
Fundamental Research 4 (2024) 785–794 

Contents lists available at ScienceDirect 

Fundamental Research 

journal homepage: http://www.keaipublishing.com/en/journals/fundamental-research/ 

Article 

Generating barcodes for nanopore sequencing data with PRO 

Ting Yu 

a , 1 , Zitong Ren 

a , 1 , Xin Gao 

b , ∗ , Guojun Li a , ∗ , Renmin Han 

a , ∗ 

a Research Center for Mathematics and Interdisciplinary Sciences, Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, 

Shandong 266000, China 
b Computer, Electrical and Mathematical Sciences and Engineering Division & Computational Bioscience Research Center, King Abdullah University of Science and 

Technology, Thuwal 23955, Saudi Arabia 

a r t i c l e i n f o 

Article history: 

Received 30 June 2023 

Received in revised form 20 February 2024 

Accepted 9 April 2024 

Available online 25 April 2024 

Keywords: 

Third-generation sequencing 

Nanopore sequencing 

DNA barcode 

Farthest point sampling algorithm 

High throughput 

a b s t r a c t 

DNA barcodes, short and unique DNA sequences, play a crucial role in sample identification when processing 

many samples simultaneously, which helps reduce experimental costs. Nevertheless, the low quality of long-read 

sequencing makes it difficult to identify barcodes accurately, which poses significant challenges for the design 

of barcodes for large numbers of samples in a single sequencing run. Here, we present a comprehensive study 

of the generation of barcodes and develop a tool, PRO, that can be used for selecting optimal barcode sets and 

demultiplexing. We formulate the barcode design problem as a combinatorial problem and prove that finding 

the optimal largest barcode set in a given DNA sequence space in which all sequences have the same length 

is theoretically NP-complete. For practical applications, we developed the novel method PRO by introducing 

the probability divergence between two DNA sequences to expand the capacity of barcode kits while ensuring 

demultiplexing accuracy. Specifically, the maximum size of the barcode kits designed by PRO is 2,292, which 

keeps the length of barcodes the same as that of the official ones used by Oxford Nanopore Technologies (ONT). 

We validated the performance of PRO on a simulated nanopore dataset with high error rates. The demultiplexing 

accuracy of PRO reached 98.29% for a barcode kit of size 2,922, 4.31% higher than that of Guppy, the official 

demultiplexing tool. When the size of the barcode kit generated by PRO is the same as the official size provided 

by ONT, both tools show superior and comparable demultiplexing accuracy. 
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. Introduction 

Pooling multiple samples to maximize the utilization of resources is

 common practice in biomolecular research. To identify different sam-

les, experimental platforms generally link barcodes (short and unique

ucleotide sequences) to different samples. Barcodes play an important

ole in research and biotechnology, such as single-cell sequencing [1] ,

ene synthesis [2] , drug discovery [3] , and high-throughput sequenc-

ng [4-9] . However, DNA synthesis and sequencing errors that are man-

fested as insertions, deletions, or substitutions of bases can corrupt bar-

odes, preventing them from being correctly identified and reducing the

ccuracy of experiments. To improve accuracy, researchers have usually

mployed error-correcting code schemes to design DNA barcodes, which

re used mainly in computer science for error detection and correction

n information transmission. Hamady et al. used the Hamming code, a

ell-studied error correction code in computer science, to design bar-

odes. However, this approach does not take insertion or deletion errors

nto account [5] . To address this challenge, the Levenshtein code was

ntroduced to design barcodes that can address all kinds of sequenc-
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ng errors, but the length of each corrupted barcode must be known

6 , 7 , 10] . The FREE barcodes developed by Hawkins et al. can handle

diting errors even when the corrupted barcode length is unknown [8] .

ang et al. presented the TVNS algorithm to generate barcodes and

mprove the lower bound of the size of the barcode sets [9] . 

Nanopore sequencing is a breakthrough in modern sequencing tech-

ology that has greatly promoted studies of genome assembly [11] ,

ingle-cell transcriptomics [12-14] , and fusion genes [15] due to its ad-

antage in long sequencing reads. To reduce sequencing costs, multi-

le samples are generally sequenced simultaneously by linking a unique

arcode for each individual sample. The sequencing reads for each sam-

le are then separated by the known barcodes. For instance, Tian et al.

sed equal mixes of five cancer cell lines ( ∼40 cells per line) profiled

ith matched Illumina and Nanopore reads to study the comprehen-

ive characterization of single-cell full-length isoforms [16] ; Xiaoying

an et al. efficiently separated single-cell information according to the

4-nucleotide (nt) Nanopore platform cell barcodes [17] . The through-

ut of nanopore sequencing is lower than that of next-generation short-

ead sequencing, which introduces high cost and complex operations in
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esearch [16-19] . However, the official barcode kits provided by ONT

ontain at most 96 barcodes, which means that at most 96 samples

an be sequenced in a single run. Therefore, to sequence many sam-

les simultaneously, sufficient barcodes are needed. Achieving higher-

hroughput nanopore sequencing requires the support of barcode kits

ith larger sizes. To our knowledge, current barcode design methods

ere specifically developed for next-generation sequencing with a low

rror rate, as the greatest drawback of nanopore sequencing is the high

rror rate [12] . Therefore, designing barcodes for nanopore sequencing

s worth investigating. 

Here, we provide a comprehensive study of the barcode design prob-

em and demultiplexing strategy from both theoretical and practical per-

pectives. To tolerate sequencing errors and ensure correct identifica-

ion after sequencing, barcodes should be sufficiently separated from

ach other in a barcode kit. During sequencing, barcodes are subject

o errors with a certain probability. From a probabilistic perspective,

e innovatively define a new measure of divergence between two short

NA sequences, namely, probability divergence, and demonstrate that

robability divergence is more accurate than the most widely used dis-

ance measure in demultiplexing, edit distance. We formulate the bar-

ode generation problem as a combinatorial problem and prove that

nding the optimal largest barcode set in a given space of short DNA

equences of the same length is NP-complete. From a practical appli-

ation point of view, we developed the software package PRO ( https:

/github.com/rztongr/PRO ), which can generate and demultiplex bar-

odes. The main idea behind the proposed method is the farthest-point

ampling algorithm, which ensures that any two barcode sequences in

he generated barcode set are sufficiently distinct from each other. Ac-

ording to our simulation experiments, PRO significantly expands the

apacity of DNA barcode kits. PRO designs a barcode kit of size 2,292,

he same length as the official barcode, with an achieved demultiplexing

ccuracy of 98.29%. When the barcode kit we designed was the same

ize as the officially available kit, PRO performed comparably to the

fficial demultiplexing tool Guppy in terms of demultiplexing accuracy.

. Methods 

To maximize the utilization of resources in research, DNA barcoding

s a powerful tool for sample identification. Barcode kits with large sizes

nd demultiplexing strategies with high accuracy make the experiments

fficient and accurate. For this purpose, we developed an open-source

ackage PRO, which can be used for generating and demultiplexing bar-

odes. To generate an optimal barcode set, PRO first preprocesses the

andidate sequences according to user requirements and introduces a

ovel metric (i.e., probability divergence) to measure the similarity be-

ween sequences; it then employs the farthest-point sampling algorithm

o select the barcodes, which ensures that the generated sequences are

dequately distinguishable from each other. To accurately demultiplex

orrupted barcodes, PRO uses flanking sequences to extract the cor-

upted barcodes from the DNA sequences and then identifies the bar-

odes according to the probability divergence. 

.1. Preliminary knowledge 

Denote Σ = {𝐴, 𝐺, 𝐶, 𝑇 } as a 4-arq alphabet. A 𝑠𝑒𝑞 of length k over

lphabet Σ is a sequence 𝑠1 𝑠2 ⋯ 𝑠𝑘 , 𝑠𝑖 ∈ Σ, 𝑖 = 1 , 2 , ⋯ , 𝑘 . We define

he k-mer space as the set of all 𝑠𝑒𝑞 of length k, denoted by 𝑆𝑘 . The

nion of all k-mer spaces is denoted by 𝑆; 𝑖.𝑒., 𝑆 = 𝑈𝑘> 0 S𝑘 . 

For accurate demultiplexing, any two sequences in a barcode set

hould be sufficiently distinguishable at a certain distance metric, de-

oted by 𝑑𝑖𝑠 . Given a barcode length 𝑛 and threshold 𝑡 , we aim to find

 subset of 𝑆n , denoted by {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } , in which the 𝑑𝑖𝑠 between any two

equences is greater than or equal to 𝑡 . The goal of generating a barcode

et with a maximum cardinality of length 𝑛 is to select as many distinct

equences as possible from among the 4𝑛 sequences in 𝑆 . In brief, the
𝐧 
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arcode sets to be generated should satisfy 

𝑖𝑠
(
𝑠𝑒𝑞′, 𝑠𝑒𝑞′′

)
≥ 𝑡, 𝑓𝑜𝑟 ∀𝑠𝑒𝑞′, 𝑠𝑒𝑞′′ ∈ { 𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } , 

here 𝑠𝑒𝑞′ 𝑎𝑛𝑑 𝑠𝑒𝑞′′ are two barcode sequences and {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑚𝑎𝑥 is

he barcode set with maximum size. Now, we prove that generating

𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑚𝑎𝑥 is a NP-complete problem. 

The maximum clique problem (MCP), which is to find a complete

raph with the maximum vertices in an undirected graph, is a classical

ombinatorial optimization problem that is NP-complete [20] . Let 𝐺 =
𝑉 , 𝐸 ) be an undirected graph, 𝑉 be the vertex set of 𝐺, and 𝐸 ∈ 𝑉 ×
 be the edge set of 𝐺. A graph 𝐺 = (𝑉 , 𝐸 ) is complete if all its vertices

re pairwise adjacent. A subgraph 𝑈 of 𝐺 is a clique of 𝐺 if and only if

is complete and is not contained in a larger complete subgraph of 𝐺.

he maximum clique problem requires a clique of maximum cardinality

n an undirected graph 𝐺 = (𝑉 , 𝐸 ) . 
Proposition 1: Given sequence length 𝑛 and threshold 𝑡 , finding the

aximum barcode set {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑚𝑎𝑥 in 𝑆𝑛 is a NP-complete problem. 

Proof: The problem of finding the maximum barcode set {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑚𝑎𝑥 

an be transformed into the MCP. First, we define the weight w(u , v )
etween two vertices u , v as w(u , v ) = 𝑑𝑖𝑠 (u , v ) . We construct the com-

lete graph 𝐺′ = (𝑉 ′, 𝐸′) with each of the 4𝑛 sequences in 𝑆𝑛 as a

ertex. The weight of the edge between any two vertices u , v in 𝐺′ is

(u , v ) . Given the threshold t, we define 𝐺 = (𝑉 , 𝐸 ) , where 𝑉 = 𝑉 ′

nd 𝐸 = {(u , v ) ∈ G′|w(u , v ) ≥ 𝑡 } . 
On the other hand, finding the maximum barcode set involves find-

ng a maximum set of sequences in which each pair of sequences is ad-

quately distinguishable, e.g., the distance metric between each pair of

equences is adequately high. Thus, we consider a threshold t and sup-

ose that a distance metric between two sequences that is greater than t

s sufficient for demultiplexing. Then, finding the maximum barcode set

n 𝑆𝑛 is the problem of finding the maximum clique in graph 𝐺, which

eans that finding the maximum barcode set {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑚𝑎𝑥 in 𝑆𝑛 is an

P-complete problem. 

After sequencing, one DNA sequence may become another sequence

ith arbitrary length and arbitrary base composition. We now prove that

he sum of the probabilities of a sequence becoming any other sequence

s 1. 

Proposition 2: Denote 𝑝 (𝑠𝑒𝑞 , 𝑠𝑒𝑞′) as the probability of 𝑠𝑒𝑞 transform-

ng into 𝑠𝑒𝑞′. For all 𝑠𝑒𝑞 ∈ 𝑆, ∑
𝑒𝑞′ ∈ 𝑆 

𝑝
(
𝑠𝑒𝑞 , 𝑠𝑒𝑞′

)
= 1 

Proof: Given 𝑠𝑒𝑞 = 𝑠1 𝑠2 ⋯ 𝑠𝑛 ∈ 𝑆, where 𝑆 = 𝑈𝑛> 0 S𝑛 and 𝑠𝑖 ∈
{𝐴, 𝐺, 𝐶, 𝑇 } , 𝑖 = 1 , 2 ⋯ 𝑛, denote 𝑠𝑒𝑞′ as the sequence after sequenc-

ng; as mentioned, the length of 𝑠𝑒𝑞′ is arbitrary. Suppose the numbers

f matches, deletions, and substitutions in the transformation from 𝑠𝑒𝑞

nto 𝑠𝑒𝑞′ are 𝑚 , 𝑑, and 𝑠 , respectively. It is obvious that 𝑚 + 𝑠 + 𝑑 = 𝑛 .

enote 𝑃𝑚 , 𝑃𝑠 , 𝑎𝑛𝑑 𝑃𝑑 as the probabilities of the occurrence of match-

ng, deleting, and substituting; then, we have 𝑃𝑚 + 𝑃𝑠 + 𝑃𝑑 = 1 . 
Therefore, the probability of m insertions, d deletions and s substitu-

ions occurring in 𝑠1 𝑠2 ⋯ 𝑠𝑛 during sequencing is 

∑
 + 𝑠 + 𝑑 = 𝑛 

𝐶𝑠 
𝑛 
𝑃𝑠 

𝑠 𝐶𝑑 
𝑛 − 𝑠 𝑃𝑑 

𝑑 𝐶𝑚 
𝑛 − 𝑠 − 𝑑 𝑃𝑚 

𝑚 

=
∑

𝑚 + 𝑠 + 𝑑 = 𝑛 

𝑛 ! 
𝑠 ! 𝑑! 𝑚 ! 

𝑃𝑠 
𝑠 𝑃𝑑 

𝑑 𝑃𝑚 
𝑚 =

(
𝑃𝑚 + 𝑃𝑠 + 𝑃𝑑 

)𝑛 = 1 

For the insertions, there are 𝑛 + 1 intervals in the sequence

1 𝑠2 ⋯ 𝑠𝑛 . Suppose that the probability of insertions occurring in an

nterval is 𝑃𝑖′ (note that multiple bases may be inserted) and that the

robability of no insertions occurring is 𝑃𝑛𝑖′ . Denote 𝑖′ and 𝑛𝑖′ as the

umbers of intervals where insertions occur and insertions do not oc-

ur, respectively; then, 

𝑖′ + 𝑃𝑛𝑖′ = 1 

′ + 𝑛𝑖′ = 𝑛 + 1 

https://github.com/rztongr/PRO
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Table 1 

Detailed information for calculating the probability divergence . 

Match Deletion Substitution Insertion 

𝑝 𝑝𝑚 𝑝𝑑 
1 
3 
𝑝𝑠 

1 
4 
𝑝𝑖 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑚 𝑑 𝑠 𝑖 
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Similarly, 

∑
′ + 𝑛𝑖′ = 𝑛 + 1 

𝐶𝑖′
𝑡 

𝑃𝑖′
𝑖′𝐶𝑛𝑖′

𝑛 − 𝑡 𝑃𝑛𝑖′
𝑛𝑖′ =

(
𝑃𝑖′ + 𝑃𝑛𝑖′

)𝑛 + 1 = 1 

Therefore, considering all kinds of cases, 
∑

 + 𝑠 + 𝑑= 𝑛 
𝐶𝑠 

𝑛 
𝑃𝑠 

𝑠 𝐶𝑑 
𝑛 − 𝑠 𝑃𝑑 

𝑑 𝐶𝑚 
𝑛 − 𝑠 − 𝑑 𝑃𝑚 

𝑚 
∑

𝑖′+ 𝑛𝑖′= 𝑛 +1 
𝐶𝑖′

𝑡 
𝑃𝑖′

𝑖′𝐶𝑛𝑖′
𝑛 − 𝑡 𝑃𝑛𝑖′

𝑛𝑖′

(
𝑃𝑚 + 𝑃𝑑 + 𝑃𝑠 

)𝑛 (
𝑃𝑖’ + 𝑃ni ’ 

)𝑛 +1 = 1 . 

Denote k as the total number of inserted bases. The sequence

1 𝑠2 ⋯ 𝑠𝑛 is transformed into 𝑠𝑒𝑞
′

after 𝑚, 𝑠, 𝑑, 𝑘 matches, substitutions,

eletions, and insertions, where 𝑚 + 𝑠 + 𝑑 = 𝑛, 𝑖′ + 𝑛𝑖
′ = 𝑛 + 1 and 𝑠𝑒𝑞

′

ay be any sequence in 𝑆. 

.2. Overview of the probability divergence 

Errors occur during nanopore sequencing in the form of insertions,

eletions and substitutions of DNA bases. After sequencing, the bases

nd lengths of the barcodes generally change, and they may become ar-

itrary DNA sequences. Suppose that the probabilities of a base being

orrectly sequenced, deleted, substituted and inserted during sequenc-

ng are known; then, for any two DNA sequences 𝑠𝑒𝑞 , 𝑠𝑒𝑞′, where 𝑠𝑒𝑞 is

orrupted into 𝑠𝑒𝑞′ during sequencing, the probability of 𝑠𝑒𝑞 becoming

𝑒𝑞′ can be computed theoretically. Defining the divergence between

wo DNA sequences based on these probabilities is worth investigation.

.2.1. Definition of probability divergence 

There are various ways for a sequence 𝑠𝑒𝑞 to become 𝑠𝑒𝑞′. For in-

tance, Fig. 1a shows three ways in which 𝑠𝑒𝑞 = 𝐴𝐺𝑇 𝐶 becomes 𝑠𝑒𝑞′ =
𝐺 𝐺 𝑇 . Obviously, the number of ways for 𝑠𝑒𝑞 to become 𝑠𝑒𝑞′ is infi-

ite. However, for many of these ways, such as 𝑤𝑎𝑦3 , their probability

f occurring is actually very low during sequencing, so they make only a

mall contribution to the calculation of the probability of 𝐴𝐺𝑇 𝐶 becom-

ng 𝐴𝐺 𝐺 𝑇 . Therefore, the probability of transformations such as 𝑤𝑎𝑦3 
s not considered in this research. 

Edit distance is an effective metric for measuring the degree of dif-

erence between two sequences; it is defined as the minimum number

f edit operations (insertion, deletion, substitution) required to trans-

orm one sequence into another. We calculate the edit distance via a

ynamic programming algorithm and obtain the alignment matrix. The

lignment of the two sequences can be obtained by backtracking in the

lignment matrix, but this alignment may not be unique. For example,

𝑑 𝑖𝑡_𝑑 𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐴𝐺 𝑇 𝐶, 𝐴𝐺 𝐺 𝑇 ) = 2 in Fig. 1a , but 𝑤𝑎𝑦1 and 𝑤𝑎𝑦2 are two

ifferent alignments. 

Denote 𝑝𝑚 , 𝑝𝑑 , 𝑝𝑠 , 𝑝𝑖 as the probabilities of a single base being cor-

ectly sequenced, deleted, substituted, and inserted in nanopore se-

uencing, respectively. This research is based on two assumptions: the
ig. 1. A simple example illustrating the definition of probability divergence. 

𝑎𝑦1 and 𝑤𝑎𝑦2 show two backtracking paths from AGTC to AGGT, the steps of which

 deletion, but 𝑤𝑎𝑦3 is complex. (b) An example showing how to find the unique a

acktracking. The table displays the numbers of matches, insertions, deletions, and s
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ccurrences of insertions, deletions, and substitutions for each base are

ndependent during sequencing, and 𝑝𝑑 = 𝑝𝑠 = 𝑝𝑖 =
1 
3 (1 − 𝑝𝑚 ) . There-

ore, the probabilities of insertion, deletion, and substitution for a spe-

ific base 𝑁 ∈ {𝐴, 𝐺, 𝐶, 𝑇 } are 1 4 𝑝𝑖 , 𝑝𝑑 , and 1 3 𝑝𝑠 ; note that 𝑝𝑑 >
1 
3 𝑝𝑠 >

1 
4 𝑝𝑖 under these assumptions. When backtracking in the alignment ma-

rix, deletion is considered first, followed by substitution and then in-

ertion, which gives a unique alignment result 𝐴𝑙𝑖𝑔𝑛 . Suppose the num-

ers of base matches, insertions, deletions, and substitutions in 𝐴𝑙𝑖𝑔𝑛

re 𝑚, 𝑖, 𝑑, 𝑠 ( Table 1 ). We define the divergence between two sequences

rom a probabilistic perspective based on the edit distance. 

For any two DNA sequences 𝑋, 𝑌 , there is a unique alignment 𝐴𝑙𝑖𝑔𝑛

f 𝑋 to 𝑌 , and the probability divergence of 𝑋 with respect to 𝑌 is

efined as 

𝑃 𝑟𝑜𝐷𝑖𝑣 (𝑋, 𝑌 ) = 𝑝𝑚 
𝑚 𝑝𝑑 

𝑑 ( 1 3 𝑝𝑠 )𝑠 (
1 
4 𝑝𝑖 )𝑖 . 

For example, for the sequences 𝐴𝐺𝑇 𝐶 and 𝐴𝐺𝐺𝑇 , based on the

lignment 𝑊 𝑎𝑦1 , the probability divergence of 𝐴𝐺𝑇 𝐶 with respect to

𝐺 𝐺 𝑇 is 𝑃 𝑟𝑜𝐷𝑖𝑣 (𝐴𝐺 𝑇 𝐶, 𝐴𝐺 𝐺 𝑇 ) = 

1 
4 𝑝𝑚 

3 𝑝𝑑 𝑝𝑖 . 

.2.2. The properties of probability divergence 

According to the definition of probability divergence, the more

imilar two sequences are, the greater the probability of divergence

etween the two sequences. However, probability divergence is not

 distance metric since it does not even satisfy symmetry; e.g.,

 𝑟𝑜𝐷𝑖𝑣 (𝐴𝐺 𝐺 𝑇 , 𝐴𝐺 𝑇 𝐶 ) = 

1 
9 𝑝𝑚 

2 𝑝𝑠 
2 but 𝑃 𝑟𝑜𝐷 𝑖𝑣 (𝐴𝐺 𝑇 𝐶, 𝐴𝐺 𝐺 𝑇 ) = 

1 
4 𝑝𝑚 

3 𝑝𝑑 𝑝𝑖 .

ere, we define the weight between two sequences 𝑋, 𝑌 as

𝑒𝑖𝑔ℎ𝑡 (𝑋, 𝑌 ) = 𝑚𝑎𝑥 {𝑃 𝑟𝑜𝐷𝑖𝑣 (𝑋, 𝑌 ) , 𝑃 𝑟𝑜𝐷𝑖𝑣 (𝑌 , 𝑋 ) } . 
The probability divergence proposed in the research is a rough mea-

ure of the probability that one sequence will transform into another

ince, as mentioned above, some ways for a sequence to change to an-

ther sequence are not considered. Therefore, the sum of the probability

ivergences calculated in this research is less than 1. For instance, when

 = 5 and the sequencing error rate is 0.12, for any 𝑠𝑒𝑞 ∈ 𝑆5 , we calculate

he sum of the probability divergence between 𝑠𝑒𝑞 and all the sequences

n 𝑆4 , 𝑆5 and 𝑆6 , and most of them are greater than 0.85. 

.3. Barcode generation strategy 

.3.1. Generation of barcodes 

We proved that finding {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑚𝑎𝑥 is an NP-complete prob-

em by transforming the {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑚𝑎𝑥 generation problem into the
(a) Three ways of editing AGTC to AGGT . Edit distance ( AGTC , AGGT ) = 2, and 

 are minimal. 𝑤𝑎𝑦3 shows that a substitution is equivalent to an insertion and 

lignment 𝐴𝑙𝑖𝑔𝑛 from AGTC to AGGT when defining probability divergence by 

ubstitutions in the unique alignment. 
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aximum clique problem; therefore, a polynomial-time algorithm can-

ot be found. Here, we use farthest-point sampling (FPS), a heuristic

lgorithm, to generate the barcode set. Specifically, the candidate se-

uences are regarded as sampling points in a space, and the distance

etween each pair of sampling points is defined as the weight between

he corresponding sequences. The core idea of the algorithm is to it-

ratively select the farthest point from the space such that any two

oints in the sampled set, denoted by {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑠𝑒𝑡 , are as far apart as

ossible; in other words, the probability divergence is as small as possi-

le. For a given dataset, denoted by {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } , and the number of

oints that should be sampled, denoted by n, we present the proce-

ure for FPS in Algorithm 1 . To cope with different sequencing error

ates, we adapt the algorithm by setting the corresponding threshold t

ccordingly, and the algorithm terminates if weight ({𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } 𝑠𝑒𝑡 , 𝑠𝑒𝑞 ) >
, 𝑖.𝑒., 𝑚𝑎𝑥 {𝑤𝑒𝑖𝑔ℎ𝑡 (𝑠, 𝑠𝑒𝑞 ) , 𝑠 ∈ {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } 𝑠𝑒𝑡 } > 𝑡 , which ensures that the

aximum probability divergence between any two sequences in

𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑠𝑒𝑡 is less than or equal to t. Each time a sequence seq1 is

elected, we remove the sequence s satisfying 𝑃 𝑟𝑜𝐷𝑖𝑣 (s , seq 1 ) > 𝑡 in

𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 }∖{𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑠𝑒𝑡 to reduce the number of calculations. 

Algorithm 1 

Input: {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } , sample number n 
Output: {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑠𝑒𝑡 

Function FPS ( {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } , n) begin 

Randomly select a sequence 𝑠𝑒𝑞

{𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑠𝑒𝑡 ← {𝑠𝑒𝑞 } 
{𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } ← {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 }∖{𝑠𝑒𝑞 } 
While |{𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } 𝑠𝑒𝑡 | ≤ 𝑛 : 

select the sequence 𝑠𝑒𝑞 in {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } farthest from {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑠𝑒𝑡 

{𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } = {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 }∖{𝑠𝑒𝑞 } 
{𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑠𝑒𝑡 ← {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑠𝑒𝑡 {𝑠𝑒𝑞 } 
End while 

Algorithm 2 shows the adapted farthest-point sampling algorithm.

o optimize the sampling step, we use an array of size n , where each

ocation in the array stores the distance between a point and the last

ampled sequence seq and n is the size of the input {candidate}. When

ampling the next sequence, it is sufficient to calculate the n distances

nd update the array. In addition, we reduce the computational effort

y reducing the candidate sequence with a set threshold t . 

Algorithm 2 

Input: {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } , threshold t 

Output: {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑠𝑒𝑡 

Function FPS Adapted { 𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 }, t) begin 

Randomly select a sequence seq 

{𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑠𝑒𝑡 ← {𝑠𝑒𝑞 } 
{𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } ← {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 }∖{𝑠𝑒𝑞 } 
While weight ({𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } 𝑠𝑒𝑡 , 𝑠𝑒𝑞 ) ≤ 𝑡 do ∶ 

for s ∈ {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } : 
if 𝑤𝑒𝑖𝑔ℎ𝑡 (s , 𝑠𝑒𝑞 ) > 𝑡 ∶ 
{𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } ← {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 }∖{s} 

end for 

select 𝑠𝑒𝑞 that satisfies 

𝑤𝑒𝑖𝑔 ℎ𝑡 (𝑠𝑒𝑞 , {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } 𝑠𝑒𝑡 ) = min {𝑤𝑒𝑖𝑔 ℎ𝑡 (𝑠𝑒𝑞 , {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } 𝑠𝑒𝑡 ) , 𝑠𝑒𝑞 ∈ {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } } 
{𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } = {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } - {𝑠𝑒𝑞 } 
{𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑠𝑒𝑡 ← {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑠𝑒𝑡 {𝑠𝑒𝑞 } 

End while 

.3.2. Determination of the threshold 

The threshold t determines the maximum probability divergence be-

ween any two barcode sequences in the generated {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } . A smaller

hreshold indicates that the difference between two sequences in the

enerated {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } is greater, and the size of {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } is smaller; thus,

he demultiplexing accuracy is expected to be greater. Assuming that

he length of the barcodes is n and the sequencing error rate is p , we

et the threshold 𝑡 by converting the number of errors that are expected

o be correctly demultiplexed into the probability divergence. Under the

forementioned assumption 𝑝 = 𝑝 = 𝑝 , if the threshold 𝑡 ensures that
𝑑 𝑠 𝑖 

788
he barcodes with fewer than 𝑘 sequencing errors will be correctly de-

ultiplexed, there are at most 4𝑘 cases; among these, the probability

f those in which all the 𝑘 errors are insertions is the lowest, denoted

y 𝑝′ = (1 − 𝑝 )𝑛 ( 1 4 𝑝𝑖 )𝑘 , and the threshold 𝑡 is set to 
√

𝑝′. However, it is

onservative to determine the threshold in this way since the barcode

et generated by the farthest-point sampling algorithm can be correctly

emultiplexed in the case of more than k errors. 

.3.3. Dataset preselection 

Given n , the length of the barcode, there are up to 4𝑛 candidate

NA sequences. For example, the official DNA barcode length given

y ONT is 24 bp, indicating that the barcode set should be generated

rom 424 = 281, 474, 976, 710, 656 candidate sequences. Therefore,

o improve the efficiency of barcode generation, we preselect the 4𝑛 

NA sequences to effectively reduce the number of candidate sequences.

he preselected set is denoted as {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 }𝑝𝑟𝑒 . Specifically, each can-

idate DNA sequence with length n is hashed into a 64-bit integer

ith hashing function 𝑁 : 𝑁 ( 𝐺) = 0, 𝑁 ( 𝐴 ) = 1, 𝑁 ( 𝑇 ) = 2 , 𝑁 ( 𝐶) = 3 such

hat for sequence 𝑠1 𝑠2 ⋯ 𝑠𝑛 ∈ 𝑆𝑛 , 𝑁(𝑠1 𝑠2 … 𝑠𝑛 ) = 𝑁(𝑠1 )40 + 𝑁(𝑠2 )41 +
+ 𝑁(𝑠𝑛 )4𝑛 −1 . Since the size of the numbers is a somewhat reliable indi-

ator that the corresponding sequences are different, we preprocess the

ata in the following way: Given the initial dataset {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } and pre-

elected size |{𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } 𝑝𝑟𝑒 |, we first hash the sequence in {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 }
nto a 64-bit integer set {𝑛𝑢𝑚 } . The integers in {𝑛𝑢𝑚 } are sorted in de-

cending order and then equally divided into |{𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } 𝑝𝑟𝑒 | sets. Fi-

ally, by picking a random integer from each set, {𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 }𝑝𝑟𝑒 consists

f the DNA sequences corresponding to the |{𝑐𝑎𝑛𝑑 𝑖𝑑 𝑎𝑡𝑒 } 𝑝𝑟𝑒 | integers ac-

ording to the hash function. 

.4. Demultiplexing strategy 

In nanopore sequencing, DNA samples first require library prepara-

ion to convert them into a format suitable for Oxford Nanopore Tech-

ology Devices, after which the barcode is placed between two known

anking sequences ( Fig. 2a ). As shown in Fig. 2b , our demultiplexing

trategy consists of two steps: (1) extracting the corrupted barcode 𝑠′

rom the DNA sequence after sequencing and (2) demultiplexing based

n 𝑠′. For corrupted barcode 𝑠′, 𝑠0 is regarded as the demultiplexing se-

uence if 𝑝𝑟𝑜 (𝑠′, 𝑠0 ) = max {𝑝𝑟𝑜 (𝑠, 𝑠′) , 𝑠 ∈ {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } } since 𝑠0 is the bar-

ode with the highest probability of being corrupted to 𝑠′ in {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } .
e call this demultiplexing strategy PRO-dex. 

As mentioned above, the barcode is placed between two known

anking sequences. Denote the corrupted DNA sequence after sequenc-

ng as 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒′. The two known flanking sequences are aligned to

𝑒𝑞𝑢𝑒𝑛𝑐𝑒′ using the alignment tool edlib [21] , and the sequence between

he two flanking sequences is the corrupted barcode we extract. Then,

e demultiplex the corrupted barcode using PRO-dex. Fig. 3a illustrates

cenarios where barcodes are not extracted accurately in a simulated ex-

eriment, which results in more errors in the extracted barcodes than

ould theoretically be caused by sequencing, culminating in incorrect

emultiplexing. Thus, precisely extracting the corrupted barcode 𝑠′ in

he first step can substantially improve the accuracy of demultiplexing.

The rear top and the rear bottom flanking sequences are aligned to

𝑒𝑞𝑢𝑒𝑛𝑐𝑒′ by edlib to obtain the minimum edit distance 𝐷𝑓 , 𝐷𝑏 ; then, the

tart and end positions of the two flanking sequences on 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒′ can be

btained, denoted by 𝑠𝑡𝑎𝑟𝑡𝑓 , 𝑒𝑛𝑑𝑓 , 𝑠𝑡𝑎𝑟𝑡𝑏 , and 𝑒𝑛𝑑𝑏 ( Fig. 2b ). To extract

he barcode sequences more accurately, we make an approximate judg-

ent about the position of the flanking sequences in 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒′. When

xtracting barcodes, instead of aligning the flanking sequences directly

o 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒′, we narrow the range of sequences to those that align with

𝑒𝑞 𝑢𝑒𝑛𝑐𝑒′[35∶77 ] and 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒′[35 + 𝑠𝑡𝑎𝑟𝑡𝑓 ∶120 ] , where the integers are

he index values on 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒′. Fig. 3 c1 and c2 show the results of not

arrowing and narrowing the range of sequences used to align, which

learly indicates that the latter is more accurate than the former. 
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Fig. 2. The demultiplexing strategy. (a) Schematic of the DNA sequence structure used for nanopore sequencing devices. DNA sequences are prepared by attaching 

adapters, flanking sequences, and DNA barcodes to strand ends using either ligation-based or rapid chemical methods. (b) The demultiplexing strategy. We first extract 

the barcode by aligning the rear top and bottom flanking regions with 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
′ [ 35∶77] and 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

′ [ 𝑒𝑛𝑑𝑓 +1 , 120] using edlib to obtain positions 𝑒𝑛𝑑𝑓 , 𝑠𝑡𝑎𝑟𝑡𝑏 . The 

corrupted barcode 𝑠′ is in the middle of 𝑒𝑛𝑑𝑓 , 𝑠𝑡𝑎𝑟𝑡𝑏 ; then, the barcode satisfying 𝑝𝑟𝑜 (𝑠0 , 𝑠
′ ) = max {𝑝𝑟𝑜 (𝑠, 𝑠′) , 𝑠 ∈ {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } } is used as the demultiplexing result. 

Fig. 3. Extracting barcodes accurately from sequencing sequences. (a) Extracting barcodes from 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒′, which can result in more errors in the extracted 

barcode. The barcodes ligated to the two sequences are ‘ACTGGTGCAGCTTTGAACATCTGG’ and ‘ATGTCCCAGTTAGAGGAG GAAACA’. The rear top and bottom 

flanking sequences are ‘GGTGCTG’ and ‘TTAACCT’. According to the flowchart in Fig. 2B , in the first sequence, 𝐷𝑏 = 0 . 𝐷𝑓 > 1 and 𝐷𝑏 < 𝐷𝑓 , and the extracted barcode 

is 𝑠′ = 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
′ [ 𝑠𝑡𝑎𝑟𝑡𝑏 − 24 , 𝑠𝑡𝑎𝑟𝑡𝑏 ] , which adds three insertion errors. For the other sequence, 𝐷𝑏 = 𝐷𝑓 = 1 , the extracted barcode is 𝑠′ = 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

′ [ 𝑒𝑛𝑑𝑓 + 1 , 𝑠𝑡𝑎𝑟𝑡𝑏 ] , 
which adds 10 deletion errors. The data used in Fig. (b), (c1), (c2) and (d) are from B3 ( Table 2 ). (b) Pie chart with 𝐷𝑚 = min {𝐷𝑓 , 𝐷𝑏 } ; only 35.25% of the barcodes 

can be extracted accurately. Most barcode extractions are inaccurate and will add edit errors, as shown in Fig. 3a . (c1) Aligning the rear top flanking and the rear 

bottom flanking with 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
′ [0∶120 ] . A violin plot of the start and end positions of the two flanking sequences is shown for 𝐷𝑏 = 𝐷𝑓 = 0 . (c2) Aligning the rear top 

flanking and rear bottom flanking with 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
′ [35 ∶!77 ] and 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

′ [35 + 𝑠𝑡𝑎𝑟𝑡𝑓 ∶ 120 ] . A violin plot of the start and end positions of the two flanking sequences 

is shown for 𝐷𝑏 = 𝐷𝑓 = 0 . (d) Violin plot of the edit distance of the flanking sequences and the barcode sequence in b3. Front 3 and bottom 3 represent the top 

and bottom flanking sequences of the barcoding library-kit PCR Barcoding Expansion. Front 1 and bottom 1 represent the top and bottom flanking sequences of the 

Native Barcoding Expansion after replacement. The flanking sequences in the Native Barcoding Expansion are more dissimilar to the barcodes in B3 than those in 

the PCR Barcoding Expansion. 
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. Results 

In this study, we developed a software package PRO that can be used

o generate a barcode set and demultiplex the sequenced barcodes. In

his section, we compare the barcode sets generated by PRO with ran-

omly selected ones and compare the probability divergence with the

dit distance in terms of demultiplexing accuracy. According to the tests,

RO exhibits superior performance in both generating barcode sets and

emultiplexing. We ligated the barcodes generated by PRO and those

rovided by ONT onto the raw DNA sequence to generate simulated

ata and then demultiplexed them with both PRO and Guppy 6.5.7 to

nalyze the experimental results. PRO performed comparably to the of-

cial demultiplexing tool Guppy in terms of demultiplexing accuracy.

n addition, we compared PRO with existing tools and validated its ro-

ustness using simulated data with varying sequencing accuracies. 

.1. Comparisons between the barcode set generated by PRO and the 

andomly selected sets 

We used PRO to generate three barcode sets {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝐹𝑃𝑆 15 bp,

0 bp, and 24 bp in length, each of which contained 106, 246 and

,295 barcodes, respectively. As mentioned above, the core idea of

he farthest-point sampling algorithm is to generate a barcode set such

hat the probability divergence between any two barcodes is as low

s possible, which aims at more accurate demultiplexing. To demon-

trate the power of the algorithm, we randomly selected as many se-

uences as were in {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝐹𝑃𝑆 from the preselected dataset, denoted

y {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑅 . Then, we calculated the probability divergence between

ach pair of barcodes in {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝐹𝑃𝑆 and {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑅 . As shown in

ig. 4 , it is clear that the mean probability divergence of {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝐹𝑃𝑆 

as much lower than those of {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑅 regardless of the barcode

ength and the size of the barcode sets. In addition, it contained fewer

utliers, and the sequences corresponding to the outliers are generally

rror-prone in demultiplexing. 
ig. 4. For { 𝒃 𝒂 𝒓 𝒄 𝒐 𝒅 𝒆 } 𝑭 𝑷 𝑺 of different lengths, we randomly select five items fro

 𝒃 𝒂 𝒓 𝒄 𝒐 𝒅 𝒆 } 𝑹 with the same size as { 𝒃 𝒂 𝒓 𝒄 𝒐 𝒅 𝒆 } 𝑭 𝑷 𝑺 : 𝑅 0 , 𝑅 1 , 𝑅 2 , 𝑅 3 , and 𝑅 4 . The ra

etween all pairs of barcodes in {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝐹𝑃𝑆 and {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑅 . The mean probability

ewer outliers. (b) With a sequencing accuracy of ∼90%, the bar chart shows the pr

olid line shows the probability of at most 𝑖 errors occurring. 

790
To validate PRO-dex in terms of demultiplexing accuracy, we sim-

ly simulate sequencing errors by randomly adding sequencing errors

o barcodes in {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝐹𝑃𝑆 and {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑅 and then employ PRO-dex

o demultiplex the corrupted barcodes. In this research, we define the

robability of divergence under the assumption that the insertion, dele-

ion and substitution of each base occur independently during sequenc-

ng; thus, we simulated the procedure by adding edit errors to barcodes

ndependently, as in previous research [8] . The error rate of ONT se-

uencing is approximately 90%, so we randomly added 6, 7 and 8 edit

rrors to the 24 bp barcodes; 5, 6 and 7 errors to the 20 bp barcodes;

nd 4, 5 and 6 errors to the 15 bp barcodes. Each barcode has errors

dded to it 100 times independently. 

Here, we define the barcodes with added errors as corrupted bar-

odes; if a corrupted barcode can be assigned to the barcode that gen-

rated it, we say that the barcode is correctly demultiplexed. The de-

ultiplexing accuracy is defined as the fraction of correctly demulti-

lexed barcodes. As shown in Fig. 5 , the demultiplexing accuracy for

𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝐹𝑃𝑆 is higher than that for {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑅 , regardless of the bar-

ode length or sequencing errors. In addition, as the number of barcodes

ncreases, the demultiplexing accuracy decreases, but the accuracy for

𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑅 decreases faster than that for {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝐹𝑃𝑆 . 

.2. Comparisons between the probability divergence and the edit distance 

To demonstrate the advantage of probability divergence, we re-

laced it with the edit distance and repeated the experiments in the last

ection. Fig. 5 demonstrates that the demultiplexing accuracy when us-

ng probability divergence is greater than that when using edit distance

or both {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝐹𝑃𝑆 and {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑅 . 

.3. Performance evaluation of PRO 

The greatest advantage of ONT sequencing is the long sequenc-

ng length; however, the sequencing error rate is relatively high. An
m the prescreened dataset { 𝒅 𝒂 𝒕 𝒂 𝒔 𝒆 𝒕 } 𝒑 𝒓 𝒆 to obtain five random barcode sets 

ndom seeds are 0, 1, 2, 3, and 4. (a) Box plots of the probability divergence 

 divergence of {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝐹𝑃𝑆 is smaller than that of {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑅 , and there are 

obability of 𝑖 errors occurring in a DNA sequence during sequencing, and the 
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Fig. 5. Comparison of { 𝒃 𝒂 𝒓 𝒄 𝒐 𝒅 𝒆 } 𝑭 𝑷 𝑺 with { 𝒃 𝒂 𝒓 𝒄 𝒐 𝒅 𝒆 } 𝑹 and probability divergence with edit distance in terms of demultiplexing accuracy . 𝑅 0 , 𝑅 1 , and 𝑅 2 
are three random barcode sets, as described above. The line graphs of 𝑅 3 and 𝑅 4 are shown in supplementary material S2.1. The size of the 15 bp barcode set is 106, 

with 4, 5 and 6 edit errors added to each barcode sequence. The size of the 20 bp barcode set is 246, with 5, 6 and 7 edit errors added to each barcode sequence. The 

size of the 24 bp barcode set is 2,295, with 6, 7 and 8 edit errors added to each barcode sequence. The solid line shows the demultiplexing accuracy of the probability 

divergence, and the dashed line shows the demultiplexing accuracy of the edit distance. For the same barcode length and number of errors, {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝐹𝑃𝑆 achieves 

a higher demultiplexing accuracy than {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑅 , and probability divergence achieves a higher demultiplexing accuracy than edit distance. 
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Table 2 

Detailed information on the barcode kit . 

No. {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 } size Barcode length (bp) 

B1 Native barcoding expansion (1–12) 12 24 

B2 Barcoded 16 s kit 24 24 

B3 PCR barcoding kit (96) 96 24 

B4 ours 12 24 

B5 ours 24 24 

B6 ours 96 24 

B7 ours 500 24 

B8 ours 1,000 24 

B9 ours 2,292 24 
deal barcode set should contain as many barcode sequences as pos-

ible, and each pair of barcodes should be as distinguishable as pos-

ible, aiming at counteracting high error rates and improving identi-

cation. Therefore, tools to generate barcodes and demultiplex them

re needed. However, to our knowledge, there seems to be no spe-

ific barcode generation strategy available for ONT sequencing. ONT

ffers barcode kits containing up to 96 barcodes, and the demulti-

lexing tool provided is Guppy, which is also the most widely used

ool. Thus, we compared PRO with the barcode kit provided by

NT and the Guppy demultiplexing tool. In the simulation experi-

ent, we simulated library preparation and sequencing for ONT via

 multisample sequencing simulator ( https://github.com/JustLeeee/

NT- sequencing- data- library- preparation- pipeline.git ) and DeepSimu-

ator 1.5 [22] . Then, we used PRO and Guppy 6.5.7 to demultiplex and

valuated the demultiplexing accuracy of both tools. 

.3.1. Test data generation 

To generate the simulated data ( Fig. 6 ), we first used a multisample

equencing simulator to prepare libraries for the original DNA samples

o convert the samples into a format suitable for the nanopore sequenc-

ng device. The multisample sequencing simulator divided each DNA

ample according to a mixed distribution to generate 100 reads, each

f which was linked with the corresponding barcode in the barcode kit,

he adaptor and the flanking sequences. After library preparation, Deep-
791
imulator 1.5 was used to perform the simulation to obtain the final

imulated sequencing data. 

To extract the barcode sequence accurately when demultiplexing and

void the scenario in Fig. 3a , we removed sequences in {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝑝𝑟𝑒 that

ere similar to the flanking sequences, that is, sequences whose edit dis-

ances obtained by semiglobal alignment with flanking sequences were

oth less than or equal to 1. Then, PRO generated {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝐹𝑃𝑆 by

he farthest-point sampling algorithm. We obtained five barcode sets

𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝐹𝑃𝑆 using different random seeds, and the barcode set with

,292 barcodes was selected in 24-mer space with seed 0. Table 2 shows

he information for all the barcode kits used in the simulation experi-

https://github.com/JustLeeee/ONT-sequencing-data-library-preparation-pipeline.git
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Fig. 6. Generation of nanopore sequencing simulation data. The DNA samples are first fragmented, and a mixture distribution is used to generate 100 reads per 

raw genome. The reading direction of the sequence is subsequently specified, and Barcode Kits and Library Preparation Kits are selected. The adapter sequences, 

flanking sequence and barcode are ligated to the read and input into DeepSimulator 1.5 to obtain the final sequencing simulation data. 
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ents. The results for the remaining four sets of {𝑏𝑎𝑟𝑐𝑜𝑑𝑒 }𝐹𝑃𝑆 are pre-

ented in Supplementary Material S2.2. 

There were 105 raw DNA samples used to generate the simulation

ata, including 104 whole-genome shotgun sequences of Escherichia

oli and 1 complete genome of Enterobacteria phage lambda. The details

f the usage of PRO and DNA samples are presented in Supplementary

aterial S1 and Table S6. 

.3.2. Result analysis 

We examined the barcodes generated by PRO in terms of both size

nd demultiplexing accuracy. The barcode kits used for the experiments

onsisted of B1–9. B1–3 were provided by ONT and contained the fol-

owing barcode sequences: the Native Barcoding Expansion (1–12), the

arcoded 16 s Kit, and the PCR Barcoding Kit (96). B4–B9 were designed

y PRO, of which B4–B8 are subsets of B9, meaning that B4 is made up

f barcodes 1 to 12 of B9, and similarly for the others. After generating

he simulated sequencing data, we demultiplexed the data using Guppy

nd PRO. 

The size of the PRO barcode set can reach 2,292, which is much

reater than the size of the official sets. In the 24-mer space, PRO de-

igned a barcode set of size 2,292 (B9) with a demultiplexing accuracy

f 98.29%, while the demultiplexing accuracy of Guppy on B9 was only

3.98%. 

Guppy had excellent accuracy on the official barcode kits (B1–B3)

rovided by ONT, with a minimum accuracy of 99.66% ( Table 3 ), while

he accuracy of PRO was slightly lower, with an average decrease of

.80% and a maximum difference of 1.66% on B3. The B4-B6 we de-

igned were the same size as B1-B3 in the officially available barcode

its. On B4–B6, PRO showed superior demultiplexing accuracy, aver-

ging 4.34% higher than that of Guppy and up to 4.73% higher on

4. Overall, the lowest demultiplexing accuracy for Guppy was 93.98%
able 3 

ccuracy of different demultiplexing methods on barcode sets . 

No. Barcode kit size Number of reads Nanopore barcoding kit 

B1 12 1,200 EXP-NBD104 

B2 24 2,400 SQK-16S024 

B3 96 9,600 EXP-PBC096 

B4 12 1,200 __ 

B5 24 2,400 __ 

B6 96 9,600 __ 

B7 500 50,000 __ 

B8 1,000 100,000 __ 

B9 2,292 229,200 __ 

792
n B9, whereas the lowest demultiplexing accuracy for PRO was only

8.29% on B3. We determined that the reason for the poor performance

f PRO on B3 was mainly due to the similarity of the flanking sequences

o the barcodes in B3, which makes the flanking sequences likely to be

ligned with the barcode sequences, ultimately resulting in inaccuracies

n the extracted barcodes and low demultiplexing accuracy. 

When demultiplexing after nanopore sequencing, the first step is to

xtract the barcode from 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒′. We analyzed the percentage of bar-

odes extracted accurately in B3, as shown in Fig. 3b , and this percent-

ge was only 35.25%. Inaccurate extraction is not favorable for demulti-

lexing since it results in more errors in the extracted barcodes ( Fig. 3a ).

o address this problem, we replaced the barcode library kit PCR Bar-

oding Expansion with Native Barcoding Expansion, a library kit whose

anking sequences are dissimilar ( Fig. 3d ) to the barcode sequences in

3, in the library preparation procedure, which aims to extract the bar-

odes accurately. In other words, we replaced the flanking sequences

 GGTGCTG TTAACCT ’ with ‘ AAGGTTAA CAGCACCT ’ without changing

he barcodes in B3. After replacing the barcode library kit, PRO achieved

 demultiplexing accuracy of 99.55%, while Guppy achieved a demul-

iplexing accuracy of only 96.26%. 

In addition, the barcode kits (B7–B9) generated by PRO contained

any more barcodes than did the official kits, and PRO exhibited higher

emultiplexing accuracy on the generated barcodes than did Guppy. As

he size of the barcode kits increased from B4 to B9, the demultiplex-

ng accuracy of PRO gradually decreased, which is in line with theo-

etical expectations. The generation algorithm of PRO guarantees that

he probability divergence between any two barcodes in a given bar-

ode kit we design is low so that the demultiplexing accuracy of each

arcode is high; that is, the demultiplexing process is stable. Fig. 7a

hows the demultiplexing accuracy of PRO and Guppy for each barcode

n B7–B9, from which we can see that the barcode kits (B7–B9) gener-
Arrangement file Accuracy of Guppy Accuracy of PRO 

barcode_arrs_nb12.cfg 100.00% 99.75% 

barcode_arrs_16 s.cfg 99.71% 99.21% 

barcode_arrs_pcr96.cfg 99.66% 98.00% 

__ 95.42% 100% 

__ 96.21% 99.92% 

__ 94.67% 99.40% 

__ 93.89% 99.05% 

__ 93.96% 98.74% 

__ 93.98% 98.29% 
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Fig. 7. Experimental results for validating the generation and demultiplexing effectiveness of PRO. (a) Box plot of single-barcode demultiplexing accuracy. 

(b) Numbers of barcodes of different lengths generated by PRO and FreeBarcodes. (c) Performance of PRO on simulated data with different levels of sequencing 

accuracy. 
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Table 4 

Demultiplexing accuracy for the barcodes generated by PRO and FreeBar- 

codes . 

Tools The lengths and counts of the generated barcodes 

10 bp 11 bp 12 bp 13 bp 14 bp 

31 75 179 468 1,156 

FREE 90.80% 92.00% 89.92% 89.44% 88.62% 

PRO 93.30% 92.16% 91.36% 90.25% 89.65% 
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ted by PRO contain fewer outliers and that PRO is more stable than

uppy. 

.3.3. Additional tests 

We subsequently compared PRO to a well-established and widely

mployed barcode design tool, namely, FreeBarcodes [8] , which can

enerate(a large number of barcodes and be validated via next-

eneration sequencing data. First, we ligated the barcodes generated

y PRO and FreeBarcodes onto the raw DNA sequences to generate sim-

lated data. The simulated data were then demultiplexed with Guppy

.5.7, based on which we evaluated the barcodes generated by PRO and

reeBarcodes. 

FreeBarcodes consumed a large amount of computing resources, es-

ecially when generating longer barcodes. For instance, when generat-

ng barcodes of length 24 bp, similar to ONT’s official kits, FreeBarcodes

ailed to generate results on our server (with approximately 1 TB of

vailable memory) due to insufficient memory. Therefore, we evaluated

he performance of PRO and FreeBarcodes in generating only barcodes

ith shorter lengths, which ranged from 10 bp to 14 bp. Furthermore,

or the sake of fairness, we utilized Guppy 6.5.7 to conduct the demulti-

lexing process for the simulated data with the barcodes from both PRO

nd FreeBarcodes. 

As shown in Fig. 7b , for the same barcode length, PRO generated

ore barcodes than FreeBarcodes. To evaluate the demultiplexing ac-

uracy, we selected an equal number of barcodes to that generated by

reeBarcodes from the set generated by PRO and then generated sim-

lated data and demultiplexed them using Guppy 6.5.7. Based on the

esults ( Table 4 ), the PRO barcodes demonstrated greater demultiplex-

ng accuracy than those from FreeBarcodes did. 

In addition, to validate the robustness of the barcode sets generated

y PRO, we generated simulated data using B9 with different levels of

equencing accuracy (i.e., 95%, 92%, and 88%). Subsequently, we de-

ultiplexed the simulated data using PRO and Guppy 6.5.7. The results

emonstrated that PRO achieved a greater demultiplexing accuracy than
793
id Guppy at the same level of sequencing accuracy in the simulated

ata ( Fig. 7c ). 

. Discussion 

Sequencing multiple samples in a single run using barcodes can max-

mize the utilization of resources and reduce costs. However, the official

arcode kits provided by Oxford Nanopore Technologies do not support

imultaneous sequencing of more than 96 samples in a single run; there-

ore, some studies have to make some trade-offs [17] . The high error

ate of nanopore sequencing makes the design and demultiplexing of

arcodes difficult. 

To address this difficulty, we theoretically analyzed the problem of

arcode generation and demonstrated that finding the largest barcode

et in a DNA sequence space of the same length is an NP-complete prob-

em. Based on the principle that barcodes should be sufficiently differ-

nt from each other, we use a heuristic algorithm, the farthest point

ampling algorithm, to generate barcodes. We propose using probabil-

ty divergence, which is more accurate than edit distance, and design a

oftware package PRO based on this idea. PRO allows users to generate

heir own barcode sets and demultiplex sequencing files for nanopore

equencing. In the 24-mer space, PRO generated 2,292 barcodes with

 demultiplexing accuracy of 98.29%, greatly expanding capacity and

mproving the demultiplexing accuracy. When the barcode kits we de-
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igned had the same size as the official barcode kits, we could achieve

emultiplexing accuracy comparable to that of the official kits. PRO

lightly underperformed Guppy on B1, B2 and B3 provided by ONT for

he following two reasons: (1) the flanking sequences are similar to the

arcode, and PRO cannot accurately extract them, which is a vital point

o consider when designing barcode kits. (2) The strategy of ONT for

esigning B1, B2, and B3 differs from ours and is unable to ensure that

he probability of divergence between barcodes is large enough. 

Calculating probabilistic divergence involves backtracking using dy-

amic programming and then calculating the probabilities. The farthest-

oint sampling algorithm is a greedy algorithm, which means that the

eneration and demultiplexing of PRO remain time consuming even if

he algorithm is adapted. 

The rapid improvements in long-read sequencing technologies

resent a significant challenge for barcode design methods. As the

hroughput of long-read sequencers continues to increase, larger bar-

ode kits are essential. The theory for generating and demultiplexing

arcodes proposed in this research can be employed for both ONT and

acBio sequencing data; however, no tests on PacBio data have been per-

ormed yet. We expect PRO to be helpful for achieving a higher through-

ut for long-read sequencing, and we anticipate that PRO will facilitate

ife science research, such as single-cell analysis and transcriptome anal-

sis for direct RNA sequencing of many species. 
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