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Cancer is one of the most frequently diagnosed malignant diseases worldwide,

posing a serious, long-term threat to patients’ health and life. Systemic

chemotherapy remains the first-line therapeutic approach for recurrent or

metastatic cancer patients after surgery, with the potential to effectively extend

patient survival. However, the development of drug resistance seriously limits

the clinical efficiency of chemotherapy and ultimately results in treatment

failure and patient death. A large number of studies have shown that non-

coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and

circular RNAs, are widely involved in the regulation of cancer drug resistance.

Their dysregulation contributes to the development of cancer drug resistance

by modulating the expression of specific target genes involved in cellular

apoptosis, autophagy, drug efflux, epithelial-to-mesenchymal transition

(EMT), and cancer stem cells (CSCs). Moreover, some ncRNAs also possess

great potential as efficient, specific biomarkers in diagnosis and prognosis as

well as therapeutic targets in cancer patients. In this review, we summarize the

recent findings on the emerging role and underlying mechanisms of ncRNAs

involved in cancer drug resistance and focus on their clinical applications as

biomarkers and therapeutic targets in cancer treatment. This information will

be of great benefit to early diagnosis and prognostic assessments of cancer as

well as the development of ncRNA-based therapeutic strategies for

cancer patients.
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Introduction

Cancer is the second leading cause of death after

cardiovascular disease globally, representing a serious threat to

patients’ life and health (1, 2). Based on recent statistics from the

International Agency for Research, approximately 19.3 million

new cancer cases and more than 10.0 million deaths occurred in

2020 (3). Currently, surgical resection, radiation, endocrine

therapy, targeted therapy, and systemic chemotherapy are the

main methods of cancer treatment. Among them, systemic

chemotherapy is the most effective therapeutic option for all

stages of cancer, with the potential to improve patients’

prognosis in the short term (4–6). It has been reported that

chemotherapy could extend the overall survival (OS) of patients

with advanced cancer by 6.7 months compared to patients only

treated with best supportive care (7). However, the emergency of

drug resistance significantly limits the clinical application of

chemotherapeutic agents, ultimately resulting in treatment

failure and patient death. Drug resistance has become an

immense obstacle in cancer treatment (8). The underlying

mechanisms involved in drug resistance are considerably

complex and have not been fully elucidated. Therefore, a

better understanding of the mechanisms responsible for drug

resistance will provide opportunities for the development of

precise therapeutic strategies for cancer patients.

Non-coding RNAs (ncRNAs), such as microRNAs

(miRNAs), long non-coding RNAs (lncRNAs), and circular

RNAs (circRNAs), are a large group of transcripts that have

no protein coding potential. They were recognized as by-

products of transcription without biological function in the

past long period of time (9). In recent years, an increasing

amount of evidence has suggested that ncRNAs are crucial

regulators in almost all cellular processes, such as

transcription, apoptosis, proliferation, and differentiation (10,

11). They play crucial roles in the regulation of a variety of

physiological and pathological processes. The dysregulation of

ncRNAs has been shown to be closely associated with a variety of

diseases, particularly cancer (12–14). For instance, the

overexpression of miRNA-200a-3p was found to significantly

facilitate cell proliferation, migration, and invasion as well as

induce apoptosis in gastric cancer (GC) by directly targeting

DLC-1 (15). LncRNA ITGB8-AS1 was found to promote cell

proliferation, colony formation, and tumor growth in colorectal

cancer (CRC) by upregulating ITGA3 and ITGB3 via sponging

miR-33b-5p and let-7c-5p/let-7d-5p (16). Furthermore,

circRNA C190 overexpression facilitated the proliferation, and

migration of non-small cell lung carcinoma (NSCLC) cell lines

by targeting CDK1 and CDK6 via sequestrating miR-142-5p

(17). Notably, ncRNA dysregulation contributes to the

development of cancer drug resistance via various

mechanisms, such as the inhibition of apoptosis, enhancement

of epithelial-to-mesenchymal transition (EMT), and induction

of autophagy (18–20). In addition, the differential expression
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patterns of ncRNAs endow them with great potential as

biomarkers and therapeutic targets for cancer patients.

In this review, we summarize the recent findings on the

regulatory mechanisms of ncRNAs in cancer drug resistance and

highlight their clinical applications as promising biomarkers and

therapeutic targets for cancer patients. A better understanding of

the underlying mechanisms of ncRNAs in drug resistance may

offer an opportunity to develop ncRNA-based therapeutic

strategies for cancer patients against drug resistance.
Overview of ncRNAs

Classification of ncRNAs

It has been reported that ncRNAs make up about 98% of the

human genome (21). With the continuous development of high-

throughput sequencing technologies, an increasing number of

ncRNAs are being identified in eukaryotic cells. According to

distinguished classification standards, ncRNAs can be divided

into a variety of categories. For instance, ncRNAs are classified

into housekeeping ncRNAs (e.g., rRNAs and tRNAs) and

regulatory ncRNAs (e.g., miRNAs, circRNAs and lncRNAs)

based on their cellular functions. According to their transcript

size, ncRNAs are divided into lncRNAs (> 200 nucleotides) and

small ncRNAs (< 200 nucleotides), including miRNAs, small

interfering RNAs (siRNAs), and piwi-interacting RNAs

(piRNAs) (22, 23). Besides, lncRNAs are sorted into two

categories, linear lncRNAs and circular lncRNAs based on

their structure (24). Moreover, according to the role of

lncRNAs in gene expression regulation, they are classified as

cis-lncRNAs or trans-lncRNAs (25). In addition, ncRNAs can

also be divided into distinct categories based on their subcellular

localization (e.g., small nuclear RNAs and cytoplasm-located

siRNAs) and genomic origins (including sense or antisense

ncRNAs, bidirectional ncRNAs, intronic ncRNAs, and

intergenic ncRNAs) (26). Collectively, scientific and systematic

classification will be of great benefit in better understanding the

characteristics of ncRNAs.
Biogenesis of ncRNAs

The mechanisms of ncRNA biogenesis are extremely

complicated, and individual ncRNA categories possess unique

characteristics (Figure 1). For instance, both miRNAs and

lncRNAs are transcribed by RNA polymerase II (Pol II) from

genomic loci. Primary miRNAs (pri-miRNAs) are subsequently

catalyzed by a microprocessor complex consisting of DiGeorge

syndrome critical region 8 (DGCR8) and Drosha to generate

precursor miRNAs (pre-miRNAs). Pre-miRNAs are translocated

from the nucleus to the cytoplasm, and then processed into double-

stranded miRNAs by the Dicer/TRBP/PACT complex. Finally, the
frontiersin.org

https://doi.org/10.3389/fonc.2022.951864
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2022.951864
double-stranded miRNAs are processed into mature miRNAs by a

series of regulators, including helicase and the RNA-induced

silencing complex (RISC) (27). Different from miRNAs, lncRNAs

contain 5’ caps and 3’ poly(A) tails. Most lncRNAs undergo a

canonical mechanism similar to the biogenesis of mRNAs, by which

they are often capped by 7-methyl guanosine at the 5’ end of Pol II

transcripts, polyadenylated at their 3′ ends, and spliced similarly to

mRNAs (28). CircRNAs are a novel type of ncRNAs characterized

by the formation of covalently closed-loop structures without 5’

caps and 3’ tails. CircRNAs are mainly produced from precursor

mRNAs via a unique mechanism called back-splicing reaction, in

which a downstream splice donor site binds to an upstream splice

acceptor site to form a single-strand, covalently closed-loop

structure (29).

The biogenesis of ncRNAs is widely regulated by various

factors, such as trans-acting factors, RNA binding proteins

(RBPs), and epigenetic modifications. For instance, the

overexpression of poly(A)-binding protein nuclear 1

(PABPN1) was found to facilitate the turnover of non-

coding transcripts via a polyadenylation-dependent

mechanism, indicating its negative role in modulating the
Frontiers in Oncology 03
processing of certain ncRNAs (30). Alternative splicing

factor1/pre-mRNA splicing factor SF2 (ASF/SF2) is a

classical RBP encoded by the SFRS1 gene. Wu et al. showed

that SF2/ASF overexpression facilitated the maturation

process of a series of miRNAs, including miR-7, miR-29b,

miR-221, and miR-222. Consistent with this, the knockdown

of SF2/ASF resulted in a decreased level of mature miR-7 (31).

N6-methyladenosine (m6A) is a wel l -s tudied RNA

modification that plays crucial roles in distinct processes

modulating RNA metabolism, such as the splicing, stability,

and translation of mRNA (32). Timoteo et al. revealed that

specific m6As promoted circRNA back-splicing reaction in a

METTL3- and YTHDC1-dependent manner, whereas the

mutation of the m6A sites significantly decreased the

circRNA levels, which was paralleled by a strong increase in

the precursor RNA (33). Although some progress has been

made in recent years, ncRNA biogenesis and its regulatory

mechanisms are still not fully understood. Continuous in-

depth studies will be beneficial not only in differentiating

ncRNAs from protein-coding RNAs but also in deciphering

their functional significance.
FIGURE 1

Schematic diagram of ncRNA biogenesis and action patterns. (A) Pri-miRNA is transcribed by RNA polymerasel II from genomic loci and further
processed into pre-miRNA by microprocessor complex. Subsequently, pre-miRNA is exported to the cytoplasm and further processed into
double-stranded miRNA via the Dicer/TRBP/PACT complex. Next, with the help of Ago/GW182, the double-stranded miRNA is processed into
mature miRNA, which directly binds to the 3’-UTR of target mRNA, and then facilitates its degradation. (B) LncRNA transcribed by RNA
polymerase II is exported to the cytoplasm. Subsequently, lncRNA exerts its biological role by acting as sponges of miRNAs, RBPs, and TFs. (C)
CircRNA is mainly derived from precursor mRNAs via back-splicing reaction, by which the single strand of circRNA forms a covalently closed-
loop structure. CircRNA plays crucial roles in cellular processes by serving as sponges of miRNAs, RBPs, and TFs.
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Patterns of ncRNA action

A large amount of evidence suggests that ncRNAs are

involved in almost all physiological and pathological processes,

including tissue development, cancer progression, and drug

resistance. They play crucial roles in these processes via

distinct molecular mechanisms, such as regulating the

expression of specific target genes, altering the function and

activity of proteins, and targeting related signaling pathways

(34–36). All these mechanisms are mainly based on the

interaction of ncRNAs with DNA, RNA, and proteins

(Figure 1). For instance, miRNAs are 19–25 nucleotides in

length and play crucial roles in pivotal cellular processes by

regulating specific gene expression at the post-transcriptional

level (37, 38). They inhibit the expression of specific genes by

directly binding to 3′ untranslated regions (UTRs) of their target
mRNAs. One single miRNA can simultaneously control the

expression of multiple target genes involved in distinct cellular

processes (e.g., invasion, metastasis, and cell cycle), while one

gene can also be regulated by several miRNAs (39). LncRNAs

and circRNAs have been shown to exert their biological

functions by acting as sponges or molecular sinks for miRNAs,

RBPs, and transcription factors to specifically modulate their

target gene expression. These ncRNAs are also called

intracellular competitive endogenous RNAs (ceRNAs) (40, 41).

For instance, lncRNA SLC25A25-AS1 was found to promote

proliferation, migration, and invasion, and induced apoptosis in

NSCLC A549 and H460 cells by upregulating integrin a2 via

sponging miR-195-5p (42). Due to their central role in

physiological and pathological processes, the dysregulation of

ncRNAs is closely associated with the occurrence and

development of many diseases including cancer. In fact, the

aberrant expression of ncRNAs has been observed in cancer

tissues and cell lines. They are involved in the regulation of

cancer progression by serving as oncogenes or tumor

suppressors (10). In addition, ncRNAs are also crucial

regulators in the development of cancer drug resistance (10).

In-depth investigations of the underlying mechanism of ncRNAs

in cancer drug resistance could contribute to the precise

treatment of cancer patients, particularly those with poor

response to chemotherapy.
Mechanisms of ncRNAs in mediating
cancer drug resistance

Chemotherapy remains the most effective first-line

therapeutic approach for all stages of cancer and can

effectively improve the clinical outcomes of patients in the

short term. However, its long-term role in extending the OS of

cancer patients is extremely restricted due to the emergence of

drug resistance (43). Drug resistance is classified into single drug
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resistance and multidrug resistance (MDR). Of these, MDR is

the main cause of mortality for most patients (44). Emerging

evidence has shown that ncRNAs are closely associated with

cancer drug resistance (Table 1). Their dysregulation contributes

to the development of cancer drug resistance via distinct

mechanisms, including inhibition of apoptosis, activation of

protective autophagy, enhancement of drug efflux, induction of

EMT, and enhancement of cancer stem cells (CSCs) stemness

(Figure 2). However, the exact mechanisms are still not fully

clarified. In this section, the involvement of ncRNAs in cancer

drug resistance is outlined.
MiRNAs and cancer drug resistance

MiRNAs affect drug-induced apoptosis by
targeting apoptosis-related proteins or drug-
resistance pathways

The inhibition of drug-induced apoptosis is one of the main

mechanisms contributing to cancer drug resistance. Apoptosis

can be divided into two categories: the extrinsic pathways

mediated by death receptors and intrinsic (mitochondrial)

pathways associated with apoptosis-related proteins such as B-

cell lymphoma-2 (Bcl-2) (135). MiRNAs have been shown to

influence cancer drug resistance by manipulating apoptosis-

related proteins (27, 136). For instance, in our previous work,

miR-633 was found to be significantly upregulated in GC tissues

and cells, and its upregulation in GC samples was closely

associated with the downregulation of Fas-associated protein

with death domain (FADD), an adaptor involved in the extrinsic

pathway of apoptosis. Mechanistic analysis revealed that miR-

633 inhibited doxorubicin (DOX)/cisplatin (CDDP)-induced

apoptosis in SGC-7901 and AGS cells by downregulating

FADD via directly targeting its 3′-UTR (137). In another

study, Yang et al. found that miR‐92a-3p was upregulated in

both cervical cancer (CC) tissues and CDDP-resistant CC cell

lines HeLa and SiHa. The overexpression of miR‐92a-3p

inhibited the CDDP-induced apoptosis of HeLa and SiHa cells

by targeting the expression of Krüppel-like factor 4 (KLF4),

leading to the enhancement of CDDP resistance in CC.

Consistent with this, miR‐92a-3p knockdown increased the

sensitivity of HeLa and SiHa cells to CDDP (138).

The Bcl-2 family consisting of anti-apoptotic proteins (e.g.,

Bcl-2, Mcl-1, and Bcl-xl) and pro-apoptotic proteins (e.g., Bax,

Bim, and Bak) plays crucial roles in the mitochondrial apoptotic

pathway (139). It has been reported that the ratio between anti-

apoptotic proteins and BH3-only proteins (a subtype of pro-

apoptotic proteins) can alter the outer mitochondrial membrane

permeability by regulating the activation of pore-forming

proteins, thereby inducing apoptosis of the cancer cells (140).

Zhong et al. showed that miR-625-3p overexpression

significantly inhibited the CDDP-induced apoptosis of high-

grade serous ovarian cancer (OC) cells OVCAR3 and OVCAR4
frontiersin.org
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TABLE 1 Roles of ncRNAs in cancers drug resistance.

Cancer
types

Chemotherapeutic
drugs

ncRNAs Gene type Alteration Effect on Drug Resis-
tance

Reference

OC CDDP miR-133a, miR-29c-3p, miR-30a
LINC01125, LINC01508
circRNA Cdr1as

Tumor
suppressor

Downregulated Sensitivity to CDDP (45–50)

miR-181d, miR-149-3p
lncRNA WDFY3-AS2, lncRNA
CCAT1
circ-LPAR3, circHIPK2

Oncogene Upregulated Resistance to CDDP (51–56)

PTX miR-194-5p, hsa‐miR‐105
lncRNA SNHG5, lncRNA KB-
1471A8.2
circEXOC6B

Tumor
suppressor

Downregulated Sensitivity to PTX (57–61)

lncRNA SDHAP1, lncRNA HULC
circ_0061140, circ_CELSR1

Oncogene Upregulated Resistance to PTX (62–65)

GC 5-FU miR-204, miR195, exosomal miR-107 Tumor
suppressor

Downregulated Sensitivity to 5-FU (66–68)

miR-149
lncRNA HAGLR, lncRNA HNF1A-
AS1
circRNA CPM, circNRIP1

Oncogene Upregulated Resistance to 5-FU (69–73)

CDDP microRNA-206
lncRNA ADAMTS9-AS2
circRNA MCTP2, circ_0001017

Tumor
suppressor

Downregulated Sensitivity to CDDP (74–77)

miR-193a-3p
lncRNA BANCR, lncRNA
MCM3AP-AS1
circRNA DONSON

Oncogene Upregulated Resistance to CDDP (78–81)

OXA hsa_circ_0001546 Tumor
suppressor

Downregulated Sensitivity to OXA (82)

lncRNA DDX11-AS1
circ_0032821

Oncogene Upregulated Resistance to OXA (83, 84)

NSCLC CDDP miR-186-5p, miR-101-3p
lncRNA SPRY4-IT1
circ_0030998

Tumor
suppressor

Downregulated Sensitivity to CDDP (85–88)

microRNA-25-3p
lncRNA SNHG1, LINC01224
circRNA_100565

Oncogene Upregulated Resistance to CDDP (89–92)

CRC 5-FU miR-375-3p
lncRNA HAND2-AS1,
circDDX17

Tumor
suppressor

Downregulated Sensitivity to 5-FU (93–95)

miR-29b-3p
lncRNA LBX2-AS1
circ_0007031

Oncogene Upregulated Resistance to 5-FU (96–98)

OXA miR-200b-3p
circ-FBXW7

Tumor
suppressor

Downregulated Sensitivity to OXA (99, 100)

miR-454-3p
lncRNA CACS15

Oncogene Upregulated Resistance to OXA (101, 102)

HCC sorafenib miR-138-1-3p, miRNA-124-3p.1
lncRNA FOXD2‐AS1

Tumor
suppressor

Downregulated Sensitivity to sorafenib (103–105)

miR-126-3p
lncRNA DANCR
circFOXM1

Oncogene Upregulated Resistance to sorafenib (106–108)

CDDP miR-27a-3p
lncRNA GAS5

Tumor
suppressor

Downregulated Sensitivity to CDDP (109, 110)

lncRNA FGD5-AS1
circMRPS35

Oncogene Upregulated Resistance to CDDP (111, 112)

(Continued)
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by targeting Bcl-2 and Bax expression, resulting in the inhibition

of CDDP sensitivity in these cells (141). Ashofteh et al. revealed

that miRNA-15a promoted cellular apoptosis by downregulating

the mRNA levels of Mcl-1 and Bcl-2 in chronic lymphocytic

leukemia (CLL), thereby enhancing the sensitivity of CLL-CII

leukemia cells to fludarabine (142). In addition, Sun et al.

demonstrated that miR‐374a was downregulated in A2780

cells by propofol. The overexpression miR‐374a suppressed the

apoptosis of A2780 cells by decreasing the expression of Bim,

p27, and FOXO1, leading to the enhancement of CDDP

resistance in OC (143).

The Wnt/b-catenin signaling pathway is involved in the

modulation of various cellular processes of cancer cells, such as

apoptosis, proliferation, and metastasis. The dysregulation of

this pathway has been shown to contribute to the development

of cancer drug resistance by influencing the apoptotic pathways

(144). For instance, Han et al. found that miR-199b-3p

knockdown enhanced the sensitivity of cetuximab-resistant

OC cells SW480 and HCT116 to cetuximab by promoting cell

apoptosis. Mechanistically, silencing miR-199b-3p could

enhance cetuximab-induced apoptosis in cetuximab-resistant

SW480 and HCT116 cells by activating the Wnt/b-catenin
signaling pathway via downregulating CRIM1 (145). Liu et al.

showed that miR-217 was significantly reduced in CDDP-

resistant OC COC1 cells compared with in CDDP-sensitive

COC1 cells. The overexpression of miR-217 in COC1 cells
Frontiers in Oncology 06
facilitated CDDP-induced apoptosis and enhanced CDDP

sensitivity by inhibiting the activation of the Wnt/b-catenin
signaling pathway (146). In addition, multiple miRNAs, such as

miR-323a-3p, miR-6727-5p, and miRNA-223-3p, have also been

found to contribute to the development of cancer drug resistance

by regulating apoptotic pathways via targeting other drug

resistance-related signaling pathways, including the

phosphatidylinositol 3-kinase (PI3K)/AKT, mitogen-activated

protein kinase (MAPK), and nuclear factor kappa B (NF-kB)
signaling pathways (147–149). Collectively, these findings

indicate that targeting the apoptotic pathways is a common

regulation mechanism for miRNAs in cancer drug resistance.

Further investigating the mechanisms of miRNAs in drug-

induced apoptosis may provide new insights on therapeutic

strategies against cancer drug resistance.

MiRNAs and drug efflux in cancer
drug resistance

Excessive drug efflux is considered a critical mechanism

contributing to cancer drug resistance, in which the efficiency

of anticancer drugs is significantly limited due to the reduction

in drug concentration in cancer cells (150). It has been reported

that excessive drug efflux is a result of the upregulation of drug

efflux pumps, including ATP-binding cassette (ABC)

transporters. Several members of the ABC family, such as

ABCB1, ABCC2, and ABCG2, have been shown to contribute
TABLE 1 Continued

Cancer
types

Chemotherapeutic
drugs

ncRNAs Gene type Alteration Effect on Drug Resis-
tance

Reference

BC ADR miR-3609
circKDM4C

Tumor
suppressor

Downregulated Sensitivity to ADR (113, 114)

microRNA-221
lnc-LOC645166
circRNA_0044556

Oncogene Upregulated Resistance to ADR (115–117)

tamoxifen lncRNA ADAMTS9-AS2
hsa_circ_0025202

Tumor
suppressor

Downregulated Sensitivity to tamoxifen (118, 119)

miR-24-3p
lncRNA CYTOR

oncogene Upregulated Resistance to tamoxifen (120, 121)

CC CDDP miR-144 Tumor
suppressor

Downregulated Sensitivity to CDDP (122)

lncRNA OTUD6B-AS1 Oncogene Upregulated Resistance to CDDP (123)

Prostate cancer docetaxel circFoxo3 Tumor
suppressor

Downregulated Sensitivity to docetaxel (124)

exosomal circ-XIAP Oncogene Upregulated Resistance to docetaxel (125)

PC gemcitabine miRNA-3662
circ_0092367

Tumor
suppressor

Downregulated Sensitivity to gemcitabine (126, 127)

miR-93-5p
lncRNA PVT1
circHIPK3

Oncogene Upregulated Resistance to gemcitabine (128–130)

Bladder cancer CDDP exosomal LINC00355
circ_0058063

Oncogene Upregulated Resistance to CDDP (131, 132)

Renal cancer sunitinib miR-130b
circSNX6

Oncogene Upregulated Resistance to sunitinib (133, 134)
fro
ntiersin.org

https://doi.org/10.3389/fonc.2022.951864
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2022.951864
to the development of MDR in a variety of cancers (151).

Increasing evidence suggest that miRNAs participate in the

modulation of drug efflux in cancer cells by altering the

expression ABC transporters (152). For instance, Zou et al.

showed that the overexpression of miR-495 significantly

reduced the drug efflux in MDR OC cell line A2780DX5 and

GC cell line SGC7901R by directly targeting ABCB1, thereby

enhancing the sensitivity of cancer cells to DOX and paclitaxel

(PTX) (153). ABCB1 is also a target of miR-101 in GC. The

overexpression of miR-101 in drug-resistant SGC7901 cells

significantly decreased ABCB1 expression at the mRNA and

protein levels (154). Tian et al. found that miR-940-3p negatively

modulated ABCC2 expression in CDDP-resistant OVCAR3 and

SKOV3 cells by directly binding to its 3’-UTR region, leading to

the enhancement of CDDP sensitivity in OC (155). Additionally,

Tsai et al. revealed that miR-519d was downregulated in human

osteosarcoma cells MG-63 and U-2 by CCN family member 2,

and its reduction facilitated drug resistance by upregulating the

ABCG2 levels (156). Moreover, Amponsah et al. demonstrated

that miR-210 overexpression decreased ABCC5 mRNA levels in

pancreatic cancer (PC) cell lines (ASAN-PaCa, AsPC-1 and

MIA-PaCa2) by targeting its 3’-UTR, leading to the

enhancement of gemcitabine sensitivity in PC (157). In

addition, several miRNAs, such as miR-34a, miR-7-5p, and

miR-325-3p, have also been shown to play a role in cancer

drug resistance by influencing drug efflux via targeting ABC

transporters in a variety of cancers, including colon cancer,

glioblastoma, and hepatocellular carcinoma (HCC) (158–160).

Taken together, these studies strongly suggest that miRNAs are
Frontiers in Oncology 07
involved in the development of cancer drug resistance by

altering the function of drug efflux pumps. However, the

detailed mechanisms are still inconclusive and need to be

further elucidated.

MiRNAs are involved in the development
of cancer drug resistance by
modulating autophagy

Autophagy is a lysosomal degradation process that is

essential for cellular survival, differentiation, and homeostasis.

Protective autophagy has been recognized as one of the main

mechanisms resulting in cancer drug resistance, by which cancer

cells eliminate the cytotoxicity of chemotherapeutic drugs (161).

Therefore, targeting autophagy may be an effective therapeutic

strategy for improving the poor prognosis of cancer patients.

MiRNAs have been shown to participate in cancer drug

resistance by regulating autophagy-related genes (162). For

instance, Zhou et al. found that miR-133a was significantly

downregulated in CDDP-resistant OC cell lines A2780 and

SKOV3. The overexpression of miR-133a significantly

enhanced the CDDP sensitivity in CDDP-resistant A2780 and

SKOV3 cells by inhibiting autophagy via directly targeting YES1

(45). Li et al. showed that miR-20a-5p inhibited autophagy in

CDDP-resistant OC cells. Mechanistically, miR-20a-5p

suppressed the expression of RBP1 in CDDP-resistant A2780

and COC1 by promoting DNMT3B-mediated RBP1

methylation, resulting in the inhibition of autophagy and

CDDP resistance in OC (163). H446/EP was a MDR small cell

lung cancer (SCLC) cell line that was developed from H446. Li
FIGURE 2

Classical mechanisms of ncRNAs in cancer drug resistance. The dysregulation of ncRNAs contributes to the development of cancer drug
resistance by modulating multiple cellular processes of cancer cells, such as drug efflux, cell apoptosis, autophagy, and EMT as well as the
acquisition of CSC characteristics.
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et al. demonstrated that miR-199a-5p was significantly

upregulated in H446/EP cells compared to non-drug-resistant

H446 cells. MiR-199a-5p overexpression decreased the CDDP

sensitivity in H446 cells by enhancing the autophagy activity via

directly targeting p62 (164). Moreover, Zhao et al. revealed that

miR-145 was downregulated in CRC tissues and cell lines

(HCT116, SW620, and HCT-8). The overexpression of miR-

145 enhanced 5-fluorouracil (5-FU) sensitivity in 5-FU-resistant

HCT116, SW620, and HCT-8 cells by enhancing 5-FU-induced

apoptosis and reducing autophagy. Mechanistically, miR-145

activated p53 by directly targeting HDAC4, thereby inhibiting 5-

FU resistance in CRC (165). Collectively, these studies indicate

that protective autophagy induced by miRNA dysregulation is a

crucial factor resulting in the occurrence of cancer drug

resistance. Moreover, miRNAs may simultaneously target

apoptotic pathways and autophagy. Thus, it is a valuable

strategy to comprehensively identify miRNAs associated with

these death pathways to help patients overcome cancer

drug resistance.

MiRNAs alter stemness characteristics and
EMT in cancer cells

CSCs, also known as tumor-initiating cells (TICs), are a

unique subset of tumor cells exhibiting capabilities of self-

renewal, differentiation, and tumor initiation. CSCs have been

recognized as the main cause of drug resistance, metastasis, and

recurrence of cancer (166, 167). Growing evidence suggests that

miRNAs are involved in cancer drug resistance by altering the

characteristics of CSCs (168). For instance, Zhang et al. found

that miR-132 was upregulated in the Lrg5+ gastric CSCs isolated

from MKN45 and MKN28 cells. High miR-132 expression was

closely associated with chemo-resistance in GC patients.

Mechanistic assays revealed that miR-132 facilitated CDDP

resistance in Lrg5+ gastric CSCs by upregulating ABCG2 via

directly targeting SIRT1 (169). Feng et al. showed that miR-25

was upregulated in liver CSCs (LCSCs) isolated from HepG2,

Huh7, and PLC cells compared with the non-CSCs. The

knockdown of miR-25 significantly enhanced the sensitivity of

the LCSCs to tumor necrosis factor-related apoptosis-inducing

ligand (TRAIL)-induced apoptosis by inhibiting Bad

phosphorylation via upregulating phosphatase and tensin

homologue (PTEN), a PI3K inhibitor (170). In addition, Ni

et al. revealed that miR-375 suppressed the stemness of GC cells

BGC-823 and SGC-7901 by triggering ferroptosis via directly

targeting SLC7A11 (171). Epithelial mesenchymal transition

(EMT) is a morphogenetic process that endows epithelial cells

with migratory and invasive characteristics. The aberrant

activation of EMT has been shown to facilitate the

development of cancer drug resistance by enabling the

conversion of non-CSCs into CSCs (172, 173). MiRNAs can

participate in the development of cancer drug resistance by

targeting the EMT process. For instance, Hirao et al. showed that

the overexpression of miR-125b-5p in HCC cell lines (PLC/
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PRF5-R1/R2) enhanced sorafenib resistance. Mechanistically,

miR-125b-5p promoted the EMT process and conferred

stemness characteristics in PLC/PRF5-R1/R2 cells by targeting

ATXN1, leading to the reduction of sorafenib sensitivity in HCC.

Consistent with this, ATXN1 knockdown in HCC cells exhibited

a higher CSC population and an EMT phenotype (174).

Chaudhary et al. revealed that miR-205 was highly

downregulated in gemcitabine-resistant MIA PaCa-2R cells

compared to gemcitabine-sensitive MIA PaCa-2 cells. The

overexpression of miR-205 resulted in a reduction in EMT,

CSCs, and chemo-resistance markers in MIA PaCa-2R cells,

suggesting that miR-205 can enhance the sensitivity of

gemcitabine-resistant PC cells to gemcitabine (175). In

addition, the overexpression of miR‐363 in drug-resistant OC

cell lines (A2780cp and C13) restores CDDP sensitivity by

directly targeting Snail (a mesenchymal marker). Consistent

with this, Snail overexpression dramatically suppressed the

effect of miR‐363 on CDDP resistance of A2780cp and C13

cells, indicating that miR‐363 regulates CDDP resistance in OC

through Snail‐induced EMT (176). In summary, understanding

the effect of miRNAs on stemness properties and EMT in the

development of cancer drug resistance may provide new insights

into the development of therapeutic strategies for patients with a

poor response to chemotherapeutic agents.

MiRNAs are involved in the regulation of
inflammation by targeting T cells

Chronic inflammation triggered by infections, aberrant

immune reactions or environmental factors is an uncontrolled

inflammatory response and contributes to cancer progression by

influencing various biological behaviors of cancer cells,

including cellular proliferation, invasion, angiogenesis,

metastasis, and drug resistance (177). T cells are the major

effector cells in cellular immunity. They are involved in

inflammation by producing cytokines in immune responses

(178). The immune evasion and immune tolerance induced by

the dysregulation of T cell function have shown to be the main

causes of drug resistance development (27). Therefore, targeting

T cells is an effective way to improve drug sensitivity for cancer

patients. An increasing amount of evidence suggests that

miRNAs are crucial regulators of T cell functions. For

example, Yan et al. discovered that miR-181a was upregulated

in T-cell lymphoblastic lymphoma Jurkat and H9 cells treated

with DOX, CDDP, cyclophosphamide, and cytarabine.

Knockdown of miR-181a in Jurkat and H9 cells significantly

enhanced the sensitivity of these chemotherapeutic drugs (179).

Ning et al. demonstrated that miR-208b was upregulated in

exosomes from CRC cell lines NCM460, SW480, and oxaliplatin

(OXA)-resistant SW480. Exosomal miR-208b facilitated

regulatory T cells expansion by targeting programmed cell

death factor 4, thereby enhancing OXA resistance in CRC

(180). Xu et al. showed that miR-424 (322) reversed drug

resistance in OC by activating T cell immune response,
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resulting in the inhibition of immune evasion in drug-resistant

OC. Mechanistically, miR-424 (322) inhibited IFN-g-induced
apoptosis in PD-L1-associated CD8+ T cells and altered T cell

cytokine secretions by downregulating PD-L1, resulting in the

enhancement of chemotherapy efficacy in Skov3 (CP) cells

(181). In addition, the downregulation of miR-145 by CDDP

in A2780 cells increased PD-L1 levels by directly targeting c-

Myc, leading to the induction of T cell apoptosis and

enhancement of CDDP resistance in OC (182), indicating that

miR-145 dysregulation contributes to the development CDDP

resistance via T cell dysfunction-mediated immune tolerance.

All these findings support the hypothesis that miRNAs are

involved in the regulation of cancer drug resistance by

targeting T cells. Therefore, in-depth investigations are

required to clarify the detailed mechanisms of miRNAs in

regulating T cells, which may provide new insights into

the development of miRNA-based therapeutic strategies for

cancer patients, particularly those with a poor response

to chemotherapy.
LncRNAs and cancer drug resistance

LncRNAs control the cellular death pathways
in cancer drug resistance

The dysregulation of lncRNAs has been shown to participate

in the development of cancer drug resistance through

interference with cellular apoptosis or proliferation pathways

(18, 183). For instance, Li et al. revealed that lncRNA TINCR

was significantly increased in CDDP-resistant choroidal

melanoma (CM) tissues and cells. TINCR overexpression in

OCM-1 cells promoted proliferation and inhibited apoptosis by

upregulating ERK-2 via sponging miR-19b-3p, leading to the

enhancement of CDDP resistance in CM (184). Zhou et al.

found that lncRNA CCAT2 was upregulated in breast cancer

(BC) tissues and 5-FU-resistant BC cell lines (MDA‐MB‐231,

SKBR‐3, MCF‐7, and HCC‐1937) after chemotherapy. CCAT2

overexpression in 5-FU-resistant MDA‐MB‐231, MCF‐7 cells

inhibited apoptosis and increased proliferation by activating the

mTOR signaling pathway, resulting in a reduction in 5-FU

sensitivity (185). Guo et al. demonstrated that lncRNA HEIH

was upregulated in PTX-resistant endometrial cancer Ishikawa

and HHUA cells. The overexpression of HEIH in Ishikawa and

HHUA cells enhanced PTX resistance by depressing cell

apoptosis and enhancing cell proliferation and viability via

activating the MAPK signaling pathway (186). Zhu et al.

showed that LINC00942 was significantly upregulated in drug-

resistant GC cell lines SGC7901 and BGC823, and its

overexpression in SGC7901 and BGC823 cells facilitated drug

resistance by suppressing cellular apoptosis and enhancing their

stemness features. Mechanistically, LINC00942 upregulated

MSI2 by inhibiting its degradation via preventing its

interaction with SCFb-TRCP E3 ubiquitin ligase, thereby
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stabilizing c-Myc mRNA in an m6A-dependent manner (187).

In addition, several oncogenic lncRNAs, such as APOC1P1-3,

PRLB, and WDFY3-AS2, have also been reported to promote

drug resistance by targeting the apoptotic pathways in distinct

cancer types (53, 188, 189).

Recent studies indicate that the activation of autophagy by

chemotherapeutic agents can protect cancer cells from drug-

induced apoptosis (161, 190). Zhang et al. showed that exosomal

lncRNA SNHG7 was highly expressed in docetaxel-resistant

lung adenocarcinoma (LUAD) H1299 and SPC-A1 cells. The

knockdown of SNHG7 in docetaxel-resistant H1299 and SPC-

A1 cells significantly inhibited cell proliferation and autophagy

and enhanced docetaxel sensitivity. Mechanistically, SNHG7

upregulation facilitated autophagy of H1299 and SPC-A1 cells

by stabilizing autophagy-related genes autophagy related 5

(ATG5) and autophagy related 12 (ATG12) via recruiting

human antigen R (HuR), resulting in the enhancement of

docetaxel resistance in LUAD. Moreover, the transmission of

exosomal SNHG7 from docetaxel-resistant H1299 and SPC-A1

cells to parental H1299 and SPC-A1 cells also promoted

docetaxel resistance (191). In another study, lncRNA TUG1

was found to be upregulated in CRC tissues. The overexpression

of TUG1 in LoVo and HCT15 cells enhanced CDDP resistance.

Functional assays revealed that TUG1 promoted the

proliferation and autophagy of LoVo and HCT15 cells by

activating the HDGF/DDX/b-catenin axis via sequestrating

miR-195-5p, leading to the enhancement of CDDP resistance

in CRC (192). In addition, Chen et al. found that CRNDE

triggered autophagy in HepG2 and Hep3B cells by increasing

ATG4B levels via sponging miR-543. CRNDE silencing

enhanced the sorafenib sensitivity of HepG2 and Hep3B cells,

indicating that CRNDE may promote sorafenib resistance in

HCC by driving ATG4B-mediated autophagy (193). High-

mobility group box 1 (HMGB1) is a classical non-histone

protein closely associated with autophagy (194). Chen et al.

revealed that lncRNA H19 overexpression in CDDP-resistant

TU-177 and AMC-HN-8 cells significantly facilitated autophagy

by upregulating HMGB1 via sequestrating miR-107, resulting in

the enhancement of CDDP resistance in laryngeal squamous cell

carcinoma (LSCC). Consistent with this, the knockdown of H19

in CDDP-resistant TU-177 cells inhibited autophagy and CDDP

resistance (195). Taken together, these findings strongly suggest

that lncRNAs are widely involved in the development of cancer

drug resistance by targeting cellular death pathways. However,

the detailed mechanisms are still not fully understood; additional

investigations are required to fully uncover the regulatory role of

lncRNAs in cellular death pathways.

LncRNAs modulate ABC transporter-mediated
drug efflux in cancer cells

The upregulation of ABC transporters is considered a main

cause of MDR development in cancer. An increasing amount of

evidence has shown that lncRNAs are involved in cancer drug
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resistance by regulating ABC transporter-mediated drug efflux

(196). For instance, Chen et al. revealed that lncRNA GAS5

overexpression in BC cells significantly enhanced the adriamycin

(ADR) sensitivity by inhibiting ABCB1-mediated drug efflux.

Mechanistically, GAS5 suppressed the expression of ABCB1 in

ADR-resistant MCF-7 cells by activating the Wnt/b-catenin
signaling pathway via miR-221-3p/DKK2 axis (197). In

another study, lncRNA ADORA2A-AS1 was found to be

upregulated in chronic myeloid leukemia (CML). ADORA2A-

AS1 knockdown in K562 and KCL22 cells significantly enhanced

the imatinib sensitivity of cells. Functional assays showed that

ADORA2A-AS1 facilitated ABCC2 expression in K562 and

KCL22 cells via sponging miR-665, indicating that

ADORA2A-AS1 may contribute to the development of

imatinib resistance by driving ABCC2-mediated drug efflux in

CML (198). Moreover, Wang et al. demonstrated that lncRNA

KCNQ1OT1 significantly increased in temozolomide (TMZ)-

resistant U251 and U87 cells compared to TMZ-sensitive U251

and U87 cells. KCNQ1OT1 overexpression in TMZ-resistant

U251/TMZ and U87/TMZ cells significantly upregulated the

expression of ABCB1, c-Myc, and survivin by increasing PIM1

expression via sponging miR-761, leading to the enhancement of

TMZ resistance (199). Shen et al. found that lncARSR was

upregulated in ADR-resistant osteosarcoma U2OS and MG63

cells and accompanied by acquired MDR against PTX and

CDDP. Mechanistically, lncARSR overexpression in ADR-

resistant U2OS and MG63 cells significantly promoted cell

rhodamine 123 efflux, survival, and migration by upregulating

ABCB1, survivin, and matrix metalloproteinase-2 (MMP2) via

activating AKT. Consistent with this, lncARSR knockdown in

these ADR-resistant osteosarcoma cells facilitated cell

rhodamine 123 retention and apoptosis (200). In addition, Li

et al. showed that lncRNA HOTTIP was highly expressed in

serum from esophageal cancer (EC) patients. Extracellular

vesicles-containing HOTTIP contributed to ADR resistance in

EC Eca109 cells by positively activating ABCG2 (201).

Collectively, these studies indicate that the dysregulation of

lncRNAs contributes to the development of cancer drug

resistance by modulating ABC transporter-mediated drug

efflux via targeting miRNAs. The exact mechanisms of the

ln cRNA/miRNA ax i s i n d rug e fflux need to be

further elucidated.

LncRNAs manipulate malignant
features of cancer cells

LncRNAs have been shown to regulate the stemness of

cancer cells, thereby demonstrating their regulatory roles in

cancer drug resistance. For instance, Xie et al. found that

lncRNA CBR3-AS1 was significantly upregulated in CRC cell

lines (HCT116, HT29, SW620, and SW480) compared to

normal colon epithelial FHC cells. CBR3-AS1 knockdown in

OXA-resistant HCT116 and SW480 cells notably enhanced

OXA sensitivity. Mechanistically, CBR3-AS1 knockdown
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inhibited the stem-like properties of HCT116 and SW480 cells

by downregulating Nanog, Sox2, and Oct4 (stem cell markers)

via sponging miR-145-5p, resulting in the reduction of OXA

resistance in CRC (202). Liu et al. showed that lncROPM

promoted the drug resistance of breast CSCs (BCSCs) isolated

from BT-549, Hs578T, and MCF-7 cells by upregulating

PLA2G16 via increasing its mRNA stability. Moreover,

lncROPM contributed to the maintenance of BCSC stemness

by facilitating phospholipid metabolism and the production of

free fatty acid (such as arachidonic acid) via increasing the

PLA2G16 levels (203). Cheng et al. revealed that lncRNA

SNHG7 significantly increased in PC cells (PANC-1 and

AsPC-1) co-cultured with mesenchymal stem cells (MSCs).

The upregulation of SNHG7 induced by the MSCs in PANC-1

and AsPC-1 cells facilitated stemness of cells and Folfirinox

resistance by activating the Notch1/Jagged1/Hes-1 signaling

pathway via increasing Notch1 expression (204). In addition,

Liu et al. demonstrated that lncRNA DUBR was highly

expressed in HCC tissues and liver CSCs isolated from

MHCC-97H, SNU-368 and MIHA, and its high expression

was closely associated with poor chemotherapy response.

DUBR overexpression in SNU-368 and MHCC-97H cells

promoted the stemness of cancer cells and OXA resistance.

Functional assays revealed that DUBR activated the Notch1

signaling pathway by upregulating cancerous inhibitor of

protein phosphatase 2A (CIP2A) levels via sponging miR-

520d-5p, leading to the enhancement of the stemness

characteristics of the HCC cells and drug resistance (205).

LncRNA dysregulation contributes to the development of

cancer drug resistance by altering T cell activity. For instance,

KCNQ1OT1 was found to be upregulated in sorafenib‐resistant

HCC tissues and cells, and its knockdown in sorafenib‐resistant

SK-HEP-1 and Huh-7 cells co-cultured with T cells significantly

inhibited immune escape by enhancing the immune surveillance

ability of T cells. Mechanistically, KCNQ1OT1 upregulated PD‐

L1 levels in sorafenib‐resistant SK-HEP-1 and Huh-7 cells by

sponging miR‐506, thereby reducing the apoptosis of CD8+ T

cells (206). In another study, LINC00184 overexpression in

docetaxel-resistant DU145 and PC3 cells facilitated cell

immune escape by upregulating PD-L1 via sponging miR-105-

5p, resulting in the enhancement of docetaxel resistance in PCa

(207). In addition, HCG18 could inhibit CD8+ T cells activity by

increasing PD-L1 levels via sponging miR-20b-5p, leading to the

promotion of cetuximab resistance in CRC cells (208). LncRNAs

can also act as the recruiters of epigenetic modifiers to play a role

in cancer drug resistance. For instance, Li et al. found that

PCAT-1 was upregulated in CDDP-resistant GC tissues and cell

lines. PCAT-1 knockdown resensitized CDDP-resistant BGC823

and SGC790 cells to CDDP. Functional assays revealed that

PCAT-1 epigenetically silenced PTEN by increasing H3K27me3

via recruiting the histone methyltransferase enhancer of zeste

homolog 2 (EZH2), resulting in the enhancement of CDDP

resistance in GC (209). Si et al. showed that H19 was highly
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expressed in PTX-resistant BC cells. H19 upregulation in PTX-

resistant MCF-7 and ZR-75-1 cells facilitated the recruitment of

EZH2 to the BIK gene promoter, increasing H3K27me3

modification and suppressing BIK gene expression (210). In

addition, Lin et al. revealed that LINC00261 was downregulated

in 5-FU-resistant EC tissues. The overexpression of LINC00261

dramatically inhibited resistance to apoptosis in 5-FU-resistant

TE-1 and -5 cells, whereas LINC00261 knockdown observed the

opposite effect. Mechanistically, LINC00261 significantly

decreased the levels of dihydropyrimidine dehydrogenase by

increasing the methylation of its promoter through the

recruitment of DNA methyltransferase, thereby enhancing 5-

FU sensitivity in EC (211).

LncRNAs are able to govern the EMT process and malignant

features of cancer cells to play a role in cancer drug resistance. Li

et al. discovered that HOTTIP overexpression in glioma A172

and LN229 cells significantly increased cell proliferation,

migration, and metastasis. Further, HOTTIP facilitated the

EMT process in TMZ-resistant A172 and LN229 cells by

decreasing E-cadherin expression and increasing Zeb1/Zeb2

(mesenchymal markers) via upregulating miR-10b, resulting in

the enhancement of TMZ resistance in glioma. Consistent with

this, miR-10b knockdown in HOTTIP-overexpressing A172 and

LN229 cells reversed the EMT with associated TMZ sensitization

(212). Zhang et al. demonstrated that HOTAIR facilitated

migration, proliferation, and the resistance of HeLa and Siha

cells to CDDP, PTX, and docetaxel. Mechanistically, HOTAIR

enhanced the EMT process in HeLa and Siha cells by activating

the PTEN/PI3K axis via sequestrating miR-29b, leading to the

enhancement of MDR in CC (213). Jiang et al. revealed that

HNF1A-AS1 facilitated 5-FU resistance in GC cells (MKN-45

and HGC-27) by enhancing the EMT process via increasing

EIF5A2 levels. HNF1A-AS1 served as a sponge of miR-30b-5p to

upregulate EIF5A2 (71). Moreover, Zhao et al. showed that

DLX6-AS1 promoted proliferation, migration, invasion, and

secondary CDDP resistance in LSCC cell lines SK-MES-1 and

NCIH226. Mechanistically, DLX6-AS1 increased the expression

of CUGBP, Elav-like family member 1 by sponging miR-181a-5p

and miR-382-5p, resulting in the secondary CDDP resistance of

LSCC cells (214). In addition, multiple lncRNAs, such as

LINC01089, CYTOR, and H19, have also been shown to

demonstrate their roles in cancer drug resistance by targeting

the EMT process and altering malignant characteristics, such as

proliferation, invasion, and metastasis (215–217). Altogether,

these findings suggest that the underlying mechanisms of

lncRNAs in cancer drug resistance involve their modulation of

CSC expansion, T cell activity, EMT process, and malignant

characteristics. In-depth investigations are required to fully

elucidate the exact mechanisms behind lncRNA-mediated

cancer drug resistance, which will be of great benefit in the

development of lncRNA-based therapeutic strategies for cancer

patients exhibiting a poor response to chemotherapy.
Frontiers in Oncology 11
CircRNAs and cancer drug resistance

In recent years, the role of circRNAs in cancer progression

has become a research hotspot, but the investigation of the

contribution of circRNAs to cancer drug resistance is still at an

initial stage (20, 218, 219). Emerging evidence indicates that the

dysregulation of circRNAs is involved in cancer drug resistance

via distinct mechanisms, such as drug transportation, cell death,

DNA repair, and cancer stemness (220).

CircRNAs mainly act as miRNA sponges to play regulatory

roles in cancer drug resistance. For instance, Xu et al. showed

that circ-FBXW7 was downregulated in OXA-resistant CRC

tissues and cells. Exosomal transfer of circ-FBXW7 enhanced

the sensitivity of the OXA-resistant SW480 and HCT116 cells to

OXA by inhibiting OXA efflux, elevating the OXA-induced

apoptosis, and suppressing OXA-induced EMT via sponging

miR-18b-5p (100). Another circRNA, circRNA_101277, was

found to be highly expressed in CRC tissues and cells, and its

overexpression in SW620 and SW480 cells facilitated CDDP

resistance by upregulating IL-6 via sequestering miR-370 (221).

Furthermore, Zhong et al. revealed that circRNA_100565 was

upregulated in CDDP-resistant NSCLC tissues and cells.

CircRNA_100565 knockdown in the drug-resistant A549 and

H1299 cells reduced CDDP resistance by enhancing cell

apoptosis and inhibiting proliferation and autophagy.

Mechanistically, circRNA_100565 exerted its anti-drug

resistant role by upregulating ADAM28 expression via

sponging miR-377-3p in CDDP-resistant A549 and H1299

cells (92). Additionally, Huang et al. demonstrated that

circAKT3 was highly expressed in CDDP-resistant GC tissues

and cells compared to CDDP-sensitive samples. The

upregulation of circAKT3 was closely associated with

aggressive characteristics in GC patients receiving CDDP

treatment. Functional assays demonstrated that circAKT3

upregulated PIK3R1 via sequestrating miR-198, thereby

enhancing CDDP resistance by facilitating DNA damage

repair and inhibiting the apoptosis of CDDP-resistant

SGC7901 and BGC823 cells (222). CircRNA CDR1as was

found to contribute to the development of CDDP resistance in

NSCLC by altering the stemness characteristics of NSCLC cells.

The overexpression of circRNA CDR1as in CDDP-sensitive

NSCLC cells (A549, H1299, and Calu6) significantly increased

the expression of stemness signatures (e.g., Sox2, Oct4 and

Nanog) by upregulating HOXA9 via sponging miR-641,

leading to the enhancement of CDDP resistance. Consistent

with this, circRNA CDR1as knockdown in CDDP-resistant

A549, H1299, and Calu6 cells suppressed the stemness of

cancer cells (223). Moreover, Huang et al. demonstrated that

circ_0001598 was highly expressed in trastuzumab-resistant BC

samples, and its overexpression facilitated immune escape and

trastuzumab-resistance of SKBR-3 and BT474 cells by

upregulating PD-L1 levels via sponging PD-L1 (224). In
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addition, Chen et al. showed that high circUSP7 levels are closely

associated with CD8+ T cell dysfunction in NSCLC patients.

Exosomal circUSP7 inhibited CD8+ T cell activity by

upregulating Src homology region 2 (SH2)-containing protein

tyrosine phosphatase 2 via sponging miR-934, resulting in

enhanced resistance to anti-PD1 immunotherapy in NSCLC

patients (225). There is no doubt that circRNAs have

multifaceted functions in cancer drug resistance due to the

broad involvement of miRNAs.

CircRNAs can also participate in cancer drug resistance by

combining with other molecules. For instance, Wei et al. found

circ0008399 enhanced CDDP resistance in bladder cancer EJ

and T24T cells by upregulating TNF alpha-induced protein 3

(TNFAIP3) via directly binding to Wilms’ tumor 1-associating

protein (WTAP). Mechanistically, circ0008399 interacted with

WTAP to promote the formation of the WTAP/METTL3/

METTL14 m6A methyltransferase complex, thereby

upregulating TNFAIP3 expression in an m6A-dependent

manner. Consistent with this, targeting the circ0008399/

WTAP/TNFAIP3 axis promoted CDDP sensitivity in EJ and

T24T cells (226). Hu et al. showed that circFARP1 was involved

in the regulation of stemness and gemcitabine resistance in

pancreatic ductal adenocarcinoma by altering the ability of

cancer-associated fibroblasts via leukemia inhibitory factor

(LIF). Functional assays revealed that circFARP1 directly

interacted with caveolin 1 to inhibit its degradation by

blocking the binding of caveolin 1 to its ubiquitin E3 ligase

zinc and ring finger 1 (ZNRF1), thereby enhancing LIF secretion

(227). In addition, Chen et al. demonstrated that the

overexpression of circRNA cia-MAF drove LCSC propagation,

self-renewal, and metastasis by facilitating MAFF expression via

recruiting the TIP60 complex to its promoter, indicating that

cia-MAF may contribute to the drug resistance of liver cancer by

modulating CSCs (228). Particular circRNAs may participate in

cancer drug resistance by altering the key regulators during

cancer progression. Further investigations are required to fully

understand the detailed mechanisms of circRNAs in cancer drug

resistance. In addition, the circRNA/miRNA axis associated with

chemotherapeutic responsiveness in cancer should be clarified.
PiRNAs and cancer drug resistance

PiRNAs are a novel class of short chain ncRNAs (26-30

nucleotides) involved in a wide variety of physiological and

pathological processes. They can regulate the expression of

somatic genes through various mechanisms, including DNA

methylation, chromatin modification and transposon silencing

(229, 230). An increasing amount of evidence suggests that

piRNAs are key regulators in the development of cancer drug

resistance (231–233). For instance, Tan et al. discovered that

piRNA-36,712 was significantly downregulated in BC tissues.

The overexpression of piRNA-36,712 in MCF-7 and ZR75-1
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cells significantly enhanced the sensitivity of cells to PTX and

DOX. Correspondingly, piRNA-36,712 knockdown obtained the

opposite effects. Mechanistically, piRNA-36,712 directly

interacted with SEPW1P RNA (SEPW1 pseudogene), thereby

suppressing SEPW1 expression by facilitating miR-7 and miR-

324 to target SEPW1 RNA, resulting in the enhancement of PTX

and DOX sensitivity in BC (231). Mai et al. showed that piRNA-

54265 was upregulated in CRC tissues. The overexpression of

piRNA-54265 in HCT116 and LoVo cells promoted the

formation of PIWIL2/STAT3/p-SRC complex by directly

binding to PIWIL2, thereby activating the STAT3 signaling

pathway, leading to the resistance of CRC cells to 5-FU and

OXA (232). In addition, Wang et al. demonstrated that piR-L-

138 was upregulated in CDDP-treated LSCC cells and patient-

derived xenograft treated with CDDP. The knockdown of piR-L-

138 in H157 and SKMES-1 cells enhanced CDDP sensitivity by

directly binding to p60-MDM2 (233). Collectively, these

findings indicate that piRNAs play vital roles in the regulation

of cancer drug resistance, but the detailed mechanisms remain

largely unknown. In-depth investigation may bring great

benefits to the development of piRNA-based therapeutic

strategies for cancer patients, particularly those with a poor

response to chemotherapy.
Clinical implications of ncRNAs in
cancer drug resistance

NcRNAs as biomarkers for the diagnosis
and prognosis of cancer patients

It has been reported that approximately 50% of cancer

patients are diagnosed at an advanced stage, with poor

response rates and a low chance of cure (3). This is the main

factor leading to the poor survival of cancer patients. Moreover,

it is difficult for most cancer patients to obtain accurate

individualized therapeutic strategies due to the lack of effective

methods for prognostic assessment in clinical practice. In recent

years, several protein biomarkers, such as carcinoembryonic

antigen, carbohydrate antigen 15-3, and human epidermal

growth factor receptor-2, have been applied in the early

diagnosis and prognostic assessment of cancer patients.

However, the unsatisfactory sensitivity and specificity of these

biomarkers restricts their further utilization (234–236). Thus, it

is urgent to develop new biomarkers with high sensitivity and

specificity for cancer patients, particularly those with a poor

response to chemotherapy.

NcRNAs can be secreted in actively packed particles (e.g.,

exosomes, microvesicles, or apoptotic bodies) and freely

circulate in the blood, and their concentrations are almost the

same as those in primary tumors (237, 238). Moreover, they also

exhibit some unique characteristics, such as differently expressed

patterns, high stability, and high detectability (239). These
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features strongly suggest that ncRNAs possess great potential as

ideal diagnostic and prognostic biomarkers for cancer patients in

clinical treatment. In fact, a large number of ncRNAs,

particularly miRNAs and lncRNAs, have been identified as

diagnostic and/or prognostic biomarkers of cancer (Table 2).

For instance, Pan et al. showed that the levels of miR-33a-5p and

miR-128-3p in whole blood were significantly downregulated in

lung cancer patients or early-stage lung cancer patients

compared to healthy controls. Further prospective study

revealed that the area under the curve (AUC) value for the

combination of miR-33a-5p and miR-128-3p was 0.9511, which

was higher than that for CYFR21-1 (0.5856), NSE (0.6189), and

CA72-4 (0.5206), indicating that the combination of the two

miRNAs can serve as novel biomarkers for the early detection of

lung cancer (284). In another study, Lu et al. developed a 21-

miRNA-based diagnostic model and a 3-miRNA-based

prognostic model that can be used to predict the prognosis of

uterus corpus endometrial cancer patients and their response to

chemotherapy and immunotherapy. The AUC values for the

diagnostic panels were 0.911 in the training set, 0.827 in the test

set, and 0.878 in the entire set. The diagnostic panel was closely

associated with tumor mutation burden, PDL1 expression, and

the infiltration of immune cells. Moreover, the prognostic

risk signature of the prognostic panel can be used to predict

the response to some commonly used chemotherapy

regimens (285).

In a recent study by Xu et al., they found that the plasma

levels of ZFAS1, SNHG11, LINC00909 and LINC00654 were

significantly downregulated in postoperative CRC patients

compared to preoperative CRC patients. The combination of

these four lncRNAs exhibited high diagnostic performance for

CRC (AUC = 0.937), especially early-stage disease (AUC =

0.935). Moreover, SNHG11 exhibited the greatest diagnostic

ability to distinguish precancerous lesions from early-stage

tumor formation (286). Besides, Meng et al. showed that

lncRNA BCAR4 overexpression was closely associated with

lymph node metastasis (p < 0.001), high tumor stage (p <

0.001), and distant metastasis (p < 0.001). Cancer patients

with upregulated lncRNA BCAR4 exhibited poor OS (p <

0.001), suggesting that lncRNA BCAR4 is a promising

prognostic biomarker in cancer patients (287). CircRNAs are

also promising biomarker candidates in cancer treatment. Liu

et al. revealed that hsa_circRNA_101237 was significantly

upregulated in multiple myeloma (MM) cells, bortezomib-

resistant MM cells, and the bone marrow tissues of MM

patients. The high expression of hsa_circRNA_101237 reduced

the sensitivity of the MM patients to bortezomib. Further, the

AUC value for hsa_circRNA_101237 was 0.92 (p < 0.0001). MM

patients with upregulated hsa_circRNA_101237 also

demonstrated shorter OS and progression-free survival (PFS).

This data indicated that hsa_circRNA_101237 possessed great

potential as a diagnostic and prognostic biomarker for MM

(288). Collectively, these studies strongly suggest that ncRNAs
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are valuable biomarkers for diagnosis, prognosis, and predicting

drug response in cancer treatment. However, larger patient

cohorts are required to further validate their potential as

biomarkers in clinical applications.
Therapeutic potential of ncRNAs in
cancer drug resistance

The poor response of patients to chemotherapy and the

emergence of drug resistance are still the most critical obstacles

in clinical cancer treatment. A large number of studies have

confirmed the essential roles of ncRNAs in the development of

cancer drug resistance (289). They may act as oncogenes or

tumor suppressors to play dual roles in cancer progression,

depending on their diverse downstream targets (290). These

characteristics endow ncRNAs with great potential as promising

therapeutic targets or therapeutic agents in cancer treatment.

Therapeutic strategies that make use of ncRNAs or directly

target ncRNAs may bring great benefits to the precise treatment

of cancer patients, particularly those demonstrating a poor

response to chemotherapy. The delivery of tumor-suppressive

ncRNAs to target cancer cells is considered a promising strategy

to improve cancer intervention. For instance, miRNA-3662 was

found to be downregulated in pancreatic ductal adenocarcinoma

(PDAC) tissues and cell lines. MiRNA-3662 overexpression

enhanced gemcitabine sensitivity and inhibited aerobic

glycolysis in the PDAC cells by decreasing hypoxia-

inducible factor 1a (HIF-1a) expression (126). LncRNA

ENSG0000254615 was found to be highly expressed in 5-FU-

sensitive CRC cells. ENSG0000254615 overexpression inhibited

cell proliferation and 5-FU resistance by upregulating p21 and

downregulating Cyclin D1 in CRC (291). Circ‐G004213 was

significantly upregulated in CDDP-sensitive liver cancer cells

and its high expression was positively associated with the

prognosis of patients with liver cancer. Further analysis

revealed that circ‐G004213 suppressed CDDP resistance by

upregulating PRPF39 via sponging miR‐513b‐5p (292).

Therefore, the upregulation of tumor-suppressive ncRNAs,

such as miRNA-3662, ENSG0000254615, and circ‐G004213,

may represent an effective way to inhibit cancer progression

and reverse drug resistance. Targeting oncogenic ncRNAs could

be another effective strategy to overcome cancer drug resistance.

For instance, miR-192 was significantly increased in CDDP-

resistant lung cancer cells compared to non-resistant cancer

cells. The overexpression of miR-192 activated the NF-kB
signaling pathway by directly targeting NF-kB repressing

factor, resulting in the inhibition of apoptosis, promotion of

proliferation, and enhancement of CDDP resistance in the lung

cancer cells. MiR-192 knockdown obtained the opposite effect

(293). In another study, circFBXL5 was found to be highly

expressed in BC tissues and 5-FU-resistant BC cells.

CircFBXL5 knockdown enhanced the 5-FU sensitivity in the
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TABLE 2 NcRNAs as biomarkers diagnostic and prognostic in cancers drug resistance.

Cancer
types

Biomarker
types

ncRNAs Potential values Reference

OC Diagnosis miR-138-5p,
miR-182-5p
LINC01508
circRNA_0000735

Low levels of miR-138-5p, miR-182-5p, LINC01508 and circRNA_0000735 predict poor response to
chemotherapy.

(49, 240–
242)

miR-205-5p
lncRNA CHRF
exosomal
circFoxp1

High levels of miR-205-5p, lncRNA CHRF and exosomal circFoxp1 predict poor response to
chemotherapy.

(243–245)

Prognosis miR-378a-3p,
miR-513a-3p
LINC00515

Low levels of miR-378a-3p, miR-513a-3p and LINC00515 predict poor prognosis. (246–248)

miR-98-5p
lncRNA HOTAIR
circTNPO3

High levels of miR-98-5p, lncRNA HOTAIR and circTNPO3 predict poor prognosis. (249–251)

GC Diagnosis miR-124-3p
lncRNA CASC2
hsa_circ_0000520

Low levels of miR-124-3p, lncRNA CASC2, hsa_circ_0000520 predict poor response to chemotherapy. (252–254)

exosomal miR-
223
lncRNA
MALAT1
circ_0026359

High levels of exosomal miR-223, lncRNA MALAT1, circ_0026359 predict poor response to
chemotherapy.

(255–257)

Prognosis miR-34a
hsa_circ_0001546

Low levels of miR-34a and hsa_circ_0001546 predict poor prognosis. (82, 258)

miR-15a-5p
lncRNA EIF3J-
DT
circ_0026359

High levels of miR-15a-5p, LncRNA EIF3J-DT and circ_0026359 predict poor prognosis. (257, 259,
260)

NSCLC Diagnosis miR-519d-3p Low expression level of miR-519d-3p correlates with a decreased responsiveness to gefitinib. (261)

exosomal miR-
136-5p
lncRNA HOST2

High level of exosomal miR-136-5p and lncRNA HOST2 predict poor response to chemotherapy. (262, 263)

Prognosis miR‐133a‐3p
lncRNA RHPN1-
AS1

Low levels of miR‐133a‐3p and lncRNA RHPN1-AS1 predict poor prognosis. (264, 265)

lncRNA EGFR‐
AS1
circ_0005909

High levels of lncRNA EGFR‐AS1 and circ_0005909 predict poor prognosis. (266, 267)

CRC Diagnosis miR-325
lncRNA MEG3

Low levels of miR-325 and lncRNA MEG3 predict poor response to chemotherapy. (268, 269)

miR-454-3p Upregulated miR-454-3p is related to a poor response to OXA-based treatment. (101)

Prognosis miR-302a
lncRNA HAND2-
AS1

Low levels of miR-302a and lncRNA HAND2-AS1 predict poor prognosis. (94, 270)

lncRNA AGAP2-
AS1
circHIPK3

High levels of lncRNA AGAP2-AS1 and circHIPK3 predict poor prognosis. (271, 272)

BC Diagnosis miR-24-3p
LINC00160

High levels of miR-24-3p and LINC00160 predict poor response to chemotherapy. (120, 273)

lncRNA CBR3-
AS1
circWAC

High levels of lncRNA CBR3-AS1 and circWAC predict poor prognosis. (274, 275)

HCC Diagnosis LINC00680
circRNA-SORE

High levels of LINC00680 and circRNA-SORE predict poor response to chemotherapy. (276, 277)

Prognosis circRNA_101237 High serum level of circRNA_101237 is related to a poor survival of patients (P<0.001). (278)

(Continued)
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BC cells by suppressing cell migration and invasion and

facilitating apoptosis. Mechanistically, circFBXL5 promoted 5-

FU resistance by upregulating HMGA2 via sequestrating miR-

216b (294). Oncogenic ncRNAs, such as miRNA-3662 and

circFBXL5, might be used as ideal candidates for therapeutic

targets. These findings strongly suggest that the activation of

tumor-suppressive ncRNAs or the inactivation of oncogenic

ncRNAs are critical mechanisms that restore cancer drug

sensitivity. A better understanding of the molecular

mechanism of ncRNAs involved in cancer progression and

drug resistance will substantially contribute to the precise

treatment of cancer patients. However, there are still some
Frontiers in Oncology 15
challenges that need to be addressed, such as, low

bioavailability, side effects, and off-target effects.
Conclusion and perspective

Cancer is one of the most common and fatal malignant

diseases worldwide, with high rates of metastasis and recurrence.

Chemotherapy remains the best choice for all stages of cancer, and

it can effectively improve patients’ prognosis. However, the

emergency of drug resistance seriously restricts the clinical

efficiency of chemotherapy, and ultimately results in treatment
TABLE 2 Continued

Cancer
types

Biomarker
types

ncRNAs Potential values Reference

PC Diagnosis miR-20a-5p MiR-20a-5p level can serve as a predictor of gemcitabine resistance with an AUC of 89% (P<0.0001),
for its downregulation correlates with poor response to gemcitabine.

(279)

Prognosis microRNA-296-
5p
lncRNA HCP5

High levels of microRNA-296-5p and lncRNA HCP5 predict poor prognosis. (280, 281)

Glioma Prognosis miR-1246 Overexpression of miR-1246 predict a low OS in high grade glioma patients. (282)

Multiple
Myeloma

Diagnosis exosomal
circMYC

Upregulated expression of circulating exosomal circMYC correlates with decreased sensitivity to
bortezomib.

(283)
fro
FIGURE 3

Clinical implications of ncRNAs in cancer drug resistance. NcRNAs are enriched in tissue, blood, and urine samples from cancer patients with
drug resistance. The expression profiles of ncRNAs are mapped using high-throughput sequencing technologies. Next, the differentially
expressed ncRNAs are screened and identified by bioinformatics analysis. Subsequently, the mechanisms of ncRNAs in cancer drug resistance
are elucidated using cell and animal models. The aberrantly expressed ncRNAs that possessed great potential as biomarkers and/or therapeutic
targets are identified. Finally, cancer patients, particularly those with drug resistance, receive the individualized precision treatment strategies.
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failure. Therefore, a better understanding of the mechanisms

responsible for cancer drug resistance will be of great benefit to

the development of precise therapeutic strategies for cancer

patients, particularly those demonstrating a poor response to

chemotherapy. With the rapid development of high-throughput

sequencing techniques, a large number of ncRNAs, particularly

miRNAs, lncRNAs, and circRNAs, have been found to be

aberrantly expressed in cancer tissues and cell lines. These

aberrantly expressed ncRNAs are closely associated with cancer

progression and drug resistance. It is well established that ncRNAs

participate in the development of cancer drug resistance via

distinct mechanisms, including the suppression of cell death

pathways, induction of excessive drug efflux, facilitation of

autophagy, regulation of CSC features, and enhancement of the

EMT. Aberrant levels of ncRNAs have been observed in cancer

patients’ blood, tissue, and even urine (295). Furthermore, the

aberrant expression of ncRNAs was found to be closely associated

with some pathological characteristics of cancer patients, including

OS and PFS (288). These features endow ncRNAs with great

potential as ideal biomarkers for the diagnosis and prognosis of

cancer patients. In addition, due to the crucial roles of ncRNAs in

cancer progression and drug resistance, they are considered to be

promising therapeutic targets or therapeutic agents for cancer

patients (Figure 3). The direct delivery of tumor-suppressive

ncRNAs to target cancer cells is a promising way to improve

cancer intervention. On the other hand, silencing oncogenic

ncRNAs is also an effective strategy to overcome cancer drug

resistance. Therefore, it is urgent to develop efficient and non-toxic

delivery systems and ncRNA silencing technologies. Although

some progress has been made in this area, overcoming resistance

to chemotherapeutic drugs remains a large challenge. More clinical

trials need to be launched to advance the development of ncRNA-

based therapeutic strategies to benefit cancer patients.
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