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Abstract

The necrophilous insect fauna on carcasses varies seasonally and geographically. The eco-

logical succession of insects arriving to decaying neonate pig carcasses in central North

Carolina during late summer was sampled using a novel vented-chamber collection method.

We collected six blow fly species, flesh flies, house flies and 10 beetle taxa, including four

species of scarab beetles. Necrophilous fly activity dominated the early decomposition

stages, whereas beetle numbers remained low until day 4. By day 7, more than 50% of the

pig carcasses were skeletonized and they attracted few insects. Differences in the taxa and

successional patterns documented in this experiment and a previous study in the same

location highlight the ecological variation in such investigations, and underscore the need

for standardization, as well as for ecological succession studies on finer geographic scales.

Introduction

The documentation of ecological succession of the local fauna on decomposing model organ-

isms is a critical component of forensic entomology research. Necrophilous insects are

attracted to and colonize a decomposing body–whether human or carrion–in a predictable

sequence [1–5]. During the pre-colonization phase, the insects detect, locate and evaluate the

remains, followed by the colonization and post-colonization phase as the remains are con-

sumed [6]. In the practice of forensic entomology, this predictable successional pattern, along

with environmental parameters such as temperature, are used to calculate a postmortem inter-

val (PMI), or perhaps more accurately, time since insect arrival. However, the taxa attracted,

their development times, and the successional sequence itself vary by host, season, and geo-

graphic region; they may even vary on a microgeographic scale, such as between urban and

rural environments within the same city [5, 7–10].

Seasonal and geographic variability in insect succession are frequently addressed in the

forensic literature. While certain forensically significant insect taxa like Musca domestica are
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cosmopolitan, the vast majority of necrophilous insect taxa have more limited distributions.

This natural variation in the distribution of taxa obviously influences the successional pattern

across locations. Certain invasive necrophilous species, such as the blow fly Chrysomya rufifa-
cies, may even influence the typical arrival pattern of native species [11]. It is important to doc-

ument the succession of local fauna and reevaluate it in light of species invasions or climate-

driven changes in species distributions. Seasonal differences must also be considered, as differ-

ent species are indicative of different seasons, even in the same locality. For example, Calli-
phora vicina is a cool weather species in central North Carolina, most commonly sampled in

the fall and winter and absent in the summer [12].

This research had three primary objectives. First, we aimed to document the succession of

adult necrophilous insects in central North Carolina. Because ecological succession has been

described on juvenile pig cadavers in this locality [12], our use of neonate pigs extends these

findings to a smaller decomposition model of ecological succession. Second, in response to dif-

ficulties collecting large samples from small pigs, we developed a “vented-chamber” method to

document succession. This passive sampling method has significantly increased the number of

sampled insects compared to traditional sampling methods like the aerial sweep net [13, 14].

Moreover, because this trap eliminates all but olfactory cues, this study represents the first

time, to our knowledge, that ecological succession is documented based solely on olfaction.

Finally, in our preliminary fieldwork, we consistently found beetles in the family Scarabaeidae

(AMC personal observations) on carrion, so this study aimed to document the arrival pattern

of these dung-associated beetles. These beetles are rarely included in documentation of succes-

sion, as they are generally considered incidental fauna at a body, rather than primary coloniz-

ers and decomposers of forensic significance [15].

Methods

Ethics statement

Naturally stillborn pigs (Sus scrofa domesticus) were acquired from North Carolina State Uni-

versity’s Swine Educational Unit. The use of these neonate pigs in field studies of decomposi-

tion is exempt from approval from the Institutional Animal Care and Use Committee.

Experimental animals

Stillborn pigs (Sus scrofa domesticus) weighed ~1.5 kg and were placed in a freezer immediately

after birth and remained fully frozen until they were placed in the field. This prevented early

decomposition and ensured that all pigs were the same temperature at the start of the experi-

ment. Pigs at -12˚C reached ambient temperature in ~4.5 hrs in full sunlight (AMC personal

observations), so they were at ambient temperature when sampling commenced 24 hrs after

placement in the field (below).

Study site

This experiment was conducted during September 2015 in an open field at North Carolina

State University’s Lake Wheeler Road Field Lab in Raleigh, NC (35.731424, -78.667759). Pigs

were positioned at the northern edge of a closely mowed field, where they experienced full day-

time sun.

Weather conditions were ideal for a succession experiment, with no precipitation and a

gradual increase in ambient temperature during the 7 sampling days (Fig 1). The average

ambient temperature during the 7-day experiment was 20.65 ± 0.88˚C (SEM). Winds were

predominantly Northeasterly and Southeasterly throughout the experiment. We minimized
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between-pig variation by using pigs of the same size, body temperature, and level of conceal-

ment at the field edge.

Field methods

During the afternoon of the first day of the experiment (defined as day 0), eight sites were estab-

lished 25 m apart in the experimental field. At each site, soil was excavated and spread ~ 4 cm

deep atop a standard plastic cafeteria tray (35 cm x 45 cm). Eight fully frozen pigs were placed

on the 8 soil-covered trays. This arrangement allowed us to move each pig into the vented-

chamber (described below) during sampling periods. Pigs were photographed each day prior to

sampling to document insect activity and the stage of decomposition. Stages of decomposition

were as defined by Kreitlow [16]. When not sampled, the carcasses were protected from scaven-

gers within cages constructed of poultry netting that allowed for normal insect colonization.

Pigs were simultaneously sampled three times each day between noon and 18:00 hrs, begin-

ning 24 hrs after their placement in the field (defined as day 1). Insect sampling was achieved

through the passive, vented-chamber method, which directed thermally convected decomposi-

tion odors to a pair of sticky traps, as described in Cruise [14] (Fig 2). At each sampling event,

each pig on a cafeteria tray was placed in the chamber and an airtight lid placed on top. Back-

to-back unscented glue traps (Super Catchmaster, AP&G, Bayonne, New Jersey) were attached

to the chimney atop the chamber and allowed to collect insects for 15 min. Each pig was sam-

pled three times daily for seven consecutive days, with a 15 min rest period between sampling

intervals. During the rest period, the pig and tray were removed from the chamber and placed

on the ground, allowing decomposition and colonization to occur freely.

To sample beetles, hand-collections were performed on the pig both before and after its

placement in the vented-chamber. Beetles were stored in 70% ethanol.

Identifications

Orders Diptera and Coleoptera were the main sampling targets, with emphasis on necrophilous

insects commonly used in forensic entomology for PMI determinations (Table 1) [15]. The

local fauna of interest was also reported in Cammack et al. [12]. Because of their significant role
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Fig 1. Minute and daily average ambient temperature (˚C) near the field research site during the experiment. The

symbols indicate the average daily temperature. Temperature data were acquired from the State Climate Office of

North Carolina’s Lake Wheeler Road Field Lab weather station. There was no measurable precipitation during this

period.

https://doi.org/10.1371/journal.pone.0195785.g001
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as primary colonizers of decomposing bodies, calliphorid blow flies were further identified to

species using Whitworth’s taxonomic key [17]. Beetles were identified with assistance from tax-

onomists in the North Carolina Plant Disease and Insect Clinic, as well as Almeida and Mise’s

forensic Coleoptera key [18]. Insects on sticky traps were identified in situ.

A

B

Fig 2. The vented-chamber passive sampling method. Photograph (A) and schematic (B) of the trap. The collection

unit consisted of a 39 liters airtight chamber with PVC ports. Ports on the left and top of the box, with the orientation

as shown, were kept open with mesh window screening. Thus, air could flow freely through the chamber, but insects

could not enter it. The right port was capped. The top port, or chimney, opened to back-to-back unscented glue traps.

Pig orientation in reference to the ports was always as shown in B.

https://doi.org/10.1371/journal.pone.0195785.g002
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Ecological associations

Collected insects were further classified by their ecological associations. We defined these asso-

ciations by three categories: carrion (C), predatory or cannibalistic insects (I), and dung (D)

(Table 1). Carrion insects included those directly associated with carrion for feeding or breed-

ing purposes, and they included all of the blow flies, flesh flies, and necrophagous beetles. Pred-

atory or cannibalistic insects had ecological associations with another insect (hence “I”) in the

carrion microhabitat. While many of the taxa opportunistically feed on dung, only insects with

a preference for or well-documented association with dung, such as the scarab beetles, were

classified as dung insects. Ecological associations were not mutually exclusive, with several

insects fitting into more than one category.

Statistical analysis

The number of taxa and the number of insects trapped on each of the eight pigs were com-

pared on each day of decomposition with a one-way ANOVA and Tukey’s HSD in SAS 9.4

[27]. Linear discriminant analysis was conducted in JMP Pro 13.1.0 [28] on percentage repre-

sentation of each taxon by day of decomposition.

Results

Decomposition pattern

Photographs and descriptions of decomposition stages of pigs are shown in Fig 3. Over half of

the pigs (62.5%) fully progressed through decomposition (fresh to skeletal stages) over the 7

days of the experiment (Fig 4). Pigs were in the fresh stage for the longest duration, likely due

Table 1. Forensically relevant insects identified across all samples and their ecological associations.

Order Family Genus and species a Ecological Association b: Carrion (C), Insects (I), Dung (D)

Diptera Calliphoridae Lucilia illustris (Meigen) C [15, 19, 20]

Lucilia coeruleiviridis (Macquart) C [15, 20]

Lucilia sericata (Meigen) C [15, 19]

Lucilia cuprina (Wiedemann) C [15]

Phormia regina (Meigen) C [15]

Cochliomyia macellaria (Fabricius) C [15, 20]

Sarcophagidae unknown C [21]

Muscidae Musca domestica (Linnaeus) D [15]

Coleoptera Silphidae Necrophila americana (Linnaeus) C, I (dipteran predator and cannibal) [15]

Histeridae unknown C, I, D (dipteran predator and cannibal) [15, 22]

Staphylinidae Creophilus maxillosus (Linnaeus) C, I (dipteran predator) [15]

Platydracus spp. C, I (suspected dipteran predator) [15]

unknown C, I (dipteran predator) [5, 23, 24]

Dermestidae Dermestes spp. C, I (cannibalistic) [15, 25]

Scarabaeidae Onthophagus hecate (Panzer) D [15, 26]

Onthophagus pennsylvanicus (Harold) D [15, 26]

Onthophagus taurus (Schreber) D [15, 26]

Phanaeus vindex (Macleay) D [25, 26]

a If no species are listed, taxonomic identifications ended at the family or genus level.
b Insects that directly utilize carrion for feeding or breeding purposes are labeled “C,” predatory or cannibalistic insects are labeled “I,” and dung-feeding insects are

labeled “D.”

https://doi.org/10.1371/journal.pone.0195785.t001
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to the cooler average temperatures during the first half of the experiment (Fig 1); rate of

decomposition has been well correlated with ambient temperature [29, 30].

Richness, overall abundance, and succession

In total, we trapped and hand-collected eight necrophilous fly taxa and 10 necrophilous beetle

taxa, including four species of scarab beetles (Table 1). The average number of insect taxa var-

ied by day but followed a general bell-shaped curve (Fig 5A), as did the number of necrophi-

lous insects (Fig 5B). The relative abundance of dipterans and coleopterans varied with the

decomposition stages of the pigs. Flies were most abundant, and they were most represented

during the early stages (Fig 6). Necrophilous beetles of many species, however, arrived during

and after the later decay stage, which started for most pigs on day 4 (Figs 4 and 6). By day 7,

Fig 3. Decomposition stages of neonate pigs, showing pigs at each stage of decomposition and the corresponding

characteristics of decomposition stages as defined by Kreitlow [16].

https://doi.org/10.1371/journal.pone.0195785.g003
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the number of insects trapped per pig averaged only 1.0 ± 0.76 insects (Fig 5B). At this time, 5

out of 8 (62.5%) pigs were in the skeletal stage of decomposition (Fig 4).

Linear discriminant analysis of the relative abundance of each taxon by day showed that

only the first two canonical relations had high eigenvalues and were significant (Canonical 1,

p< 0.0001; Canonical 2, p = 0.0086). Linear discriminant analysis indicated significant differ-

ences among days of decomposition (Wilk’s lambda = 0.0024, F = 3.0866, p< 0.0001). Days 1

and 2, however, did not separate significantly, as indicated by overlap of their 95% confidence

ellipses. Day 3 and day 4 separated clearly from each other and from all other days, whereas

days 5–7 broadly overlapped (Fig 7). The rays in the biplot (not shown), representing the load-

ing of taxa relative to the position of pig age groups, indicated that Phormia regina, Lucilia seri-
cata and Lucilia cuprina associated (loaded) toward days 2–3, whereas Cochliomyia macellaria
loaded towards day 4. The beetles generally loaded toward days 5–7.

Diptera succession

Table 2 details individual and total dipteran taxa abundance across all experimental days as

well as the proportion of pigs each day from which each taxon was trapped on sticky traps. As

expected, Diptera was the first major order of insects detected on the pig carcasses. In total, we

collected 3,299 flies on all 8 pigs over 7 days. Blow flies and flesh flies were present on pigs as

early as day 1 (Table 2). For the first three days of decomposition, flies were trapped from all 8

pigs, and the total dipteran abundance steadily increased between days 1 and 3 (Table 2, Fig 8).

Dipteran abundance peaked on day 3, corresponding with the bloat stage for most pigs (Fig

8). Both the abundance and relative proportion of pigs with adult flies continually decreased

after this (Table 2, Fig 8). Calliphorids were the most abundant group of flies found on the pigs

(Table 2). All 6 calliphorid species were trapped on pigs beginning on day 1. These species

were sampled from every pig on day 2 and/or day 3 (Table 2). Of the blow flies, Lucilia coeru-
leiviridis and Lucilia illustris were most abundant on days 1–2 and decreased in relative abun-

dance over the next 4 days (Table 2, Fig 8). Conversely, P. regina, C. macellaria, L. sericata and

L. cuprina were less represented on day 1 and increased in relative abundance from day 4 to

day 7. The relative abundance of P. regina steadily increased from days 1 to 6, and it and L.
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sericata were the only calliphorid flies trapped on pigs on day 7 of decomposition, but in

extremely low numbers.

Sarcophagids, while present on pigs during all seven days of decomposition (Table 2, Fig 8),

never reached high overall abundance compared to calliphorids. Unlike the blow flies, sarco-

phagids were never sampled from all pigs on the same day. House flies, M. domestica, only

appeared on pigs on days 3–6 (Fig 8) and were low in abundance throughout this entire inter-

val (Table 2). Their abundance and proportion of pigs from which they were trapped peaked

on day 4.

Coleoptera succession

Beetle activity began on day 2, a day later than the first fly arrival, and progressed through day

7 (Table 3, Figs 6 and 9). Beetle numbers on days 2 and 3 were low (< 10), but increased more

than 10-fold between days 3 and 4. This coincided with a shift to the decay stage of pig decom-

position (Fig 4). On all days except day 7, however, fly abundance was greater than beetle

abundance (Fig 6).
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The successional pattern of beetles progressed in accordance with their ecological roles.

Beetles that were categorized as both carrion-feeders and dipteran predators, including the sil-

phid beetle Necrophila americana, histerid beetles, and staphylinid taxa, arrived after maggots

were present on the body but before the carcass tissue was depleted (Tables 1 and 3). The

arrival of these taxa occurred on either day 3 (histerid beetles) or day 4 (all others), when the

pigs were either bloated or in the decay stage of decomposition (Fig 4). During these stages,

the beetles could feed freely on either maggots or pig tissue.

Three of the four scarab taxa (Onthophagus pennsylvanicus, Onthophagus taurus, and Pha-
naeus vindex) did not arrive until day 4 (Table 3, Fig 9). These three taxa were present on pigs

for only one or two days, likely due to the depletion of their preferred fecal resource. The

remaining scarab, Onthophagus hecate, was collected in low numbers on pigs during 5 of the 7

days of the experiment.

Dermestid beetles were the latest arriving beetles, with their first arrival to the body on day

5 (Table 3). Most pigs were in the post-decay/dry stage at this time (Fig 4). Dermestid beetles

were found only on days 5 and 6, likely because only hair and bone was left on most pigs after

this point (Fig 3). Very few dermestid beetles (< 5) were sampled overall (Table 3, Fig 9).

Discussion

From the outset, it is important to stress that our passive trap sampled necrophilous insects as

they arrived at the carcass, before they directly interacted with the carcass, hence their attrac-

tion to this trap was solely based on olfactory cues. Therefore, the ecological succession we

describe excluded other sensory modalities (e.g., visual cues), on-carcass interactions (e.g.,

competition, mating), and close-range decisions by the insects (e.g., whether to oviposit),

because the arriving insects could use only volatile olfactory cues emanating from the chimney

of the vented-chamber [14]. All the same, olfactory attraction alone was sufficient to create a

comprehensive representation of succession that we could relate to clear taxonomic and eco-

logical succession and to the successive decomposition stages of the pigs. These conserved suc-

cessional patterns highlight the critical importance of olfaction in ecological succession of

necrophilous insects.

Not surprisingly, we found that ecological roles helped to explain the general arrival

sequence and relative abundance of insect taxa over time. Insects that directly used the carri-

on’s tissues for feeding or reproduction (Calliphoridae, Sarcophagidae) arrived first, during

the fresh stage of decomposition, as expected [2, 31]. Adults oviposit (Calliphoridae) or

Table 2. Total abundance of each dipteran taxon across all pigs by day.

Taxon Day 1 a Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Taxon totals

Lucilia illustris 82 (0.875) 114 (1) 103 (1) 22 (0.375) 1 (0.125) − − 322 (1)

Lucilia coeruleiviridis 140 (0.75) 411 (1) 284 (0.875) 109 (0.75) − − − 944 (1)

Lucilia sericata 9 (0.375) 21 (0.75) 34 (1) 21 (0.75) 10 (0.5) − 1 (0.125) 96 (1)

Lucilia cuprina 3 (0.125) 29 (0.75) 40 (1) 8 (0.5) 5 (0.25) 3 (0.125) − 88 (1)

Phormia regina 32 (0.25) 155 (0.75) 489 (1) 446 (0.875) 161 (0.5) 78 (0.25) 3 (0.125) 1364 (1)

Cochliomyia macellaria 3 (0.375) 6 (0.25) 75 (1) 184 (0.875) 16 (0.25) 6 (0.125) − 290 (1)

Sarcophagidae 20 (0.5) 67 (0.875) 50 (0.875) 31 (0.75) 4 (0.375) 4 (0.25) 1 (0.125) 177 (1)

Musca domestica − − 3 (0.375) 12 (0.875) 2 (0.125) 1 (0.125) − 18 (0.875)

Total 289 (1) 803 (1) 1078 (1) 833 (0.875) 199 (0.75) 92 (0.5) 5 (0.25) 3299 (1)

a The proportion of pigs (out of eight) in which that taxon was trapped is indicated in parentheses. Boxes that are highlighted in gray indicate taxa trapped on all eight

pigs (proportion: 8/8 = 1).

https://doi.org/10.1371/journal.pone.0195785.t002
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larviposit (Sarcophagidae) on the body, and their young feed directly on animal tissues

throughout development [3]. Competition between blow flies and flesh flies drives their rela-

tive population sizes on a carcass; generally, sarcophagid populations are limited by calliphorid

population size, and larviposition by sarcophagids ensures that their larvae get an early start

on consuming tissue before becoming outnumbered by calliphorids [21].

Carrion-associated fly activity increased through the bloat stage, as did the buildup of

decomposition odors [29, 32, 33]. We observed the largest numbers of blow flies and flesh

flies, as well as the highest trapping consistency across pigs for these taxa during the days when

pigs were bloated (Table 2, Fig 4), consistent with previous work that evaluated succession on

fully exposed carcasses [3, 16]. Blow fly and flesh fly activity declined after this point, likely due

to dwindling resources. After the bloat stage, the feeding activity of large maggot masses begins
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Fig 8. Mean number (A) and percentage representation (B) of dipteran insects per taxon trapped or hand-collected

daily from pigs during the 7-day decomposition process. n = 8 pigs.

https://doi.org/10.1371/journal.pone.0195785.g008
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to open the animal’s body, exposing the internal organs; tissue is then rapidly reduced as the

maggots feed and grow [3].

Pivotal to our trap design was the hypothesis that necrophilous insects could assess resource

suitability based on olfactory cues. Female blow flies are known to make this assessment prior

to oviposition [34], and it follows that the number of adult flies arriving to oviposit and larvi-

posit would decline as existing larvae consume the animal’s tissues and thus reduce the amount

available for subsequent cohorts. While several fly species were attracted and trapped in small

numbers on days 6 and 7, these insects would likely not oviposit or larviposit at this late stage

in decomposition. Archer and Elgar [35] observed that most flies sampled after the decay stage

of decomposition were non-gravid females searching for a protein source.

As blow fly and flesh fly activity decreased after the bloat stage, the activity of dung-associ-

ated and predatory/cannibalistic insects increased. The decay stage is known to favor necro-

philous beetles that prey on abundantly available fly larvae and use the exposed carrion feces as

a resource [3]. It was reassuring to find that these beetles also responded to stage-specific com-

munity and decomposition odors. With internal organs exposed in the decay stage, carrion

insects had easy access to feces previously enclosed within the intestines. M. domestica, which

is preferentially attracted to feces over carrion itself, as well as all scarab beetles were trapped

and hand-collected in their highest numbers during this time (Tables 2 and 3, Figs 8 and 9)

[15].

Insect activity was scarce during the skeletal stage. This stage is characterized by little insect

activity, with mites instead being the main organisms associated with the remaining bones and

hair [3, 16, 24]. Mite activity is rarely used in PMI determinations, and research on the subject

is sparse [5]. Because we sampled mainly with sticky traps off the carcass, mites were excluded

from this succession study.

Hand-collections recovered several taxa that were not readily sampled with the vented-

chamber trap. The scarab O. hecate was hand-collected on days 2–5 and then again on day 7

(Fig 9). This beetle, like other paracoprid species, is known to tunnel below its fecal resource,

which may explain why it was sampled even after above-ground fecal matter from carrion was

depleted [36, 37]. Dermestid beetles, though carrion-associated, were not hand-collected until

Table 3. Total abundance of each coleopteran taxon across all pigs by day.

Taxon a Day 1 Day 2 Day 3 Day 4 c Day 5 Day 6 Day 7 Taxon totals

Necrophila americana b − − − 5 (0.25) 3 (0.375) 3 (0.375) 2 (0.125) 13 (0.625)

Histeridae b − − 5 (0.25) 42 (1) 22 (0.875) 30 (0.75) 10 (0.625) 109 (1)

Creophilus maxillosus − − − 3 (0.375) 1 (0.125) − − 4 (0.5)

Platydracus spp. − − − 1 (0.125) 1 (0.125) − − 2 (0.25)

Staphylinidae b − − 2 (0.25) 18 (0.875) 42 (1) 24 (0.875) 9 (0.5) 95 (1)

Dermestes spp. − − − − 1 (0.125) 2 (0.125) − 3 (0.25)

Onthophagus hecate − 1 (0.125) 1 (0.125) 1 (0.125) 3 (0.25) − 1 (0.125) 7 (0.5)

Onthophagus pennsylvanicus − − − 12 (0.625) 5 (0.375) − − 17 (0.875)

Onthophagus taurus − − − 2 (0.25) 3 (0.375) − − 5 (0.5)

Phanaeus vindex − − − 1 (0.125) − − − 1 (0.125)

Daily totals − 1 (0.125) 8 (0.5) 85 (1) 81 (1) 59 (1) 22 (0.75) 256 (1)

a All coleopteran taxa were hand-collected.
b Taxa also trapped on the sticky traps of the vented-chamber.
c In parentheses is the proportion of pigs (out of eight) in which that taxon was trapped. Boxes that are highlighted in gray indicate taxa trapped on all eight pigs

(proportion: 8/8 = 1).

https://doi.org/10.1371/journal.pone.0195785.t003
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day 5, coinciding with the post-decay/dry stage for most pigs (Fig 4). These beetles feed on dry

tissue, which is present on carrion during this stage of decomposition [15, 16, 38]. Few der-

mestid beetles (< 5) were collected overall, possibly because of their preference for hiding in

small cavities within the hide [15].

Payne et al. [39] asserted that viewing decomposition stages as discrete events focuses more

on physical changes in the carcass than the actual successional pattern of insects. While we

agree with this view, we also found that the standard five-stage model of decomposition was

useful in relating the ecology of the arriving insects to the physical dynamics of the pig. In

many studies, stage boundaries are not synchronized with major faunal shifts [39]. We suspect

that the rapid rate of decomposition in our study, likely due to carcass size and relatively

warm, stable, precipitation-free environmental conditions and afternoon-only sampling, may
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Fig 9. Mean number (A) and percentage representation (B) of coleopteran insects per taxon trapped or hand-

collected daily from pigs during the 7-day decomposition process. n = 8 pigs.

https://doi.org/10.1371/journal.pone.0195785.g009
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have resulted in the appearance of a more synchronized timing of insect arrivals and more

clearly defined stage boundaries. Maximum abundance of different taxa was better correlated

with stage boundaries than was arrival time. Decomposition stage does not predict which indi-

vidual taxa are present on carrion, but in our study, it explained the general pattern of arrival

for insects fulfilling various ecological roles.

A significant motivation of this study was also a previous study [12] that was conducted at

the same location. Although Cammack et al. [12] did not report quantitative results for each

taxon, the black blow fly, P. regina, appeared to be the most commonly sampled species, as in

our study (Table 2). Other flies that were trapped or hand-collected in both experiments

included C. macellaria, M. domestica, and all four Lucilia species. Chrysomya megacephala and

three Calliphora species were trapped by Cammack et al. [12] but not in our study. While

Cammack et al. trapped C. megacephala in spring, summer, and fall, it was not trapped on

sun-exposed carcasses. Also, none of the Calliphora species were collected in the summer [12],

consistent with their cool weather preference and plausibly explaining their absence from our

pigs which were placed in full sun in late summer.

Of the coleopteran taxa, N. americana, unidentified histerid beetles, Creophilus maxillosus,
other unidentified staphylinids, and Dermestes species were found in both studies. We also

documented several dung beetle species (Onthophagus and Phanaeus), but it is unknown

whether these scarabs were sampled by Cammack et al. [12].

Several factors may explain the observed differences between the two studies: pig size, sam-

pling time, sampling method, insects sampled (all stages vs. adults), and environmental condi-

tions (level of exposure, landscape). Cammack et al. [12] used 10.2 kg juvenile pigs, several

kilograms larger than our neonate (1.5 kg) pig models. Although larger pigs generally attract

more flies than smaller pigs, and their decomposition rate may be slower, carcass size generally

has little effect on the pattern of insect succession, as long as the same type of animal model is

used and the difference in mass between the carcasses is relatively small (< 25 kg) [40–42].

When large and small carrion differ by > 25 kg, the succession of late colonizing insects from

families Cleridae and Nitdulidae may differ, with these families being underrepresented on

smaller carcasses [42]. The general similarity of our findings to those of Cammack et al. [12],

and the similarity of both studies to previous investigations with human, swine, canine, and

rat remains indicate that the size of the pig carcasses likely did not contribute substantially to

the slight differences between our study and Cammack et al. [12].

Sampling time also differed between the two studies. Cammack et al. [12] sampled 2 hrs

after morning civil twilight and 2 hrs before evening civil twilight, whereas we sampled

between noon and 18:00 (18:00 is within the two hours before evening civil twilight). Interest-

ingly, C. megacephala, collected by Cammack et al. but not in our study, is one of few blow flies

known to oviposit at night [43]. Since Cammack et al. did not distinguish between larval and

adult samples, it is possible that C. megacephala represented larvae that had developed from

eggs oviposited overnight. Moreover, C. megacephala was not found on carcasses in a sun-

exposed open field location [12] similar to our placement of the pigs.

We suspect that different sampling methods and environmental conditions contributed

most to the successional differences in the same location. We coupled the vented-chamber

approach, primarily to trap flies, with hand-collections of beetles, whereas Cammack et al. [12]

used a modified vacuum and sweep net for adults and hand-collections for larvae and pupae.

While a modified vacuum (different from Cammack et al.’s) was significantly more effective

than sweep net during peak decomposition [13], comparisons across separate studies suggest

that the vented-chamber was more effective than either of these approaches [14]. We empha-

size again two important points. First, the vented-chamber method samples only newly arriv-

ing adults and not adults that are resting on the carcass or emerging from the carcass. And
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second, although C. megacephala was found to be an indicator species for the summer season

in this location, it was not found in exposed sunny locations [12], and we did not find it in any

of our sampling. The level of exposure (i.e., sun exposure, amount of tree cover) is known to

affect faunal differences [1, 44].

Comparisons across successional studies depend on the availability of empirical sampling

results of forensically relevant arthropods. Often however, data are reduced to community

similarity or dissimilarity indices and statistically derived indicator species. While these met-

rics are obviously useful, data on relative abundance of taxa, peculiarities of common vs. rare

species, and the temporal changes in community organization tend to be obscured in the anal-

ysis. For example, Cammack et al. [12] reported C. macellaria and P. regina as summer indica-

tor species on sun-exposed pig carcasses. Our study in the same location confirmed that these

two species respectively represented 8.8% and 41.3% of all the flies. L. coeruleiviridis (28.6%)

and L. illustris (9.8%), a known summer active species, were also highly represented in our

mid-September samples, possibly because of the summer-fall transition. A qualitative compar-

ison of the two studies cannot be made, however, as the relative numbers of sampled adults

and larvae were not reported by Cammack et al. [12].

Our quantitative analysis of succession on neonate pigs should provide a resource for local

forensic entomology investigations, as well as a framework for an experimental approach for

documenting ecological succession on carrion. Several aspects of this work are noteworthy:

First, the use of neonate pigs, which are readily available, facilitated not only replication of this

work, but also the ease of moving and manipulating carcasses. Secondly, standardization with

the vented-chamber as a passive sampling method removed human bias and the inherent dis-

turbance caused by active sampling with a sweep net or vacuum device. Finally, the high trap-

ping efficiency of the vented-chamber makes it a useful model toward standardizing sampling

so that successional patterns can be compared across geographic regions, seasons, and carrion

types (see Results in [39, 45]). As discussed previously [14], this approach could be modified to

increase the probability of trapping beetles which tend to orient to the carcass on the ground.
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