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Abstract

Empiric quantification of human mobility patterns is paramount for better urban planning, understanding social network
structure and responding to infectious disease threats, especially in light of rapid growth in urbanization and globalization.
This need is of particular relevance for developing countries, since they host the majority of the global urban population
and are disproportionally affected by the burden of disease. We used Global Positioning System (GPS) data-loggers to track
the fine-scale (within city) mobility patterns of 582 residents from two neighborhoods from the city of Iquitos, Peru. We
used ,2.3 million GPS data-points to quantify age-specific mobility parameters and dynamic co-location networks among
all tracked individuals. Geographic space significantly affected human mobility, giving rise to highly local mobility kernels.
Most (,80%) movements occurred within 1 km of an individual’s home. Potential hourly contacts among individuals were
highly irregular and temporally unstructured. Only up to 38% of the tracked participants showed a regular and predictable
mobility routine, a sharp contrast to the situation in the developed world. As a case study, we quantified the impact of
spatially and temporally unstructured routines on the dynamics of transmission of an influenza-like pathogen within an
Iquitos neighborhood. Temporally unstructured daily routines (e.g., not dominated by a single location, such as a workplace,
where an individual repeatedly spent significant amount of time) increased an epidemic’s final size and effective
reproduction number by 20% in comparison to scenarios modeling temporally structured contacts. Our findings provide a
mechanistic description of the basic rules that shape human mobility within a resource-poor urban center, and contribute
to the understanding of the role of fine-scale patterns of individual movement and co-location in infectious disease
dynamics. More generally, this study emphasizes the need for careful consideration of human social interactions when
designing infectious disease mitigation strategies, particularly within resource-poor urban environments.
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Introduction

Routine movements of individuals within cities are of

paramount importance for planning urban infrastructures [1],

developing transport and commuting alternatives [1,2], improving

wireless communication networks [3,4], promoting healthy

lifestyles [5], and preventing or responding to emergence,

propagation and persistence of infectious disease [6–11]. People

routinely engage in activities that vary in relative frequency and

duration as well as in geographic location and, more importantly,

their spatial behavior can be affected by changes in social and

economic contexts [12]. Understanding the statistical patterns that

characterize human mobility within cities poses fascinating

scientific questions and major methodological, technical and

ethical challenges [13,14], particularly when aiming at under-

standing their role in spatio-temporal human-mediated processes

such as infectious disease transmission [6–11].

Early mathematical models of infectious diseases assumed

individuals as having an equal chance of transmitting and getting

exposed to disease agents (i.e., homogenous mixing), ignoring

stochastic variations in transmission potential or heterogeneities in

contact patterns [15]. Empirical evidence shows that contact rates

are indeed highly heterogeneous [10,16,17], in part owing to the

complex and dynamic fabric of human social relationships [10,18].

Therefore, individual social structure and movement patterns play

a significant role in modulating contact rates, affecting the
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transmission, spread and persistence of pathogens and drug

resistance [10,11]. Inferring infectious disease contact structures

from human mobility requires the explicit consideration of the

spatial and temporal dimensions of pathogen transmission, which

are contingent on the type of pathogen and its mode of

transmission [15]. Most mathematical models of directly trans-

mitted pathogens assume that contacts are fixed (edges in a contact

network do not change over time or during the duration of an

outbreak). In reality, human movement and potential infectious

contacts are highly dynamic, and theoretical models have shown

that such heterogeneity can have profound impacts on the

transmission and stability of disease outbreaks [19–21]. In fact,

accounting for human commuting behaviors in meta-population

models (by simulating working-age individuals’ daily return to

their home census district), significantly reduced the speed of

propagation and the predicted impact of disease epidemics in

comparison to models assuming irregular (probabilistic or random)

movements [11,20,22,23].

The recent availability of location-aware technologies such as

mobile phones, GPS-enabled devices, wireless local area networks

and personal digital assistants has provided quantitative evidence

that human spatial behavior is recursive and dominated by highly

reproducible scaling laws [4,18,24–26]. Individuals tend to visit a

few locations, where they spend the majority of their time, and the

availability of transportation and commuting alternatives facilitates

their movement across multiple spatial and temporal scales [13].

Mobile-phone data have been the most widely used technology to

capture and describe human mobility within cities. Because most

information derived from mobile phones is coarsely tagged at

scales ranging from hundreds to thousands of meters (depending

on antenna configuration and availability of GPS-enhanced

positioning) and sparsely collected over time (mobile phone data

provides information of the location where calls occurred,

meaning that only a few data points are located over a single

day), information about the rich and complex repertoire of fine

scale movement patterns and spatial behaviors of individuals

within cities remains elusive.

Most of our understanding of human mobility and spatial

behavior within cities is based on research performed in developed

societies (e.g., [1,2,27,28]). This translates into a critical knowledge

gap because approximately 70% of the ,3.3 billion people

comprising the global urban population live in resource-poor

urban environments [29], for which limited information on human

movement patterns and urban infrastructure exist (see [30] for an

example of mobility quantification at coarser scales within an

African country). This near absence of detailed studies of within-

city movements in developing countries is associated with the

challenges of obtaining reliable mobility information for large

segments of the population. In addition to the limited access to

data from cell-phone carriers, issues of antenna density, phone

ownership and available technologies (e.g., a scarcity of GPS-

enabled systems) severely affect data quality and accuracy.

Acquiring detailed movement information is of significant interest

for the development of more accurate mechanistic models

quantifying, for instance, the impacts of mobility on infectious

disease dynamics and the outcome of disease mitigation strategies.

Unmanaged planning, limited public infrastructure and infor-

mal employment and economies characterize most urban envi-

ronments in developing countries [31], potentially making them

more socially and environmentally complex than their developed

counterparts. We hypothesize that human mobility and spatial

behavior within resource-poor urban environments are strongly

modulated by geographic distance (in opposition to developed

countries, where transportation networks and high vehicle

ownership facilitate long distance movements) and that highly

informal economic and social structures contribute to the

emergence of unstructured daily routines, a pattern that can have

significant impacts in spatio-temporal human-mediated processes

such as infectious disease transmission. Here, we report our

application of GPS technology to quantify fine scale human

mobility parameters and the development of highly detailed

individual-based simulation models for the quantification of the

impact of fine-scale mobility (within a city neighborhood) in

infectious disease dynamics.

Materials and Methods

Specific details about devices used, subject pool, data analysis

and simulation model parameters are provided in detail in the

Supplementary Material (File S1), whereas additional figures and

tables are presented in File S2.

Study area
The Amazon city of Iquitos (73.2uW, 3.7uS, 120um above sea

level) in the Department of Loreto, north-eastern Peru (Figure S1

in File S2), is a geographically isolated resource-poor urban

environment of approximately 370,000 inhabitants. Iquitos has a

high population density (most of its inhabitants live in an urban

area of ,30 sq. km [32]), a highly informal and dynamic

economic structure (33.4% of the economically active population

is either unemployed or informally employed [32]), and diverse

modes of formal and informal public transportation (personal

motorcycles, ,20,000 auto rickshaws, a few bus lines, and small to

large size boats are used as modes of transportation). The major

industries in the area are small commercial enterprises, fishing, oil,

lumber, tourism and, to a lesser extent, agriculture.

Study Design
Human Subjects Approval. Before enrolling in our study,

each participant was provided with detailed information about the

type of data collected with GPS (and descriptions about the GPS

technology itself) and how such data would be used within the

context of the study. Focus group discussions with representative

segments of the Iquitos population resulted in an information

pamphlet addressing concerns and questions related to the GPS

technology [33]. Participants were given a 24–48 hour period to

decide whether to participate or not in the study. For children,

verbal assent of the minor and written consent of the parent or

caretaker were required, whereas for adults, a written consent was

required. After GPS data collection, a strict protocol for storage (in

a secure MySQL database) and management was followed. The

procedures for enrolment of participants and GPS data manage-

ment were approved by the Institutional Review Boards of

University of California, Davis (2007.15244); Naval Medical

Research Center Detachment (NMRCD 2007.0007), which

included Peruvian representation; and Emory University

(IRB9162).

Tracking human movements. GPS-data-loggers (‘‘Igot-U

GT120’’, Mobile Action Technology Inc.) were used to contin-

uously track individual movement patterns of Iquitos residents for

a two week period. GPS accuracy (point and line accuracy of

4.4 m and 10.3 m, respectively), acceptance by participants, and

deployment were described previously [33,34]. GPS units were

programmed at a 2.5 min collection frequency interval and set to

turn off at night (from midnight to 06:00 AM). Given the logistic

limitations encountered when tracking large numbers of individ-

uals simultaneously, which could affect the quality of data

collected, we tracked small groups of individuals from two defined
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neighborhoods continuously for 15 days in order to capture their

average fine-scale spatial routine. Most (77%) GPS tracking of

school age children was performed during the period when schools

were in session.

The analyzed trajectories from 582 participants (see ‘‘subject

pool’’ section in File S1 and Table S1 in File S2 for details on

participant pool) included 2,299,718 raw GPS positions tagged

with date, time, elevation, latitude and longitude (Figure 1A). A

data reduction algorithm that aggregates consecutive GPS

readings located within pre-specified spatial and temporal

windows was used to identify the geographic position and total

time a participant spent at a given place. This algorithm (named I-

cluster) aggregates GPS readings that are within a spatial (d) and

temporal (t) window and estimates the total time a participant

spent within such spatio-temporal buffer [35]. Gaps in the GPS

data associated with an I-cluster identified place can emerge due to

signal loss or an individual leaving the place and returning t

minutes later (i.e., intermittent visits). The I-cluster algorithm uses

a threshold time (tintv = 30 min) to separate between data gap

types [35] (tintv,30 minutes indicated a transient loss of GPS

signal and tintv.30 minutes indicated a participant revisited the

location t minutes after the first visit). Refer to [35] for a detailed

description and code of the I-cluster algorithm. Based on the

inherent error of GPS data, we set the algorithm’s parameters as

d = 20 m and t = 15 min [34].

The lot code and land-use description (residential, commercial,

recreational, health, religion, others) of the places visited by each

participant were determined by joining the I-cluster data with our

highly detailed and frequently updated Geographic Information

System (GIS) of the city of Iquitos [36]. For each identified place,

the total time of permanence (in minutes) and the total time and

frequency of visits were registered. The temporal patterns of

visitation to each I-cluster identified place were assessed by

determining, from the raw GPS locations, the day of the week and

time of the day each visit occurred. Independent analyses of

simultaneous GPS and Semi Structured Interview mobility data

from 101 Iquitos residents show that, of 1,455 identified locations,

11.3% were concordant between methods, whereas 65.8% were

identified only by interviews and 22.8% by the I-cluster algorithm

only (Paz-Soldan et al. unpublished data). As reported in a

systematic review, the rates of GPS data loss or mismatch could

emerge from signal drop-outs, dead batteries, participants’ not

wearing the units, signal loss during the initialization period or

misuse of the device [28]. To minimize this issue, we: (1)

individually explored the raw GPS data from each participant

for places not identified by the I-cluster algorithm (i.e., not

statically visited by participants, like parks or markets, or places

Figure 1. Mobility parameters inferred from GPS data-logger data. (A) Raw GPS locations (,2.3 million points) obtained from tracking the
movements of 582 individuals. Map inset shows out-of-city movements. (B) Human movement kernels (probability of movement outside an
individual’s home (P(Dd)) for all individuals and for different age groups. Inset in frame B shows the probability of movement within 1 km from an
individual’s home. (C) P(Dd) for males and females. (D) Spatial wavelet variance (black line) as a function of the angle from a person’s home (h).
Anisotropy is detected when variance is higher than the randomness expectation (grey line). (E) The probability distribution of the number of places
an individual routinely visited. (F) The relative frequency of visitation across type of places.
doi:10.1371/journal.pone.0058802.g001
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not consistently identified by the algorithm); (2) analysed the raw

GPS locations by applying a 20 m buffer around each I-cluster

identified place, and (3) performed analyses on aggregated data (by

age group or sex) to avoid any potential bias emerging from the

description of movement behaviors of specific individuals. In the

context of this study, we consider locations as the raw GPS points

and places as the locales identified by the data reduction algorithm.

Quantifying human movement parameters. Maximum

likelihood methods were applied to the raw GPS locations to fit

several mathematical distributions (truncated power-law, linear

decay or exponential decay) to the cumulative density function of

the distance to each participant’s home. Such movement kernels

were inferred for all individuals and each sex separately as well as

for different age groups: 7–15 years, 16–25 years, 26–35 years,

36–45 years, 46 years and older. Age categories were defined

using 10-year bins because the limited number of tracked

individuals precluded the generation of narrower age groups. To

determine if the distribution of visited places occurred predom-

inantly in a given cardinal angular direction (h) we implemented a

spatial wavelet analysis. A wavelet function g(x) is a scalable

windowing function. In our study we used the French Top Hat

[37] as a wavelet function. The main metric derived from fitting

the wavelet function to the data is the wavelet positional variance.

Peaks in this variance indicate directions from each individual’s

home where most of the visited places are located. In order to

separate true patterns from random fluctuations, the significance

of the wavelet analysis was determined by comparing the observed

variance with the one obtained from 999 Monte Carlo simulations

[37]. The analysis was performed for all places, and for places

located within 10 km, 5km and 1 km of an individual’s home.

Inferring mobility networks. GPS tracking was not simul-

taneous for all participants, which were mainly tracked within a 1-

year period (see ‘‘Subject Pool’’ section in File S1). We considered

the 15-day tracking period sufficient to characterize participant’s

short-term spatial routine (our study did not consider places visited

at frequencies smaller than 1/15 days or changes in movement

that may occur over longer time periods), and collapsed the

movement data to generate a ‘‘static’’ undirected bipartite graph

(Nij), representing all participants (i) linked to the places (j) they

visited (see Table 1 for a complete glossary of network topology

terms). We acknowledge that our study did not capture

simultaneous co-locations between individuals but, given that we

tracked individuals for multiple days, we consider Nij to be a likely

realization of all possible connections that can occur between

them. A natural derivation of Nij consists in the generation of

affiliation networks that link nodes distanced two units from each

other [38]: the network connecting participants by the places they

have in common (NP) and the network linking locations by the

participants that visit them (NL) (Table 1). To account for the time-

varying properties of human mobility we developed a ‘‘dynamic’’

version of Nij [Nij(t)]. We first quantified the visitation to a given

place on an hourly basis during a typical week (Monday to

Sunday) by calculating the total number of GPS points observed

hourly at each place. If this value exceeded 5 points per hour

(equaling 12.5 tracking minutes, as GPS loggers collected data

every 2.5 min), we considered the person as having stayed at that

place rather than being transiently associated with it (e.g., walked

in front of it). The visitation data was then used to generate 168 Nij

bipartite graphs describing the hourly movements during a typical

week (from Monday to Sunday and from 7:00AM to 11:00 PM),

which were then sequentially merged to derive Nij(t). As 15% of

participants had missing information for the periods between

5:00–7:00 AM and 11:00–12:00 PM (due to some units losing

power before they were charged by participants), we excluded

those times for the calculation of Nij(t) in order to obtain a

complete set of movement trajectories. Nij(t) differs from Nij in that

edges represent potential co-location for individuals in space and

time rather than space only. The affiliation network NP(t) was

estimated as before and, for each time slice, basic topological

indices (described in Table 1) were calculated [38].

The hourly regularity of movement (R(t)) quantified the degree

of recurrence to places identified as highly visited by participants.

To calculate R(t) we first identified the location each participant

spent most of his/her time on an hourly basis (Xi,d,h for participant

i, day d, hour h). Xi,d,h represents the place that received the highest

number of visits at a given hour of the day (for instance, school X

could have been the place most visited by participant A at 11:00

AM). We used Xi,d,h to calculate a binary variable, XML, indicating

whether a participant was at his/her most visited location at

hourly intervals during the tracked hours of 7:00 AM to 11:00 PM

(XML,bin(1 if participant was at XML; 0 otherwise)). R(t) was calculated

as the proportion of all tracked individuals (N) that were found at

their most visited location (XML) as follows: R(t)~

PN
1

XML

N
. A high

value of R(t) indicates that a high proportion of individuals were

found at their most visited location. For example, a value of R(t) of

0.28 at 1:00 PM on Wednesday means that 28% of people were

visiting their XML at that time. Although differently calculated, R(t)

has the same interpretation as the R(t) function derived by Song

et al. [26] and used to quantify human mobility from cell-phone

data.

Modeling disease transmission within an Iquitos

neighborhood. As a case study, we theoretically assessed the

effect of human mobility within an Iquitos neighborhood on the

epidemic propagation of a directly transmitted pathogen by

developing a detailed individual-based simulation model (see

‘‘Epidemic Model’’ section in File S1 for a detailed description).

The model relied on mobility estimates inferred from the GPS

data-loggers to develop a dynamic individual-based bipartite

contact network between 1,000 individuals and a hypothetical

landscape of 3,900 locations representing 3,000 houses, 630 work-

places and 270 commercial areas. This configuration allowed

modeling pathogen transmission within a self-contained neighbor-

hood like the ones mobility metrics were obtained from. Contact

parameters for each individual (i.e., number of locations visited,

time spent at each location, type of location visited) were

stochastically derived by randomly sampling from each parame-

ter’s distribution. The model did not account for demographic or

social structures (i.e., age, sex or occupation) and was developed

using the average population values for each parameter. In order

to account for variations in movement and visitation patterns, we

simulated contacts at 15-minute intervals for a total of 10,000 time

points (equal to 105 days). The model accounted for individual

variations in the structure of daily routines: from highly structured

routines in which a significant proportion of individuals spent a

large proportion of their weekdays on a single location (equivalent

to a work-site) to highly unstructured routines in which the

duration of visitations was more evenly distributed among all

locations. The main parameter defining the degree of structure of

an individual’s routine was m, representing the mean value of the

exponential distribution of the time spent (in hours) at a given

location (section ‘‘Epidemic Model’’ in File S1 and Figure S7 in

File S2). The higher the value of m, the more structured a routine

(i.e., the more it was focused on a single location).

We modeled the effect of changes in m on the transmission

dynamics of a directly transmitted pathogen. A SEIR compart-

mental model [15] was coupled to the inferred contact network to
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describe the infection status of each individual. Transmission

probabilities and incubation and infectious periods were set at 0.5,

2 days and 4 days, respectively (see Table S5 in File S2 for all the

parameter values of the SEIR model); such values are within the

ranges observed for directly transmitted infectious diseases such as

human influenza virus [39,40]. The model assumed all infections

were symptomatic, and that no behavior change (e.g., locations

visited or number of contacts at each location) occurred due to

infection. A total of 50 simulations were run for each one of the

four m scenarios modeled. The models were initialized by

introducing a single infected individual (randomly selected on

each simulation) in a fully susceptible population. For each

simulation we identified the contact structure emerging from the

introduced infection (see videos S1–S4 on File S3) and calculated

the epidemic curve and the epidemic’s effective reproductive

number (Re) [41]. We defined Re as the average number of

secondary cases generated by any infectious individual during the

duration of the outbreak.

Data Limitations. Inherent limitations related to the imple-

mentation of GPS technology need to be considered when

interpreting data [28]. People can purposely or inadvertently not

wear or carry the GPS units, spatial errors can emerge due to poor

satellite geometry or multipath signal errors, data collection inside

buildings is null or significantly reduced, transiently visited locations

can be missed due to the choice of large collection frequencies or

due to the monitoring interval [34]. Despite the unprecedented

quality of our dataset, we acknowledge that the information derived

may underestimate the full repertoire of movements occurring at the

spatial and temporal scales considered. Additionally, given our

sample size (number of tracked individuals), we did not have enough

information to assess temporal variations in routine patterns during

and after holidays. Nonetheless, this issue is common to all methods

for capturing mobility data at very fine spatial scales. Because GPS

units were exchanged twice a week, we asked individuals whether

they forgot to use the units at every exchange and found high

(.80%) participant compliance. One of the keys for the successful

tracking of individuals was the partnership between social,

behavioral and spatial scientists who, via focus group discussions,

identified and addressed potential concerns people may have

regarding the use of GPS units [33].

Results

Quantifying Human Mobility Kernels and Spatial Behavior
Human movements outside the city were rare, accounting for

only 15.4% of the 2,299,718 GPS locations (Figure 1A). Such low

out-of-city movement likely emerged from the high cost associated

with long-distance transportation and the geographic isolation of

Iquitos. Most (81.0%) movements occurred within 1 km of each

individual’s home (Figure 1B), indicating a highly focal kernel of

human movement within the city. Indeed, the probability of

movement outside an individual’s home P(Dd) followed an

exponential decay (Figure 1B; Table S2 in File S2). As age

increased, the tail of mobility kernels increased (Figure 1B). Most

(86.2%) movements by children 7–15 years old occurred within

1 km of their home; such value decreased only to 84.2% for ages

16–25, 77.4% for ages 26–35, 75.8% for ages 36–45, and 80.9%

for ages 46 and older (Figure 1B). Movement kernels of males and

females did not differ significantly (Wilcoxon Signed Rank Test, U

= 21.33; P = 0.183), but males were more likely to move beyond 1

km than females (41.1% vs 34.3%, respectively, Figure 1C). The

directionality of movement from each individual’s home was

highly anisotropic when all visited locations were considered (due

to movement to towns located north and south of the city,

Figure 1A and Figure 1D). The spatial anisotropy significantly

decreased when only movements within the city were considered,

becoming non-significant at #5 km from an individual’s home

(Figure 1D). This pattern was consistent among all age groups

(Figure S2 in File S2) and indicates that within a 5 km radius from

a person’s home (the distance up to which most movements occur)

human trajectories can be considered omnidirectional.

Overall, participants visited an average 6 SD of 5.863.6 places

over the 2 weeks of monitoring, and the probability distribution of

the number of visited places followed a Weibull distribution

(Figure 1E and Table S3 in File S2). Most routinely visited places

were residential (57.6%), followed by commercial (16.8%),

educational (8.5%) and recreational spaces (6.4%) (Figure 1F).

The relative frequency of visits to each type of place varied across

age groups, with children 7–15 years concentrating most of their

trips on residential and educational spaces (53.1% and 14.1%,

respectively) and adults on residential and commercial spaces

(57.9% and 19.3%, respectively) (Figure S3 in File S2). The

duration of visitations to each place was exponentially distributed,

with most (78.2%) visits lasting less than 2 hours (Figure S4 in

File S2).

Despite living in different houses and neighborhoods, the

tracked individuals showed a high degree of connectivity, with the

largest network component (out of 22 components) accounting for

96.2% of all individuals and 97.8% of all edges (Figure S5 in

File S2). Nij was projected into its constituent affiliation networks:

NL and NP (Figure 2). The degree distributions of NL and NP were

best fitted by a truncated power-law distribution of the

Table 1. Glossary of network topology terms used in the manuscript.

Network attribute Definition

Node degree of Nij Number of visited location per each person (i) or number of visitors at a given location (j).

Node degree of NL Number of other places a place is connected to given the mobility of its visitors.

Node degree of NP Number of other individuals an individual is connected to given his/her movement into multiple places.

Component of NP A fragment of the network (sub-network) involving only individuals interconnected with each other.

Number of components of NP This value indicates how many isolated sub-networks are present inside the full network.

Size largest component NP The number of people included in the largest sub-network

Shortest path of NP(t) The average number of intermediate people needed to reach two participants taken at random in the network

Shortest path infection network The average number of infected people needed to track the pathway of infection from two randomly selected
individuals in the network.

doi:10.1371/journal.pone.0058802.t001
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form:P(k)! a: exp{lk ,kvkmin

k{a,k§kmin

� �
, where kmin is the distribu-

tion’s breakpoint and a and l scaling parameters (Figure 2D and

Figure 2E, Table S4 in File S2).

A deeper analysis of NL shows that, whereas residential locations

were highly visited, the degree of connection between them due to

human movement was significantly lower in comparison to non-

residential and public spaces (schools and markets) where the daily

routines of many individuals converged (Figure 2D). Thus,

residential places followed an exponential degree distribution of

the form P(k)~a: exp{lk and the remaining location types

(excluding recreational spaces, due to low sample size) followed

a truncated power-law (Figure 2C and Table S4 in File S2). The

NP network had two components and 20 isolates (Figure 2C). The

main component accounted for 96.2% of all individuals, and had a

diameter of 11, a density of 0.017 and an average path length of

3.95. The network’s degree distribution was similar for males and

females (a= 3.06 and 3.03, respectively and kmin = 15 and 13,

respectively), but differed among age groups (Figure 2E). The low

heterogeneity in the number of contacts of children and teenagers

is likely the result of the reduced number of public locations they

routinely visit (Figure 1E).

Dynamic contacts. Figure 3A shows NP(t) for different time

slices of a single day (ranging from early morning to evening) and

shows that, as the day progresses, the connectivity between

individuals increases, peaking at mid-day and late afternoon and

decreasing again in the evening, when people return back home.

This time-varying and recurrent pattern of human mobility and

co-location can be quantitatively described by three network

metrics: the size of the largest component, the number of

components and the average shortest path of NP(t) at every time

slice (Figure 3B and Table 1). Whereas the average shortest path of

NP(t) remained fairly constant over time (the mean 6 SD over all

time slices was 6.563.5) the temporal pattern in the size of the

largest component and number of components showed significant

temporal heterogeneities. Small shortest path values as the ones

observed for NP(t) (ranging between 4 and 9) are characteristic of

‘‘small-world’’ topologies in which very few contacts are needed to

reach highly distanced individuals [42,43]. Individuals moved

more after mid-morning and from Tuesday to Saturday, and the

overall individual hourly peaks of connectivity (represented by the

size of the largest component) did not follow any temporal pattern

consistent with repetitive and structured mobility routines

(Figure 3B, Figure S6 in File S2). Indeed, only up to 38% of the

tracked individuals showed some degree of regularity in their

routine (Figure 4), a significant deviation from the ,60%

regularity reported for the hours of 7:00 AM to 11:00 PM for

people living in an industrialized nation and derived from cell-

Figure 2. Mobility networks inferred from GPS data-logger data. (A) Networks expressed as an undirected bipartite (Nij) graph. Nij was
projected into, NL describing the connections between locations visited by the same individuals (B) and NP connecting individuals visiting the same
locations (C). Frames (D) and (E) show the empirical (main plot) and predicted (inset) degree distributions for NL and NP, respectively. See Table 1 for a
glossary of network topology terms. The highly focal movement of individuals made it difficult to meaningfully map Nij, NL and NP in geographic
space (Figure S5 in File S2).
doi:10.1371/journal.pone.0058802.g002
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phone records [Figure 3A from Song et al. [26]]. R(t) showed its

lowest value at 7:00 AM, increasing exponentially thereafter

(Figure 4), as observed for Nij(t) and NP. These estimates emphasize

the ‘‘small world’’ structure embedded in daily human mobility

networks, and the emergence of temporally unstructured co-

locations consistent with the occurrence of highly informal daily

mobility routines.

Modeling disease transmission within an Iquitos

neighborhood. To assess the implications of highly local and

heterogeneous movements on disease dynamics we developed a

dynamic contact network individual-based simulation model

quantifying the transmission and propagation of a directly

transmitted pathogen within an Iquitos neighborhood (Figure 5A

and ‘‘Epidemic Model’’ section in File S1). To capture the

occurrence of unstructured mobility routines as the ones quantified

from our data, we used the parameter m, representing the mean

time spent visiting a given location (Figure 5A and Figure S8 in

File S2). When routines were highly structured (m = 4) individuals

spent a significant proportion of their time on the same location

(equivalent of home or work) and their contact networks were

highly dispersed in comparison with individuals with highly

unstructured routines (m = 1) for which more infectious contacts

were identified (Figure S8 in File S2 and Videos S1–S4 on

File S3). The contact network derived under a scenario in which

m = 1 included one component encompassing 95.1% [range across

simulations, 92.0–96.0%] of all infected individuals (Figure 5 and

Table 2). The percentage of infections decreased to 88.4% [87.2–

90.5%] for a scenario with m = 2, 87.9% [86.1–88.5%] for m = 3

and 79.4% [76.2–80.5%] for m = 4 (Figure 5 and Table 2). With

decreasing values of m, the epidemic’s final size and mean

reproductive number, Re, all increased (Figure 5 and Table 2).

Epidemics simulated under a highly unstructured mobility routine

(m = 1) produced 20% more cases than epidemics simulated under

a structured routine (m = 4) (Figure 5, Table 2 and Figure S8 in

File S2, videos S1–S4 on File S3), emphasizing the dramatic

impact that dynamic and heterogeneous contacts have on the

spatial and temporal dimensions of infectious disease transmission.

Discussion

Global urban development is dominated by significant inequal-

ities between the developed and developing world [31]. Whereas

developed cities offer important opportunities for economic and

social development and act as focal points for economic growth,

innovation, and employment, rapid urban growth throughout the

developing world is seriously impacting the capacity of most cities

to provide adequate services for their citizens (particularly the

urban poor), challenging the notion of sustainable urban

development in resource-poor settings [31,44,45]. As location-

aware technologies become more pervasive and affordable, a

unique opportunity for quantitatively characterizing complex

social systems in developing countries is now emerging. Uncov-

Figure 3. Dynamic mobility networks inferred from GPS data-logger data. (A) Time-varying bipartite graphs (Nij(t)) showing the variability in
the connectivity in space and time among individuals during a typical day (e.g., Tuesday). (B) Time-series of different topological descriptors applied
to NP(t). As GPS units were turned off from 11:00 PM to 6AM we excluded this time period from the figure.
doi:10.1371/journal.pone.0058802.g003

Figure 4. Regularity with which each participant was found at
his/her most visited location over a typical week (R(t)) from
7:00AM to 11:00PM. A high value of R(t) indicates that individuals
spent a significant proportion of their time at the most visited location
(equivalent to work or school, where people could spend between 6
and 8 hours every day).
doi:10.1371/journal.pone.0058802.g004
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ering the basic mechanisms governing complex human behaviors

in resource-poor urban environments is paramount for developing

better infrastructure, fostering local economic development and

responding to the emergence, transmission and propagation of

infectious disease threats.

Long-term spatial and temporal scaling patterns of human

movement have been mathematically described most frequently

by power-law distributions emerging as a consequence of the wide

availability of communication, infrastructure and transportation

options associated with developed urban centers [18,24–26]. An

earlier study using cell phone records from over 3.5 million

customers living in 8 Chinese cities described human mobility as

highly local (more than 90% of movements occurred within 5 km

from each other) and proportional to the geographic extent and

compactness of the urbanized area [46]. Similarly, Iquitos

residents spent most of their time within the bounds of the city,

engaging in social, commercial or recreational activities in close

proximity (,1km) to their home. Given that most people in

Iquitos lack personal means of transportation, movements within

and outside the city are significantly affected by economic and

time constraints. Furthermore, there was no significant difference

in the movement kernels associated with each type of place (e.g.,

residential, commercial, recreational), emphasizing the importance

of distance, rather than type of activity, in modulating human

mobility within this tropical urban environment. Our results, using

a more spatially-defined data source, are in agreement with

previous findings [46] and suggest that power laws may not the

most important component of human trajectories within resource-

poor environments. Rather, space imposes a significant friction to

human movement, giving rise to highly local within-city mobility

kernels, better described by exponential functions.

Human activities are a function of preferences, tastes, obliga-

tions, information, habits and financial circumstances [12]. In

developed urban societies, activities to which an individual

commits significant time/effort constrain the ordering of other

routine activities, giving rise to highly predictable human

trajectories [13,24,26]. Mobility patterns in such environments

are generally bound by a journey-to-work structure in which

accessibility and economic/social opportunities determine the

occurrence of regular and recursive mobility patterns [20,24,26].

With the exception of children and adolescents up to 25 year of

age, who spent significant time at schools/colleges, most of the

working-age individuals in this study lacked a repetitive pattern of

visitation to specific locations that is compatible with a journey-to-

work structure. Instead, they engaged in various activities during a

regular day, visiting an average [range] of 6 [1–21] places, and

potentially interacting with other individuals visiting or residing in

them. Such temporally unstructured routines affected the daily

and hourly connectivity and architecture of the inferred mobility

networks, and played a major role on the persistence and extent of

the modeled epidemics.

Figure 5. Impact of variable mobility routines on infectious
disease dynamics. (A) Diagram outlining the parameter m from the
individual-based model. Red bubbles indicate individuals whereas grey
bubbles the locations that belong to their mobility routine. The larger
the size of a bubble the more time an individual spent on a location.
Some locations may not be visited every day. Individuals who visit and
allocate their time into multiple locations have an unstructured routine
(m = 1) whereas individuals who every day spend a significant
proportion of their time at one or very few locations have structured
routines (m = 4). (B) Epidemic curve and mean reproductive number (Re)
for various scenarios simulating the transmission of an influenza-like
pathogen within an Iquitos neighborhood. Models accounted for
different levels of structure on an individual’s daily routine (from m = 1
to m = 4). Confidence bounds were calculated from 50 simulations
performed under each scenario.
doi:10.1371/journal.pone.0058802.g005

Table 2. Topological metrics of the transmission networks (median, Q1-Q3) obtained after running 50 simulations of the individual
based model of the transmission of a directly transmitted pathogen during a 105 day period.

Scenario
Duration of
epidemic (days)

No. infected
individuals

No. locations
with infections

No. infectious
contacts

Contact network
shortest path

M= 1 45 (43–48) 951 (920–960) 339 (333–350) 1680 (1589–1732) 16 (15–17)

M= 2 51 (48–56) 884 (872–905) 347 (339–351) 1629 (1561–1660) 18 (16–18)

M= 3 58 (57–62) 879 (861–885) 331 (317–340) 1472 (1391–1496) 18 (17–18)

M= 4 70 (65–75) 794 (762–805) 325 (317–330) 1138 (1268–1440) 19 (18–20)

m represents the degree of structure on an individual’s routine (from highly unstructured, m = 1, to highly structured, m = 4). See Methods and File S1 for details.
doi:10.1371/journal.pone.0058802.t002
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Recent infectious disease modeling efforts have aimed at

incorporating realism by considering human commuting behaviors

within large-scale meta-population type modeling frameworks

[11,20,22,23]. Mobility quantifications obtained from industrial-

ized countries outline the importance of commuting between

census areas, which can be up to an order of magnitude higher

than non-commuting movements [8,22]. When regular move-

ments (emerging from the commuting behavior of workers)

between population areas are accounted for, the epidemic speed

and invasion threshold of pathogen transmission are significantly

lengthened [11,20]. These findings, obtained from various data

sources and modeling frameworks, outline the importance of

human behavior in disease dynamics and challenge the utility of

models excluding heterogeneous contact patterns as predictive

tools for public health response. Our study extends previous work

by: a) analyzing data at much finer spatial and temporal scales and

level of resolution (i.e., individual movements rather than

aggregate movements between districts or cities); b) incorporating

a richer repertoire of human mobility behaviors (e.g., number of

locations and type of location); and 3) relying on parameter values

derived from a resource-poor urban environment. Our simulation

models show that human mobility and contacts within Iquitos are

highly heterogeneous within a typical week and that, by not

accounting for such dynamic contacts, estimates of individual

connectivity and transmission of a directly transmitted pathogen

could be significantly underestimated.

Results from a series of detailed stochastic simulation models

suggest that, in industrialized countries, halting human contact

networks by closing highly visited places or by socially distancing

individuals could substantially lower pandemic influenza attack

rates before a vaccine becomes available, with timely initiation of

measures and school closure playing important roles in dampening

transmission dynamics [39,47]. The extent to which such

measures may prove effective in resource-poor cities such as

Iquitos remains poorly understood [48]. The high variability in

observed mobility routines may make it difficult to enforce

household isolation or to identify which premises (work-places or

public spaces) will need to be closed, because individuals spend a

significant amount of time at multiple locales. Furthermore, given

the highly variable movement patterns observed among children,

home isolation after school closures may be difficult to enforce. It

is estimated that most (.90%) of the mortality exerted by a

potential pandemic influenza epidemic would occur in developing

countries [49], where vaccine and antiviral stockpiles are minimal

[48]. The lack of detailed mathematical models parameterized to

estimate infectious disease transmission dynamics in such settings

limits local and regional public health offices’ ability to enforce

containment measures or plan emergency preparedness strategies

that are context specific [48]. Our findings reveal inherent

complexities characterizing human mobility with implications for

the understanding and contextualization of infectious disease

dynamics in developing countries. Results from our study

contribute new empiric information for the development of more

realistic infectious disease models that account for the complex,

fine-grained and dynamic nature of human interactions that

characterize resource-poor urban environments.
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