:10.1038/srep29219

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhou, Liu, Reynolds, Huang, Garrick and Shi. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 74743115

Zhou et al. CNV in XJ-Brown Cattle

https://doi.org/10.3168/jds.2018-16095
https://doi.org/10.1016/j.ygeno.2019.05.023
https://doi.org/10.1016/j.ygeno.2019.05.023
https://doi.org/10.3389/fgene.2015.00138
https://doi.org/10.3389/fgene.2015.00138
https://doi.org/10.1016/j.livsci.2016.08.006
https://doi.org/10.1016/j.tvjl.2011.07.005
https://doi.org/10.1016/j.tvjl.2011.07.005
https://doi.org/10.1093/gigascience/giaa021
https://doi.org/10.1146/annurev-med-100708-204735
https://doi.org/10.1146/annurev-med-100708-204735
https://doi.org/10.1111/acel.12490
https://hgdownload.soe.ucsc.edu/downloads.html#cow
https://doi.org/10.3389/fgene.2017.00108
https://doi.org/10.1101/gr.6861907
https://doi.org/10.1111/j.1744-313x.2007.00654.x
https://doi.org/10.1111/age.12288
https://doi.org/10.1186/1471-2164-15-517
https://doi.org/10.1186/s12864-019-6224-x
https://doi.org/10.1101/2021.04.05.438403
https://doi.org/10.1186/s12864-016-2461-4
https://doi.org/10.1038/srep29219
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Discovering Copy Number Variation in Dual-Purpose XinJiang Brown Cattle
	Introduction
	Methods
	Animals, Genotyping and Quality Control of the Custom Genotyping Cluster File
	Detection of CNVs
	Summary of CNVs and Generation of CNV Regions
	Comparison of CNVs, CNVRs, and Consensus CNVRs
	Annotation of Genes and Consensus Genes
	Visualization of Interesting CNVRs
	Comparison with Known Cattle CNV Databases and Results from the Literature

	Results
	Differences in Number of Single-Nucleotide Polymorphism Between Assemblies
	Copy Number Variant Statistics From PennCNV and CNVPartition

	Copy Number Variant Region Results
	Comparison of Copy Number Variants and Copy Number Variant Regions in Different Results
	An Example Showing the Difference of Single-Nucleotide Polymorphisms in a The Same Consensus Copy Number Variant Region
	Consensus Genes

	Discussion
	The Difference of SNP between the UMD and ARS Maps of Bovine GGP 150K Beadchip and Its Effect on CNV Detection
	Comparison of CNV and CNVR Results of Different Methods
	Consensus CNVRs in Xinjiang Brown Cattle and Their Comparison with Known Databases
	Consensus Genes between ARS and UMD Versions and Functional Annotation

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


