
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Sensors International 2 (2021) 100131
Contents lists available at ScienceDirect

Sensors International

journal homepage: www.keaipublishing.com/en/journals/sensors-international
Optimal control for COVID-19 pandemic with quarantine and
antiviral therapy

Md. Abdullah Bin Masud, Mostak Ahmed *, Md. Habibur Rahman

Department of Mathematics, Jagannath University, Dhaka, 1100, Bangladesh
A R T I C L E I N F O

MSC:
34A12
49K15
92B05

Keywords:
COVID-19
Optimal control
Pontryagin's maximum principle
Hamiltonian
Transversality conditions
* Corresponding author.
E-mail address: mostak@math.jnu.ac.bd (M. Ahm

Production and hosting by E

https://doi.org/10.1016/j.sintl.2021.100131
Received 9 August 2021; Received in revised form
Available online 22 October 2021
2666-3511/© 2021 The Authors. Publishing service
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
A B S T R A C T

In the absence of a proper cure for the disease, the recent pandemic caused by COVID-19 has been focused on
isolation strategies and government measures to control the disease, such as lockdown, media coverage, and
improve public hygiene. Mathematical models can help when these intervention mechanisms find some optimal
strategies for controlling the spread of such diseases. We propose a set of nonlinear dynamic systems with optimal
strategy including practical measures to limit the spread of the virus and to diagnose and isolate infected people
while maintaining consciousness for citizens. We have used Pontryagin's maximum principle and solved our
system by the finite difference method. In the end, several numerical simulations have been executed to verify the
proposed model using Matlab. Also, we pursued the resilience of the parameters of control of the nonlinear
dynamic systems, so that we can easily handle the pandemic situation.
1. Introduction

Coronavirus is leading to an ongoing pandemic and spread world-
wide. If the infected person is in close contact with others, it may cause
the COVID-19 virus to spread. The tiny droplets and aerosols carrying the
virus can spread from the nose and mouth of an infected person to
shortness of breath, coughing, sneezing, singing or talking. If the virus
enters their mouth, nose or eyes, then they will be infected. The virus can
also spread through contaminated surfaces, although it is not considered
the main route of infection. The exact route of infection is rarely proven,
when people are close to each other, the infection mainly occurs for a
long time. It spreads from infected people who had no symptoms two
days before the start of symptoms.

In April 2020, the World Health Organization (WHO) provided
detailed information and advisories in its report [1]. A mathematical
model is a factual tool to understand how to transmit COVID-19 and
exploring different scenarios. The susceptible-infected-recovered (SIR)
model is discussed in the Oxford model [2], where data comes from the
UK and Italy, and the data relates to the death of the SARS-Cove-2. In that
time the Imperial model is discussed against several cumulative deaths in
ed).
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the UK or the US [3]. In Ref. [4], discuss how to spread and develop a
model. The rate of spread of this disease is proportional to the multipli-
cation of the numbers of attacked and non-attacked individuals. In Refs.
[5,6], researchers proposed a system of differential equations with five
different variables: susceptible (S), exposed (E), symptomatic infected (I),
asymptomatic infected (A), removed (R) including recovered and dead
individuals. Coronavirus is spreading in mass people rapidly, however
several vaccines have been developed.

Many countries have already initiated widespread vaccination cam-
paigns to control the disease. Control of coronavirus spread also depends
on Quarantine (Q) or Isolation. In Ref. [7], Anwar Zeb et al. improved a
quarantine model with four variables SEIR (Susceptible, Exposed,
Infected and Recovered). Due to the severity of the COVID-19 pandemic,
the necessity of scientific modeling is increasing more. A model can help
create a treatment plan and be able to see the long-term course of the
pandemic. In Ref. [8], the authors formulated a mathematical model with
isolation class and government interference systems to reduce disease
infection. And also formulated an optimal control problem. Since the
characteristics and ruin of COVID-19 depend on various parameters
(such as personal immunity, so a COVID-19 pandemic-infected system
tober 2021
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Fig. 1. Schematic diagram of the proposed disease dynamics for COVID-19 pandemic.
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has a history of going to the country while maintaining the necessary
hygiene), that's why all over the world, we can not describe the whole
disease system using a single model. The mathematical model is more
accurate but complex when all parameters and complexity are used.

Currently, many mathematical models have been developed to
explain COVID-19 transmission. Some recent mathematical models can
be found in Refs. [9–12]. In Ref. [11], the authors discussed five com-
partments (SEIQR) where the natural birth and death rates are the same
for the mathematical model is based in India. Furthermore, they dis-
cussed the sensitivity of the model on the transmission rate and the rate
of recovery. In Ref. [12], the authors discussed two types of susceptibility
(non-quarantined and quarantined susceptible populations) in the SIR
model and also investigated the impact of the spread of the infection of
COVID-19 in Bangladesh. In Ref. [13], the authors described a
susceptible-exposed-infectious-recovered metapopulation model with
simulating the pandemic across all major parameters and estimated the
reproduction number by using Markov Chain Monte Carlo methods. In
Ref. [10], the authors describe the three compartmental models with the
stability of Hyers-Ulam type and numerical simulated by
Adams–Bashforth method. In Ref. [14], the authors introduced nonlinear
ordinary equations, analyzed the stability for disease-free and discussed
preventive measures, future outbreaks, and potential disease control
strategies. In Ref. [15] the authors discuss how India is working with
COVID-19 on the economy, human life, and the environment. Social
distance and lockdown are good but mitigation of COVID-19 without
proper vaccination is a big challenge. Most researchers solve problems
without considering the idea of optimal control. We suggest that optimal
controls can be used to investigate the effects of antiviral therapy and
isolation strategies during pandemics.

In the present study, we propose a mathematical model with control
according to our social status which is more challenging. The main
objective of this study is to analyze government strategies for control of
COVID-19 such as isolation, lockdown, quarantine, etc. Our proposed
method can find optimal strategies that reduce infectious and hospital-
ized patients in a short period [0, T]. We study the completely dynamic
behavior of the model in terms of basic reproduction numbers. We have
used three control variables u1(t), u2(t) and u3(t), where.

● u1(t) is the antiviral therapy control on clinically infected cases, ●
u2(t) is the antiviral therapy control on hospitalizations, and

● u3(t) is the isolation control on hospitalizations.

Our aim is to determine the optimal solution of control variables.
Combining antiviral and isolation, we searched for results for a single
policy or multiple policies. Finally, we analyze the sensitivity of the
required parameters.
2

2. Preliminary results

The formation of a model is a mathematical representation of a nat-
ural system. Several mathematical models are well-established to
represent the dynamics of disease. Before constructing a mathematical
model for COVID-19, we would like to introduce some basic concepts as
well as some established models.

2.1. SIR model

SIR (Susceptible, Infected and Recovered) is more vogue and a basic
model is extensively used in the analysis of the expansion of the disease.
The time-variant SIR models have been used to calculate the parameters
of infection and the number of reproductions [16]. There are three
classes in the SIR model, known as susceptible or susceptive or sensitive,
contagious, or Infectious and recovered. Non-infectious populations
become susceptible and the whole population could become infected
with COVID-19 because there is still no vaccine [17]. A man with a
sensitive level goes into an infectious level when that man is in or in the
vicinity of an infected man [18]. As the disease becomes infectious, the
number of infected people continues to increase and people with sensi-
tive levels are more likely to be infected and enter the infection level. For
those who are not contagious, the recovered person represents them. The
equations of the SIR model have become as follows:

8>>>>>>><
>>>>>>>:

dSðtÞ
dt

¼ �βIS

dIðtÞ
dt

¼ βIS� γI

dRðtÞ
dt

¼ γI

; (1)

where each infected person has a certain number β of contacts per day to
spread the disease and γ represents the rate of recovery from infected
people.

2.2. SEIR model

In epidemiological studies at the level of population, the SEIR (Sus-
ceptible, Exposed, Infected and Recovered) model is one of the most
conventional and relatively simple mathematical structures. The SEIR
model is an ordinary and comparatively normal mathematical form. The
SEIR model consists of four compartments: the susceptible population
S(t) at time t; the exposed population E(t); the infected population I(t); the
recovered population R(t). In a limited process, the sum
N(t) ¼ S(t) þ E(t) þ I(t) þ R(t) of these divisions remains constant over
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Fig. 2. Effect of parameters in reproduction number: (a) for β-k and (b) for α-δ.
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time where birth and death are not responsible. The combined dynamic
of these sections is narrated by the method of the equation below:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

dSðtÞ
dt

¼ N � βSðI þ EÞ
dEðtÞ
dt

¼ βSðI þ EÞ � kE

dI
dt

¼ kE � γI

dRðtÞ
dt

¼ γI

; (2)

where k is the rate at which latent individuals become infected.

2.3. The conventional model of COVID-19

We propose a model similar to the influenza pandemic model
described in Ref. [19]. For this purpose, we classify individuals as sus-
ceptible (S(t)), exposed (E(t)), clinically ill and infections (I(t)), asymp-
tomatic (A(t)), quarantine (Q(t)), hospitalized (H(t)), recovered (R(t))
and death (D(t)). Fig. 1 is used to form the model of COVID-19 by the
following set of nonlinear differential equations:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dSðtÞ
dt

¼ N � fμSþ βSðE þ I þ qAþ Qþ HÞg
dEðtÞ
dt

¼ βSðI þ qAþ Qþ HÞ � kE

dAðtÞ
dt

¼ kð1� kÞρE � γ1AðtÞ
dIðtÞ
dt

¼ kρE � ðγ2 þ σÞI
dQðtÞ
dt

¼ σI � ðαþ γ3ÞQ
dHðtÞ
dt

¼ αQ� ðγ4 þ δÞH
dRðtÞ
dt

¼ γ1Aþ γ2I þ γ3Qþ γ4H

dDðtÞ
dt

¼ δH

(3)

where N(t) ¼ S(t) þ E(t) þ I(t) þ A(t) þ Q(t) þ H(t) þ R(t) is the total
population at time t. ρ(0 < ρ < 1) is the constant ratio of exposed E(t) at
growth rate k to the clinically infectious sector I(t) while the remaining
(1 � ρ)k comes from E(t) to the in part of asymptomatic sector A(t). The
γ1, γ2, γ3 and γ4 are the rate of recovered from the sectors symptomatic,
infected, quarantine and hospitalization respectively. The constants α
and δ are the hospitalized rate which comes from quarantine and the
death rate which comes from hospitalization.
3

2.4. Basic reproduction number

In epidemiology,R0 is the basic reproduction number of an infection
which is the expected number of a class directly generated susceptible to
infection in a population [23,24]. R0 is not an original constant for any
virus due to being influenced by other factors such as the conditions of
the environment and the attitude of infected populations. The values of
R0 are normally inferred from mathematical models and the approxi-
mate values depend on the use of parameters and the other parameters
values.

According to Ref. [25], the formation ofR0 and threshold parameters
from deterministic as well as a non-deterministic model are discussed. In
that article, the authors consider a next-generation matrix G ¼ FV�1.
According to our model,

F ¼

2
66664

ðμSþ βSðE þ I þ qAþ Qþ HÞÞ
0
0
0
0

3
77775

V ¼ ½ kE � kð1� kÞρE þ γ1A� kρE þ ðγ2 þ σÞI � σI

þðαþ γ3ÞQ� αQþ ðγ4 þ δÞH�

F ¼

2
66664

β qβ β β β
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3
77775

V ¼

2
66664

k0000� kð1� kÞρ� kρ
γ1000� kρ� kρ

0 ðγ2 þ σÞ 0 0
0 0 �σ αþ γ3 0
0 0 0 �α γ4 þ δ

3
77775

R0 is the dominant eigenvalue of the matrix. The dynamic feature of
the model (3) in the lack of control is characterized by the number of
basic reproduction numbers R0, and also R0 is an assessment of the
number of secondary classes formed by infectious classes when
acquainted with a fully sensitive population. Without controls ui(t) ¼ 0,
i ¼ 1, 2, 3,

R0 ¼ β

kγ1
ð1þ qð1� kÞÞ þ βρ�

�
1

ðγ2 þ σÞ
�
1þ σ

ðγ3 þ αÞ þ
σα

ðγ3 þ αÞðγ3 þ δÞ
�� (4)

is the reproduction number of the model (3). In Fig. 2(a), R0 is increased
when β is increased but R0 is decreased when k is decreased. In Fig. 2(b),
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Table 1
Parameter values with description.

Parameter list

Parameter Description Value or
range

Reference

N(t) Total Population 18 crores Proposed
S(0) Susceptible at time t ¼ 0 13 crores Proposed
E(0) Exposed at time t ¼ 0 3 crores Proposed
A(0) Asymptomatic at time t ¼ 0 0
I(0) Initially Infectious 0
Q(0) Initially Quarantined 0
H(0) Initially Hospitalized 0
R(0) Initially Recovered 0
μ Transmission rate from N (day�1) 0.02[0.01-

1.25]
[20]

β Exposed rate from Susceptible (days�1) 0.01[0.001-
2.5]

[21]

q Relative infectiousness of the
asymptomatic class

0.03 Proposed

k Clinical Infectious rate (days�1) 0.01 Proposed
ρ Constant Proportion of latent

individuals
0.01 Proposed

σ Isolated rate (days�1) 0.3 Proposed
α Hospitalized rate (days�1) 0.07 Proposed
γ1 Recovered class rate from

Asymptomatic
0.02 Proposed

γ2 Recovered rate from Infectious (days�1) 0.02 Proposed
γ3 Recovered rate from Quarantine

(days�1)
0.02 Proposed

γ4 Recovered rate from Hospital (days�1) 0.02 Proposed
δ The death rate from Hospital (days�1) 0.01 [22]
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R0 is decreased when α and δ are decreased.
In the next section we are going to introduce three controls in the

parameterized model for COVID-19 transmission are included in the
system of the nonlinear differential equation (3).

3. Model of COVID-19 pandemic with control

Based on data from the COVID-19 pandemic around the world, the
optimal control theory is used to explore the effects of antiviral therapy
and isolation strategies on modeling parametrized scenes. The control
functions ui(t), i ¼ 1, 2, 3, where u1(t) is clinical infectious control; u2(t)
and u3(t) are the hospitalization control formulated by the different
policies. The dynamics of disease are modeled with control by the
following set of nonlinear differential equations

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dSðtÞ
dt

¼ μN � fμSþ βSðE þ I þ qAþ Qþ ð1� ε3u3ðtÞÞHÞg
dEðtÞ
dt

¼ βSðI þ qAþ Qþ ð1� ε3u3ðtÞÞHÞ � kE

dAðtÞ
dt

¼ kð1� kÞρE � γ1AðtÞ
dIðtÞ
dt

¼ kρE � ðγ2 þ σ þ ε1u1ðtÞÞI
dQðtÞ
dt

¼ σI � ðαþ γ3ÞQ
dHðtÞ
dt

¼ αQ� ðγ4 þ δþ ε2u2ðtÞÞH
dRðtÞ
dt

¼ γ1Aþ γ2I þ γ3Qþ γ4H þ ε1u1ðtÞI þ ε2u2ðtÞH
dDðtÞ
dt

¼ δH:

(5)
4

The Lebesque Integrable functions ui(t), i ¼ 1, 2, 3 are bounded in [0,
1]. Control attempts u1(t) model the fraction of infectious class treated
with antivirals per unit of clinical time, while control u2(t) model the
fraction of patients receiving antiviral therapy per unit of time hospi-
talized. We assume that both controls have uninterrupted antiviral
competence ε1 ¼ ε2, incorporated in the model as ε1u1(t) and ε2u2(t).
(1 � ε3u3(t))H(t) is the isolation control, which is prevented the in-
teractions between H(t) and S(t) classes; and the competence constant ε3
is the impact of isolation in hospital. Control variables close to 1
(u1(t) � 1 and u2(t) � 1) represent almost complete effort and the situ-
ation of the model in almost every infectious or hospitalized person
receiving antiviral therapy. If communication between sensitive and
hospitalized people is almost completely avoided and is prevented by
effective isolation, then ε3u3(t) � 1. The competence of controls ui(t) are
modified by changing the competence constant εi (i ¼ 1, 2, 3). It should
be noted that for numerical computation, values of parameters will be
used from Table 1.

4. Main result

In an optimization problem, the objective function F is used to opti-
mize, where the admissible sets (u1(t), u2(t), u3(t)) are identifying the
most effective strategies over a finite time interval. The goal is to reduce
the number of clinically infectious and hospitalized patients in the final
period of time at a minimal cost. The function

Fðu1ðtÞ; u2ðtÞ; u3ðtÞÞ ¼
Z T

0

�
C1IðtÞ þ C2QðtÞ þ C3HðtÞ þW1

2
u21ðtÞ

þW2

2
u22ðtÞ þ

W3

2
u23ðtÞ

�
dt

(6)

is the objective function of the system of equation (5) which is
minimized.

The control efforts are assumed to be nonlinear. We choose to model
the control effects using a linear combination of quadratic terms u2i ðtÞ;
ði ¼ 1;2;3Þ, where the coefficients Ci, and the weight constantsWi, (i¼ 1,
2, 3) are pre-selected as a measure of the relative cost of the interference
within [0, T]. Since variables of (5) satisfy the initial conditions, then
finding optimal functions u*i ðtÞ; i ¼ 1;2;3 such that

Fðu*i ðtÞ; i¼ 1; 2; 3Þ ¼ min
Ω

FðuiðtÞ; i¼ 1; 2; 3Þ; (7)

where

Ω ¼ fðu1ðtÞ; u2ðtÞ; u3ðtÞÞ 2
ðL2ð0;TÞÞ3j 0 � u1ðtÞ; u2ðtÞ; u3ðtÞ � 1; t 2 ½0;T �

o
:

(8)

This optimal control problem is solved by Pontryagin's maximum
principle. The development of the prerequisites is given below. System
(5) along with the objective functional (6) are converted by Pontryagin's
maximum principle [26]. In this case the Hamiltonian equation can be
written as follows:

J ¼ C1IðtÞ þ C2QðtÞ þ C3HðtÞ þW1

2
u21ðtÞ þ

W2

2
u22ðtÞ þ

W3

2
u23ðtÞ

þλ1ðtÞfμN � fμSþ βSðE þ I þ qAþ Qþ ð1� ε3u3ðtÞÞHÞg g
þλ2ðtÞfβSðI þ qAþ Qþ ð1� ε3u3ðtÞÞHÞ � kEg

þλ3ðtÞfkð1� kÞρE � γ1AðtÞg
þλ4ðtÞfkρE � ðγ2 þ σ þ ε1u1ðtÞÞIg

þλ5fσI � ðαþ γ3ÞQg
þλ6fαQ� ðγ4 þ δþ ε2u2ðtÞÞHg:

(9)
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Theorem 1. System (3) has an unique solution if it satisfies the initial
conditions for S(0), E(0), A(0), I(0), Q(0), H(0), R(0).

Proof. System (3) can be written as

φðXÞ ¼ AX þ BðXÞ; (10)

where,

φðXÞ ¼

2
666666666666666666666666664

dS
dt
dE
dt
dA
dt
dI
dt
dQ
dt
dH
dt
dR
dt

3
777777777777777777777777775

; X ¼

2
666666664

S
E
A
I
Q
H
R

3
777777775
;

A ¼

2
666666664

�μ 0 0 0 0 0 0
0 �k 0 0 0 0 0
0 kð1� kÞρ �γ1 0 0 0 0
0 kρ 0 �ðγ2 þ σÞ 0 0 0
0 0 0 σ �ðαþ γ3Þ 0 0
0 0 0 0 α �ðγ4 þ δÞ 0
0 0 γ1 γ2 γ3 γ4 0

3
777777775
;

BðXÞ ¼

2
666666664

N � βSðE þ I þ qAþ Qþ HÞ
βSðI þ qAþ Qþ HÞ

0
0
0
0
0

3
777777775
:

The second term on the right-hand side of (10) satisfies

jBðX1Þ � BðX2Þj ¼ jβðS1E1 � S2E2Þj
¼ jβðS1E1 � S2E1 þ S2E1 � S2E2Þj
¼ jβðE1ðS1 � S2Þ þ S2ðE1 � E2ÞÞj
� βðjE1ðS1 � S2Þj þ jS2ðE1 � E2ÞjÞ
� βðjE1kS1 � S2j þ jS2kE1 � E2jÞ

¼ β2z
μ

ðjS1 � S2j þ jE1 � E2jÞ

¼ MjX1 � X2j

where M ¼ β2z
μ , then kφ(X1) � φ(X2)k ¼ Vk|X1 � X2|, where V ¼ max(M,

kAk) < ∞.
Thus, it follows that the function φ is uniformly Lipschitz continuous.

From the restriction on S(t) � 0, E(t) � 0, A(t) � 0, I(t) � 0, Q(t) � 0,
H(t) � 0 and R(t) � 0, we see by Ref. [27] that a solution of system (3)
exists, which is unique. □

Theorem 2. If the objective functional F(u1(t), u2(t), u3(t)) over Ω is
minimized by the optimal controls u*1ðtÞ; u*2ðtÞ; u*3ðtÞ and corresponding solu-
tions S*, E*, A*, I*, Q*, H*, R*, D*, then there exist continuous functions λi(t)
such that
5

>>>>> dλ1 ¼ ðλ1 � λ2ÞβðI þ qAþ Qþ ð1� ε3u3ÞH þ λ1ðμþ βEÞ

8
>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

dt
dλ2
dt

¼ λ1βSþ λ2k � λ3kð1� kÞρ� λ4kρ

dλ3
dt

¼ λ3γ1 þ ðλ1 � λ2ÞβSq
dλ4
dt

¼ �C1 þ λ4ðγ2 þ σ þ ε1u1Þ þ ðλ1 � λ2ÞβS� λ5σ

dλ5
dt

¼ �C2 þ βSðλ1 � λ2Þ þ λ5ðαþ γ3Þ � λ6α

dλ6
dt

¼ �C3 þ ðλ1 � λ2ÞβSð1� ε3u3Þ þ λ6ðγ4 þ δþ ε2u2Þ

(11)

with the transversality conditions, λi(T) ¼ 0, i ¼ 1, 2, 3, 4, 5, 6.
Furthermore,

8>>>>>>>>><
>>>>>>>>>:

u*1ðtÞ ¼ min
�
max

�
0;
λ4ε1I
W1

�
; 1

�
;

u*2ðtÞ ¼ min
�
max

�
0;
λ6ε2H
W2

�
; 1

�
;

u*3ðtÞ ¼ min
�
max

�
0;
ðλ2 � λ1Þε3βHS

W3

�
; 1

�
:

(12)

Proof. The existence of optimal follows from Corollary 4.1 of [26]
since the integrand of J is a convex function of (u1, u2, u3) and the state
system satisfies the Lipshitz property concerning the state variables. The
following can be derived from Pontryagin's Maximum Principle [26]:

dλ1
dt

¼ �∂J
∂S
;
dλ2
dt

¼ �∂J
∂E

;
dλ3
dt

¼ �∂J
∂A

;

dλ4
dt

¼ �∂J
∂I
;
dλ5
dt

¼ �∂J
∂Q

;
dλ6
dt

¼ �∂J
∂H

;

with λi(T) ¼ 0, i ¼ 1, 2, …, 6 evaluated at the optimal controls and
corresponding states, which results in the adjoint system (11). We have to
minimize the Hamiltonian J with respect to the controls u1, u2, u3 in the
set Ω, which gives the following optimality conditions:

8>>>>>>>><
>>>>>>>>:

∂J
∂u1

¼ W1u1 � λ4ε1I ¼ 0; u1 ¼ u*1;

∂J
∂u2

¼ W2u2 � λ6ε2H ¼ 0; u2 ¼ u*2;

∂J
∂u3

¼ W3u3 þ λ1Sε3H � λ2ε3HS ¼ 0; u3 ¼ u*3:

(13)

From (13), we have

8>>>>>>>><
>>>>>>>>:

u*1ðtÞ ¼
λ4ε1I
W1

;

u*2ðtÞ ¼
λ6ε2H
W2

;

u*3ðtÞ ¼
ðλ2 � λ1Þε3HS

W3
:

(14)

5. Numerical results

In this section, we will present some simulation results of our pro-
posed approach that can be helpful for policymakers of a state as well as
population awareness. The corresponding basic reproduction number
creates the existence and uniqueness of the response to guarantee the
solution of the control system for the model of COVID-19. We assess the
impact of optimal control strategies on the dynamics of the COVID-19



Fig. 3. Effect of controls for the weight constants W1 ¼ 0.01, W2 ¼ 0.0007, W3 ¼ 0.0000003: (a) for the single control and (b) for all controls together.

Fig. 4. Effect of parameters: (a) β effect, (b) μ effect, (c) k effect and (d) α effect.
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pandemic under the specific baseline reproduction number R0. As we
know, in the case of a pandemic for diseases such as COVID-19, the
rational range for the basic reproductive number R0 should be 1.5–6.49
[28,29]. However, we also check our model for an out-of-rangeR0 value
and see that the control variables still work. In general, higher repro-
duction numbers R0 � 3:25 lead to pandemics characterized by high
epidemic peaks.

Suppose antiviral drugs have an unlimited supply. The control vari-
ables u1(t), u2(t) and u3(t) are applied separately as shown in Fig. 3(a).
After a certain period of time, the curve of u1(t) falls rapidly but the
curves of u2(t) and u3(t) fall slowly, which ensures that the strategies are
not working well. We have shown that the performance of u2(t) is not so
good if antiviral therapy control is applied to hospital admissions but
isolation control is not applied to hospital admissions. While three con-
trol attempts work simultaneously, it performs better as shown in
Fig. 3(b). From Fig. 3, it can be seen that the effect of the control u3(t) is
stronger when we apply all controls together than that of the controls
alone. On the other hand, the effect of controls u1(t) remain close to the
same in both cases.

Fig. 4 shows the effect of parameters β, μ, k andα over the population. It
can be seen from Fig. 4(a) that I(t) is asymptotically stable when β< 1 and
stable when β � 1. Under full control, the maximal infectivity is 10 days
after the onset of the pandemic, and the peak time approximately changes
6

with the transmission rate β. At the peak point near about 8000 infected
out of 1,300,000 and after 90 days, the infected is zero when β ¼ 0.001.
The peak date of I(t) is small sensitive to the change of β. Fig. 4(b) shows
that I(t) is asymptotically stable at μ < 1, stable at μ ¼ 1, and unstable at
μ>1.Under fully controlled, themaximumnumber of infectedpeople is at
10th day after starting the pandemic, and the peak time is fixed with the
rate of transmission μ. At the peak, 8000 people out of 1,300,000 are
infected, and after 90 days, the number of infected is zero when μ¼ 0.02.
The peak date of I(t) is not sensitive to the change of μ.

From Fig. 4(c), it can be seen that I(t) is asymptotically stable for all
values of k. Under full control for k¼ 1, the maximum number of infected
is at the 8th day after the pandemic starts, and the peak is not fixed while
the value of k varies. At the peak level, 7500 (approximate) people are
infected out of 1,300,000; after 80 days, the number of infected becomes
zero. It is clear that at the peak, I(t) is very sensitive with the change of
the value of k. Fig. 4(d) shows that I(t) is asymptotically stable for all
values of α. Under full control with α ¼ 0.08, the number of the hospi-
talized patients is maximum on the 23rd day after the start of the
pandemic; and the peak varies with the changes in the value of α. At the
peak point, 2200 out of 1,300,000 people were hospitalized. The peak of
H(t) is sensitive to the change of k.

Fig. 5 shows that the infectious peaks are located at two distinct
points for different values ofR0. The pick with full control and only u1(t)

mailto:Image of Fig. 3|tif
mailto:Image of Fig. 4|eps


Fig. 5. Symptomatic infected individuals while R0 and k vary: (a) R0 ¼ 1.47,
k ¼ 0.1, and (b) R0 ¼ 6.65, k ¼ 0.2.

Fig. 6. Number of hospitalized individuals while R0 and α vary: (a) R0 ¼ 1:47, α ¼ 0.3, and (b) R0 ¼ 6.15, α ¼ 0.7.

Fig. 7. Number of deaths while R0 and δ vary: (a) R0 ¼ 1.47, δ ¼ 0.01, (b) R0 ¼ 6.15, δ ¼ 0.05.

Fig. 8. Comparing control and without control: (a) Infected, and (b)
Hospitalized.
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Fig. 9. (a) Infected vs. Reproduction number and (b) Death vs. Time (days).

Fig. 10. Comparison of daily infected and hospitalized cases for COVID-19 with relevant control variables. The figures (a,c,e) use weight constants W1 ¼ 10, W2 ¼ 10,
W3 ¼ 0.03, and figures (b,d,f) use weight constants W1 ¼ 100, W2 ¼ 100, W3 ¼ 10. Parameter values are given in Table 1.
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control are the same. On the other hand, the pick with only u2(t), u3(t)
controls and without control is the same. It can be observed that the
control of antiviral therapy is the most effective only in the case of hos-
pitalizations, except for the control of antiviral therapy and the isolation
of hospitalizations alone. With all controls, the rate of infection and
hospitalization decreases and stabilizes over time [0, T]. In the absence of
appropriate vaccination, the isolation strategy is a powerful tool in
controlling a pandemic situation. In Fig. 5, the number of symptomatic
infected individuals is shownwhileR0 and k vary. It can be observed that
the number of infected individuals decreases over time when the control
8

variable(s) is imposed. A similar scenario can be seen for the case of
hospitalized and dead individuals from Fig. 6 and Fig. 7 correspondingly.
It can be seen in Fig. 7 that the number of deaths increases with the in-
crease of reproduction number. Our aim is to minimize the basic repro-
duction number R0 < 1 by applying our proposed optimal control
strategies.

Fig. 8(a) shows the status of daily infection where R0 ¼ 0:92. This
curves positively skewed distribution shows that the optimal controls are
functioning well over the time. On the 8th day, the number of infected is
maximum, and after 8th day, the infection rate gradually decreases. The
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impact of the controls u2(t) and u3(t) are least over the infected people.
Fig. 8(b) shows the daily hospitalized case. It is like a negative skewed
curve. On 25th day, a maximum of 180,000 people out of 18 crores are
hospitalized. Here, the effect of the control u3(t) is very negligible.
Fig. 8(c) shows daily death cases. It is like a negative skewed curve. On
the 25th day, a maximum of 16 people out of 18 crores died. Here, also
the effect of the control u3(t) is very Small. Thus, we can conclude that it
is possible to control COVID-19 as long as we can reduce the reproduc-
tion number R0 < 1, otherwise COVID-19 will get out of control.

In Fig. 9(a), when we fully controlled, maximum of 2300000 peoples
out of 18 crores are infected for reproduction number R0 ¼ 1:2, where
only exposed rate from Susceptible increased but other parameters are
unchanged.R0 is estimated to determine the relative risk associated with
a microbe. These estimates will be used to compare the spread of the
disease with other known microbe. Without control, the number of cu-
mulative infected case is exponentially increased with R0. When control
is targeted to an earmarked sector, reproduction numberR0 is not a good
significance of the required control effort. Roberts and Heesterbeek are
suggested a reproduction number [30]. This quantity is identical toR0 in
the homogeneous population. In Fig. 9(b), the case of without controls
and only u3(t) control, the number of deaths is increased with the
increased of reproduction number R0. When R0 > 1:66, the behavior of
the death curves are eccentric.

We did not include details of the results of the analysis because
weights may not be very sensitive to large differences and the role of
weight constant for all strategies has been explored. In Fig. 10, for
different weights constants on the controls, we have shown comparative
results with the implementation of strategies, and the whole pandemic
situation, the value of W1 ¼ 0.1, W2 ¼ 0.0007, and W3 ¼ 0.0000003 is
accurate for an optimal solution. The number of infectious cases is
increased lack of implementation of interventions, in spite of the weight
constants, cost of treatments and isolation efforts are increased.

6. Conclusion

For disease control and community planning for the future, optimal
control is crucial. In order to eradicate the pandemic, the optimal control
guides us to the parameters that we should take care of. We have
formulated a mathematical model for the pandemic of COVID-19 and
also discussed the transmission dynamics and control of the disease. The
sensitivity of the parameters is checked in R0. Although the weight
constants are increasing in Fig. 10, we see that number of infections and
hospitalizations are also increasing in the case of under control. Infection
is more likely to occur due to contact with contaminants and the pro-
longed life of the coronavirus. Strict lockdown, frequent hand-washing,
disease side effect control, and sanitizer are the non-clinical treatment.
In mild, normal, and not severe cases, recovery from COVID-19 is usually
possible within fourteen days. Our research has shown that raising
awareness will reduce the rapid spread of the pandemic situation. The
rate of spread of the disease in each country can be explained by different
precautions. According to the outcome of the investigation, we have
carried out mathematical modeling work in our study which will make a
big difference in terms of the number of patients if it is used carefully.
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