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Abstract: Vibrational measurements play an important role for structural health monitoring, e.g.,
modal extraction and damage diagnosis. Moreover, conditions of civil structures can be mostly
assessed by displacement responses. However, installing displacement transducers between the
ground and floors in real-world buildings is unrealistic due to lack of reference points and structural
scales and complexity. Alternatively, structural displacements can be acquired using computer vision-
based motion extraction techniques. These extracted motions not only provide vibrational responses
but are also useful for identifying the modal properties. In this study, three methods, including
the optical flow with the Lucas–Kanade method, the digital image correlation (DIC) with bilinear
interpolation, and the in-plane phase-based motion magnification using the Riesz pyramid, are
introduced and experimentally verified using a four-story steel-frame building with a commercially
available camera. First, the three displacement acquiring methods are introduced in detail. Next, the
displacements are experimentally obtained from these methods and compared to those sensed from
linear variable displacement transducers. Moreover, these displacement responses are converted
into modal properties by system identification. As seen in the experimental results, the DIC method
has the lowest average root mean squared error (RMSE) of 1.2371 mm among these three methods.
Although the phase-based motion magnification method has a larger RMSE of 1.4132 mm due
to variations in edge detection, this method is capable of providing full-field mode shapes over
the building.

Keywords: optical flow; digital image correlation; bilinear interpolation; phase-based motion
magnification; Riesz pyramid; modal property extraction

1. Introduction

Structural health monitoring (SHM) assists engineers to evaluate structural conditions
through a scientific approach. In many SHM applications, vibrational measurements are
recorded through sensors (e.g., accelerometers and displacement transducers) to under-
stand the dynamic behavior of a structure [1,2]. In addition, displacement measurements,
specifically the inter-story drifts, can be used to directly diagnose structural conditions [3].
Therefore, precise vibrational displacement measurements are needed in the condition
assessment of buildings.

Although displacement measurements can be employed to directly evaluate the struc-
tural soundness, installing displacement transducers would result in great challenges such
as finding an appropriate reference point [2]. Additionally, accelerometers are commonly in-
stalled on important components such as columns or beams to measure dynamic responses.
However, sensor deployments are often costly and labor-intensive due to the high complex-
ity and large size of typical civil structures [4]. Additionally, when testing laboratory-scale
models, the self-weight of installed sensors may distort the measured responses, resulting
in the misrepresentation of dynamic behavior [5]. Alternatively, vision-based techniques
can be another good option to acquire vibrations of structural components [6].

With the aid of computer vision techniques, structural motions can be extracted
through videos. When structures undergo in-plane motions, target movements will yield
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gradual intensity changes from pixel to pixel, where targets can be any recognizable
components (e.g., beam-column connections) or manmade patterns adhered on structures
(e.g., checkerboards). These intensity changes are viewed as optical flow and can be
employed to extract motion velocities [7]. In the literature, Zhu et al. [8] proposed a marker-
free method for displacement measurements using optical flow. The bolt at the main span of
a scaled bridge was tracked by a smart phone with 4K resolution to measure displacement,
with an average root mean square error (RMSE) of 0.2 mm. Won et al. [9] and Dong
et al. [10] combined deep learning with optical flow methods to estimate the displacements
from recorded videos of structures. In a study conducted by Won et al. [9], the performance
using a 4K resolution camera was tested to have an RMSE of 0.07 mm for measurements
less than 0.1 mm. In a study conducted by Dong et al. [10], the displacement of a model
grandstand was measured using an industrial high-performance camera, resulting in a
normalized RMSE of 0.87 mm. However, optical flow is sensitive to regions with significant
and abrupt displacement variations and can only estimate motions of discrete regions [11].

Alternatively, digital image correlation (DIC) tracks the region of interest (ROI)
through the correlations between two image portions, and the region that has the highest
correlation with the ROI in the sequential frames can estimate the ROI motions [12]. In
addition, DIC is more robust to brightness variations because the method computes the
correlations between regions instead of estimating through pixel intensity. In applications,
DICs are usually combined with speckle pattern coatings attached to the structural surface,
and accurate full-field displacements are then obtained [13–15]. The vibrational measure-
ments obtained from DIC can also be used for modal property extraction [16–18]. Moreover,
interpolations within pixels can be employed in DIC methods to improve the measure-
ments [19]. For instance, Luu et al. [20] applied DIC with the B-Spline interpolation, and
the measurement accuracy to subpixel precision was upgraded. Zhao et al. [21] exploited
DIC with a corrected three surface fitting algorithm (CTSFA) to improve the displacement
estimation performance. Although DIC can be utilized to acquire full-field displacements
from spackle pattern surfaces on structures, the method can also be applied to measure
specific ROIs that have significant feature points.

Additionally, phase-based motion magnification is also one of the popular techniques
to obtain vibrational displacements. Phase-based motion magnification manipulates the
local phase differences within frames to enlarge the motion of a specific frequency band [22].
The magnified motion can enhance extracted pixel-precision movements to subpixel pre-
cision and does not require surface coatings. In the literature, Cha et al. [23] combined
phase-based motion magnification with unscented Kalman filters to measure displace-
ments of a laboratory-scale beam structure. The results showed that this approach had
larger noise compared to laser vibrometers and accelerometers; however, the noise can be
reduced by the unscented Kalman filter. Harmanci et al. [24] employed the phase-based
motion magnification method to estimate displacements of a three-story frame structure.
The resulting mode shapes were consistent with those identified from LVDTs. Moreover,
full-field modal responses and modal properties can be extracted from the magnified
motions [5,25,26]. In summary, the phase-based motion magnification method has the least
requirements on the structural setting (i.e., without any coatings or targets) as well as can
efficiently measure full-field displacements.

The objective of this study is to investigate the effectiveness of different motion extrac-
tion methods using a commercially available camera, including the optical flow with the
Lucas–Kanade method, the digital image correlation (DIC) with bilinear interpolation, and
the in-plane phase-based motion magnification using the Riesz pyramid. In Section 2, the
methodology of the three approaches is introduced in detail. In Section 3.1, an experiment
of a four-story steel-frame building structure using shake table testing is conducted to
evaluate the displacement estimation performance using a commercially available camera.
In Section 3.2, the performance and measurement errors of all the displacement extraction
methods are discussed, and some improvements for each method, i.e., usage of reference
frame, bilinear interpolation, and motion magnification, are employed and added to these
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methods. In Section 3.3, the estimated motions from three methods are then converted
from pixels into millimeters using the relationship between the image and known parame-
ters (i.e., story width). The estimated displacements are also compared to the measured
displacements from linear variable displacement transducers (LVDT). In addition, the
computational demand is compared. In Section 3.4, comparisons on modal properties are
carried out by system identification to the obtained motions from the three methods. In
Conclusions, the three methods are experimentally verified to have comparable displace-
ment estimation performance with LVDTs, and the estimated displacements have sufficient
precisions for modal property identification.

2. Computer Vision-Based Motion Extraction Techniques

In this study, three types of computer vision-based motion extraction techniques are
briefly introduced, including using optical flow with the Lucas–Kanade method, the digital
image correlation with bilinear interpolation, and the phase-based motion magnification
using the Reisz pyramid.

2.1. Optical Flow with Lucas–Kanade Method

Optical flow is a common approach to detecting object motions besides counting the
movement of certain pixels, which can only see motions that are larger than one pixel. In an
image, objects are not constructed with sharp edges, instead, the images are blurred when
transiting objects to objects. Additionally, movements represented in videos are converted
as gradient colors. Thus, by combining the information of the pixel movement and the
color change, the motion extracted from the video can be more accurate with a precision
smaller than one pixel. As mentioned in Singh [7], a small motion of a pixel between two
images can be represented as

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t) (1)

where I is the intensity of a voxel at (x, y, t); x and y denote the positions in the coordinates
of an image; t denotes the time step; and ∆ represents the small difference in terms of frame
or time. By using the local Taylor series approximation, Equation (1) is expanded as

I(x + ∆x, y + ∆y, t + ∆t) ∼= I(x, y, t) +
∂I
∂x

∆x +
∂I
∂y

∆y +
∂I
∂t

∆t (2)

where ∂I
∂ is the partial derivative of the intensity I. Note that the higher terms in the

Taylor series are neglected. By truncating the higher order terms of the Taylor series
approximation, the intensity increment satisfies

∂I
∂x

∆x +
∂I
∂y

∆y +
∂I
∂t

∆t = 0 (3)

By dividing Equation (3) by ∆t, the equation can be rewritten as

IxVx + IyVy = −It (4)

where Vx and Vy are the velocity in the x and y directions; and Ix, Iy, and It are the
derivatives of I with respect to x, y, and t. To solve the aperture problem in Equation (4),
the Lucas–Kanade method [27] is applied to generate additional constraints. Given a
target pixel, the image contents of two sequential frames near the target are assumed to be
constant. With considerations of n pixels that are near the target, the local velocity vector
satisfies

JTJv = JTb (5)
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where

J =


Ix(x1, y1) Iy(x1, y1)
Ix(x2, y2) Iy(x2, y2)

...
...

Ix(xn, yn) Iy(xn, yn)

, v =

[
Vx
Vy

]
, b =


It(x1, y1)
It(x2, y2)

...
It(xn, yn)


where the velocity vector can be determined using the least-squares method. Finally, the
displacements are integrated by

d =
∫ t

0
vdt (6)

where d is the displacement in both x and y directions.

2.2. Digital Image Correlation with Bilinear Interpolation

Digital image correlation (DIC) [28] is one of the popular motion tracking methods that
can accurately measure the movements between sequential frames. The main concept of
DIC is to compare the surface features (e.g., speckle patterns on structural surfaces) and to
calculate the correlation of the feature regions within two frames. In small displacements,
the target object can be assumed to be rigid, and the motion is, therefore, tracked by
extracting the position that has the highest correlation as compared to the target. The
extracted motion is restricted to the distance between the camera and target because the
resolution would degrade as the camera moves further from the target.

To improve the resolution of the video for long-distance filming, subpixel estimation,
which can be accomplished using bilinear interpolation within four neighboring pixels,
is applied to each frame as a pre-processing step before applying DIC [21]. As civil
engineering applications usually focus on one-directional vibration response and neglects
vertical responses. Figure 1 illustrates an example of the bilinear interpolation, where
four pixels Pij (i ∈ [1, 2], j ∈ [1, 2]) are located at (X1, Y1), (X2, Y1), (X1, Y2), and (X2, Y2). As
mentioned in Zhao et al. [21], the intensity of these four pixels is represented as O

(
Pij
)
,

and the intensity of intersection O(x) between P1 to P3 and P2 to P4 can be represented by

O(x, y) =
1

(x2 − x1)(y2 − y1)
[x2 − x x− x1]

[
O(P11) O(P12)
O(P21) O(P22)

][
y2 − y
y− y1

]
(7)
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Figure 1. Illustration of the bilinear interpolation.

After obtaining the subpixel intensities, the correlation of a region of interest (ROI) of
two frames is calculated by

C = F−1{F{ROI1}·∆F{ROI2}∗
}

(8)
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where ROI1 and ROI2 are the intensities within the ROIs that correspond to the original
frame and the deformed frame, respectively; F{} is the frequency response using discrete
Fourier transform; F{}∗ is the Hermitian transpose of F{}; and C is the correlation
between R1 and R2. Thus, the integer shift (i.e., movement) can be obtained by seeking the
maximum correlation such as

(∆x, ∆y) = argmax
(x,y)
{C} (9)

2.3. In-Plane Motion Magnification

The phase-based motion magnification method using the Riesz pyramid is capable of
full-field, target-free measurement [29]. As mentioned in the paper, the input sub-band
I and the Riesz transform from I, R1, and R2 are represented using the local phase ϕ, the
local orientation θ, and the local amplitude A given by

I = A cos(ϕ), R1 = A sin(ϕ) cos(θ), R1 = A sin(ϕ) sin(θ) (10)

The local phase ϕ can be presented in the complex domain by

Aeiϕ = I + iQ (11)

where Q is the quadrature pair when the Riesz transform is steered to the local dominant
orientation. When a small motion is induced by a two-dimensional oriented sinusoid, the
sub-band intensity can be written as

Is(x, y, t) = A cos
(
ωx
(
x− δ(t) + ωyy

))
(12)

where Is is the intensity of the sub-band image; A is the local amplitude; δ is the small
horizontal motion; and ωx and ωy are the frequencies of the two-dimensional sinusoid.
The quadrature pair can now be given by

Q(x, y, t) = Asin
(
ωxx + ωyy−ωxδ(t)

)
) (13)

From Equation (10), the local phase is written as

ϕ = ωxx + ωyy−ωxδ(t) (14)

After applying temporal filters to remove the DC component ωxx + ωyy, the local
phase can be magnified by β. With the local amplitude assumed to be constant, the
motion-magnified sinusoid is given by

Im = A cos(ωx
(
x− (1 + β)δ(t) + ωyy

)
(15)

where Im is the sub-band intenstiy after magnified motion. More details can be found in a
study conducted by Wadhwa et al. [29].

3. Experiment Verification

In this section, a scaled four-story steel-frame building is employed to experimentally
evaluate the three motion extraction methods, which yield dynamic floor displacements
from recorded videos. The measurements are converted from pixels to millimeters and
compared to LVDT readings. In addition, the modal properties are identified from these
displacement responses and also compared to the identification results from LVDTs. The
performance and considerations of these three methods are eventually discussed.

3.1. Experimental Setup

In this study, a scaled four-story steel-frame building is excited by the shake table at
the National Center for Research on Earthquake Engineering (NCREE) in Taiwan, and the
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effectiveness of the three motion extraction methods are evaluated. The methods include
the optical flow, the digital image correlation with subpixel estimation, and the phase-based
motion magnification using Riesz Pyramid. Figure 2 represents the specimen and sensor
locations used in the experiment. In this building, the H-beams used have a cross section
of 150 mm× 150 mm, and these H-beams are utilized as the structural columns and beams.
The story height, width, and weight are 2.2 m, 3.15 m, and 6 tons, respectively.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 15 
 

 

In this study, a scaled four-story steel-frame building is excited by the shake table at 
the National Center for Research on Earthquake Engineering (NCREE) in Taiwan, and the 
effectiveness of the three motion extraction methods are evaluated. The methods include 
the optical flow, the digital image correlation with subpixel estimation, and the phase-
based motion magnification using Riesz Pyramid. Figure 2 represents the specimen and 
sensor locations used in the experiment. In this building, the H-beams used have a cross 
section of 150 mm × 150 mm, and these H-beams are utilized as the structural columns 
and beams. The story height, width, and weight are 2.2 m, 3.15 m, and 6 tons, respectively. 

In the experimental setup, four LVDTs per floor are installed to measure absolute 
displacements in both the x and y directions, and a total of 16 LVDTs are installed on this 
building as shown in Figure 2b. Two additional LVDTs are located at the base to measure 
ground displacements under the 50-gal white noise excitation. Note that this building is 
excited along the xst direction during the experiment, but imperfect fabrication would in-
duce very small floor displacements in the yst direction. Thus, this study only presents 
LVDT readings in the xst-direction. The duration is roughly 90 s. In addition, a commer-
cially available camera is placed on a fixed floor, i.e., the outside of the shaking table area, 
to record motions of the building and shake table. The distance between the structure and 
the camera is around 3 m, with a 30-fps framerate and a resolution of 1080 × 1920 pixels. 
Both the building and camera parameters are summarized in Table 1. 

  
(a) (b) 

Figure 2. Experimental setup: (a) photo captured by camera; (b) LVDT locations. 

Table 1. Parameters for experimental setup. 

Four-Story Steel-Frame Building Camera System 
Story height 2.2 m Resolution 1080 × 1920 
Story width 3.15 m Frame Rate 30 fps 
Story weight 6 tons distance ~ 3 m 

Beam cross section H-type 150 mm × 150 mm 
  

Sensors 18 LVDTs 
  

Zst

Xst

Zst

Xst Yst

Figure 2. Experimental setup: (a) photo captured by camera; (b) LVDT locations.

In the experimental setup, four LVDTs per floor are installed to measure absolute
displacements in both the x and y directions, and a total of 16 LVDTs are installed on
this building as shown in Figure 2b. Two additional LVDTs are located at the base to
measure ground displacements under the 50-gal white noise excitation. Note that this
building is excited along the xst direction during the experiment, but imperfect fabrication
would induce very small floor displacements in the yst direction. Thus, this study only
presents LVDT readings in the xst-direction. The duration is roughly 90 s. In addition, a
commercially available camera is placed on a fixed floor, i.e., the outside of the shaking table
area, to record motions of the building and shake table. The distance between the structure
and the camera is around 3 m, with a 30-fps framerate and a resolution of 1080× 1920 pixels.
Both the building and camera parameters are summarized in Table 1.

Table 1. Parameters for experimental setup.

Four-Story Steel-Frame Building Camera System

Story height 2.2 m Resolution 1080× 1920

Story width 3.15 m Frame Rate 30 fps

Story weight 6 tons distance ~3 m

Beam cross section H-type 150 mm× 150 mm

Sensors 18 LVDTs

3.2. Motion Extraction
3.2.1. Optical Flow with the Lucas–Kanade Method

Figure 3a demonstrates the selected ROI for the roof floor measurement. Although the
selected portion seems to have a low resolution, sufficient features (e.g., the edges of the
white paper) are obtained for motion extraction using optical flow with the Lucas–Kanade
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method. As shown in Figure 3b, the estimated velocity is acquired from the feature points.
As the structure does not move in the zst-direction, only horizontal velocities are utilized to
retrieve the motion. The displacement time history is calculated by integrating the velocity
over time and converted to physical units by using the relationship between the story
width in pixels and the exact width. This relationship is 7.8 mm/pixel, and the result is
exhibited in Figure 3c.
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Figure 3. Results of optical flow with the Lucas–Kanade method: (a) ROI; (b) estimated optical flow; (c) roof displacement.

Two motion tracking approaches by optical flow are established and examined such
as (1) by estimating the optical flow from sequential frames (i.e., the current and previous
frame) and (2) by comparing each frame with the reference frame (i.e., the first frame).
As found in the experimental results, one disadvantage of estimating the optical flow by
matching the previous frame is that the errors may be enlarged and accumulated if errors
exist in the previous steps [9]. Figure 4 shows the comparison between the LVDT response
and the two approaches, where the yellow line indicates the measurement of the roof from
the LVDT and the blue and orange curves indicate the displacement obtained from the first
and second approaches. Note that the LVDT measurements are down sampled to 30 Hz for
comparison with these two approaches. To understand the accuracy of these approaches,
the root mean square error (RMSE) is computed by

RMSE =

√√√√∑N
j=1

(
dLVDT

j − destimated
j

)2

N
(16)

where dLVDT
j and destimated

j are the measurement from the LVDT and optical flow approaches
at the j-th time step and N is the total number of time steps. As shown in Figure 4b, the
optical flow using a reference frame has a smaller RMSE of 1.44 mm. Although the two
approaches are capable of estimating displacement with high accuracy, the estimation
using the optical flow with a reference frame shows a lower RMSE.
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Figure 4. Comparison of different optical flow estimation approaches: (a) time history; (b) errors.

3.2.2. Digital Image Correlation with Bilinear Interpolation

Digital image correlation extracts motion by seeking the pixel location of the image
portion where the maximum correlation with the ROI is achieved. The motion can then
be determined by calculating differentiated locations from the first frame in the pixel
coordinates. However, small motions are difficult to be distinguished and to extract good-
quality displacements. By the same ROI used in Section 3.2.1, Figure 5a illustrates the
calculated correlations by comparing a feature portion with the ROI. The light-yellow
region presents the highest correlation. Then, using this DIC approach, the resulting
displacement is shown in Figure 5b. As seen, the displacement in pixels only provides the
motion trend without useful information that can be further analyzed.
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Figure 5. Motion extraction from DIC: (a) procedure of cross correlation; (b) extracted displacement.

Alternatively, using bilinear interpolation within the ROI generates subpixels that
can increase precision for the DIC method. In the bilinear interpolation, one pixel is
interpolated into 20 subpixels and then employed to track the roof displacement. Next, the
displacement in pixels is converted to physical units by using the story width in pixels and
the exact length in millimeters. To reduce the computational load, only a small portion
of the ROI is utilized for bilinear interpolation, and the motions in the zst-direction are
assumed to be 0. As shown in Figure 6a, the extracted displacement in the physical unit
matches the LVDT measurement, where the RMSE is 1.41 mm. Moreover, the accuracy is
improved by 44.7%, and precision is improved from 7.8 to 0.39 mm/pixel, as compared to
Figure 5b.
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Figure 6. Results of DIC with bilinear interpolation: (a) comparison between the proposed method by a 20-subpixel
interpolation and LVDT measurement; (b) error.

3.2.3. Phase-Based Motion Magnification Using the Riesz Pyramid

Another approach is to track motion with edge detection. By averaging the pixel
changes in each row, subpixel precision of the measurements can be reached. However,
the measured displacement still contains a large RMSE and may not be useful for dynamic
feature extraction. As shown in Figure 7, the edge determined using the Canny’s edge
detector [30] with a recommended threshold of 0.8 is utilized, and the extracted motion
is converted to millimeters. In Figure 7b, the extracted roof motion is also compared to
the displacement measurement using LVDT, and the resulting RMSE is 2.24 mm, which is
much higher than the results obtained from optical flow with the Lucas–Kanade method
and DIC with bilinear interpolation.
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Figure 7. Motion extraction using edge detection: (a) Canny’s edge detector; (b) estimated displacement at roof.

To improve the accuracy, the local phases of the pixels are determined using the Riesz
pyramid, and the magnified motions are manipulated. One advantage of using the Riesz
pyramid is to magnify motions without dividing a single pixel into multiple subpixels. In
the pyramid reconstruction process, a frequency band of 0 to 15 Hz is selected in accordance
with the Nyquist frequency. The magnification factor β in Equation (15) is set to five. Note
that a larger magnification factor can enlarge motions to be more visible; however, the
magnified motions would be blurry. The resulting magnified responses are then utilized to
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extract displacement using the Canny’s edge detector. Figure 8 shows the results using the
proposed method. As seen in Figure 8b, the RMSE is 1.433, which is lower than the result
by the direct use of the edge detection. Much better performance is achieved by combining
the phase-based motion magnification with the edge detection.
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Figure 8. Results of phase-based motion magnification using the Riesz pyramid: (a) comparison between the proposed
method with magnification factor of 5 and measurement from LVDT; (b) error.

3.3. Discussions of Motion Extraction Results

In this section, three proposed motion extraction methods, including the optical flow
with the Lucas–Kanade method, the DIC with bilinear interpolation, and the phase-based
motion magnification using the Riesz pyramid, are compared. In the optical flow with the
Lucas–Kanade method and DIC with bilinear interpolation, the reference adopted is the first
frame in accordance with the findings in Section 3.2.1. Table 2 lists the RMSEs calculated
using Equation (16), and the maximum displacement error (Errormax) of all the floors.
Additionally, the RMSref indicates the root mean squares of all the floor LVDT readings,
and the maximum floor displacements (i.e., Dispmax) are provided for the reference. In the
evaluation of this section, the three approaches employed the same ROIs to investigate
performance. Note that changing the ROIs can highly affect the results because the quality
of the image portion may be affected by multiple reasons such as the light source, sufficient
feature points, etc.

As found in the results, all three approaches have a similar RMSE of around 1.3 mm
(20% of the RMSref). Moreover, the RMSE on the fourth floor is intended to be larger than
other stories for the three methods because the target is much further away from the camera.
A distant target yields fewer or insufficient feature points in ROI to track motions. In
addition, the RMSE of the first floor using the optical flow with the Lucas–Kanade method
and the DIC with bilinear interpolation is slightly larger than using the phase-based motion
magnification using the Riesz pyramid. As the phase-based motion magnification enlarges
the motion instead of seeking for subpixel intensities, higher accuracy is achievable when
processing small motions. Still, the performance of the phase-based motion magnification
using the Riesz pyramid is affected by the edge detection results. For example, the accuracy
will drop when the edges are not well detected, including the RMSE and the maximum
displacement error.
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Table 2. RMSE of each story measurement using the proposed three approaches.

LVDT Optical Flow DIC Phase-Based

Dispmax RMSref Errormax RMSE Errormax RMSE Errormax RMSE

1st
Floor 16.96 6.5202 5.17 1.2661

(19.4%) 4.52 1.2193
(18.7%) 5.44 1.1034

(16.9%)

2nd
Floor 19.35 6.8226 4.75 1.3124

(19.2%) 4.85 1.0652
(15.6%) 4.66 1.5071

(22.1%)

3rd
Floor 20.24 7.0277 5.36 1.1202

(15.9%) 5.51 1.2534
(17.8%) 9.72 1.6095

(22.9%)

4th
Floor 21.45 7.1746 5.02 1.4465

(20.2%) 7.16 1.4107
(19.7%) 5.15 1.4330

(20.0%)
Unit: mm.

In addition, the computational demand of the three approaches is compared per single-
story motion estimation. The computer is configured with an Intel® Core™ i7-8700 CPU
and 48 gigabits of RAM. As listed in Table 3, the phase-based motion magnification using
the Riesz pyramid has the minimum computational usage, and the DIC with bilinear inter-
polation is tested to be the most inefficient. This is because the bilinear interpolation needs
to be calculated multiple times to generate subpixel intensities, and a cross-correlation
matrix needs to be generated in each frame. Moreover, if more subpixels are produced
from the ROI by bilinear interpolation, the computational load will rapidly increase.

Table 3. Computational load of a single-story motion extraction using the three approaches.

Optical Flow DIC Phase-Based

Speed 45.94 s 56.30 s 11.86 s

3.4. System Identification

Modal properties can be extracted from the proposed three approaches. Due to the
limited sampling rate and the less accurate displacements, the number of identifiable modes
is restricted. Figure 9 indicates the power spectral density of the roof displacement calculated
by the three approaches and the LVDTs. As seen, only two modes can be observed from the
computer vision-based methods, and the first four natural frequencies are 1.26, 3.99, 6.90, and
9.51 Hz using the peak picking method from the LVDT power spectral density.
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Figure 10 demonstrates the identified mode shapes of the first two modes and the
rigid body motions in 0.1 Hz from four sorts of displacements. The mode shapes are
identified using the frequency domain decomposition [31]. As seen in Figure 9, a local peak
is found in 0.1 Hz from the LVDT power spectral density. After extracting the mode shape
in this frequency, a rigid-body mode is identified. As the displacements estimated using the
three computer vision-based approaches or measured by the LVDTs are presented in the
fixed (or absolute) coordinates, i.e., the motions related to a fixed ground, this rigid-body
mode exists and is identified from all sorts of displacements. Note that a rigid-body mode
should be located in 0 Hz. Due to some unknown dynamics (e.g., connections between the
building base and shake table), the resulting frequency is shifted to around 0.1 Hz.
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Figure 10. Identified mode shapes: (a) rigid-body mode; (b) 1st mode; (c) 2nd mode.

As shown in Figure 10, the first mode shapes obtained using the three proposed
approaches meet a good agreement with the identified result from the LVDTs. Although
larger variations are observed in the second mode shapes of the three approaches, which
is mostly due to the relatively high noise levels, the results are still comparable with the
mode shape obtained from the LVDTs. Moreover, the comparison of the modal properties
identified from four sorts of displacements are listed in Table 4. The results indicate that
the computer vision-based methods are capable of identifying the natural frequency with
a certain level of accuracy with an error of less than 2%. In addition, the mode shape
accuracy is calculated through modal assurance criterion (MAC) [32] as

MAC =
ϕR

TϕID

‖ϕR‖‖ϕID‖
(17)

where ϕID is the identified mode shape from the computer vision-based methods, and ϕR
is the mode shape by the LVDTs. The MACs of the two modes using three approaches are
all over 0.9, indicating that the proposed approaches can yield estimated displacements
that are identifiable for mode shapes with high accuracy.

Table 4. Comparison of modal properties using the proposed three approaches.

Optical Flow DIC Phase-Based

ωn MAC ωn MAC ωn MAC

1st Mode 1.23 Hz
(−1.6%) 1.00 1.23 Hz

(−1.6%) 1.00 1.23 Hz
(−1.6%) 1.00

2nd Mode 4.01 Hz
(+0.5%) 0.97 4.01 Hz

(+0.5%) 0.92 3.92 Hz
(−1.8%) 0.95
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In addition, because the phase-based motion magnification method is capable of
enlarging a specific frequency band, the full-field modal responses are extracted [5]. The
frequency band is determined by choosing appropriate upper and lower limits correspond-
ing to the natural frequency. In this experiment, the frequency band of the first and second
modes are between 1.11 and 1.35 Hz and between 3.59 and 4.39 Hz, respectively. The
magnification factors are set to 50 and 500 for the first and second modes. Figure 11 shows
the mode shapes extracted from the modal response. As seen here, the first two full-field
mode shapes can be revealed and are quite comparable with the results from the LVDTs.
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4. Conclusions

In this study, three computer vision-based motion extraction methods were investi-
gated and experimentally verified by a four-story steel-frame building using shake table
testing. These three approaches included the optical flow with the Lucas–Kanade method,
the digital image correlation with bilinear interpolation, and the phase-based motion mag-
nification using the Reisz pyramid, which were evaluated using a commercially available
camera by the displacement acquiring accuracy and the extraction capability of modal
properties. In the optical flow approach, the results indicated that estimating the flow using
a reference frame can slightly improve the accuracy by about 5%. As for the digital image
correlation (DIC) methods, the precision reached sub-pixel if bilinear interpolation was
applied to the region of interest (ROI). For an interpolation factor of 20, the precision can be
increased by 20 times, resulting in more detailed displacements to be obtained. The phase-
based motion magnification method can estimate more accurate motions than the direct
use of edge detection with an RMSE improvement of 38.7%. For the single-ROI motion ex-
traction, the phase-based motion magnification method showed the largest average RMSE
among the three approaches due to the error induced by edge detection. Still, the magnified
motion effect in this method overcame the small motion problem (e.g., movements within
a couple of pixels) in the optical flow and DIC methods. For example, the experimental
results demonstrated the smallest RMSE in the estimated first floor displacement using
this phase-based motion magnification method.
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In the system identification results, the first two modes out of four modes were suc-
cessfully identified by the displacements generated from these three computer vision-based
methods. The maximum error of 2% was found in the natural frequency identification by
the displacements from the phase-based motion magnification method, while the identified
mode shapes all had MACs above 0.9 from the estimated displacements using these three
methods. Additionally, the phase-based motion magnification method was able to extract
full-field mode shapes with target-free measurements. As a result, the three methods were
found to have a similar performance as compared to the LVDT measurements.

To sum up, the DIC method had the lowest average RMSE of 1.2371 mm, while
the phase-based motion magnification method yielded the largest RMSE of 1.4132 mm.
However, the interpolation process in the DIC method required additional computational
demand as compared to the optical flow method, and the accuracy between these two
methods were quite comparable, as seen in the experimental results. Moreover, by using a
commercially available camera with a certain distance (i.e., 3 m away from the building)
and image resolution (i.e., 1080 × 1920 pixels), the measured story displacement errors
were all lower than 2 mm. In addition, the estimated displacements can be exploited to
identify modal properties. As found in the experimental verification, all of these three
methods produced modal properties of this building consistent with those identified from
LVDTs.
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