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Abstract

Allergen specific immunotherapy (AIT) can modulate the allergic response causing a long-

term symptom subsidence/abolishment which leads to reduced drug use and prevention of

new sensitization. AIT of house dust mite allergy (HDM) using the mite crude extract (CE)

as the therapeutic agent is not only less effective than the AIT for many other allergens, but

also frequently causes adverse effects during the treatment course. In this study, mouse

model of Dermatophagoides pteronyssinus (Dp) allergy was invented for testing therapeutic

efficacies of intranasally administered liposome (L) encapsulated vaccines made of single

Dp major allergens (L-Der p 1, L-Der p 2), combined allergens (L-Der p 1 and Der p 2), and

crude Dp extract (L-CE). The allergen sparing intranasal route was chosen as it is known

that the effective cells induced at the nasal-associated lymphoid tissue can exert their activi-

ties at the lower respiratory tissue due to the common mucosal traffic. Liposome was chosen

as the vaccine delivery vehicle and adjuvant as the micelles could reduce toxicity of the

entrapped cargo. The Dp-CE allergic mice received eight doses of individual vaccines/pla-

cebo on alternate days. All vaccine formulations caused reduction of the Th2 response of

the Dp allergic mice. However, only the vaccines made of single refined allergens induced

expressions of immunosuppressive cytokines (TGF-β, IL-35 and/or IL-10) which are the

imperative signatures of successful AIT. The data emphasize the superior therapeutic effi-

cacy of single refined major allergen vaccines than the crude allergenic extract vaccine.
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Introduction

House dust mites (HDM), particularly Dermatophagoides pteronyssinus (Dp) and D. farinae
(Df), produce a myriad of proteins and macromolecules that sensitize humans to allergic dis-

eases including allergic dermatitis, allergic rhinitis and asthma worldwide [1]. Sensitization by

the mites has been found in ~85% of asthmatic subjects [2]. Currently, 23 groups of the Dp-

and Df- derived allergens have been recognized. Among them, group 1 (Der p 1 and Der f 1)

and group 2 (Der p 2 and Der f 2) allergens are the most abundant and immunodorminant as

more than 80% of the mite allergic subjects have serum IgE specific to them [3–6]. The group

1 allergens are highly cross-reactive in terms of their ability to induce T cell response and

serum IgE binding [7]. Their allergenicity is attributable to their cysteine protease activity

[8,9]. Der p 1 digests lung epithelium tight junctions (ZO-1) to increase accessibility of the

allergen to the antigen presenting cells (APC) in the deeper tissue [10,11], cleaves low affinity

IgE receptor (FcεRII or CD23) on human B cells and upset IgE regulation [12,13], cleaves α-

subunit of human IL-12 receptor (CD25) on T cells leading to more IL-4 and less IFN-γ pro-

duction [14], and digests α1-antitrypsin to promote airway inflammation and asthma [15].

Der p 1 also conditioned the airway dendritic cells (DCs) by digesting CD40 and DC-SIGN to

diminish IL-12 and thiol secretion leading to a Th2 response bias to the allergen [16–18]. The

HDM group 1 allergens cause release of pro-inflammatory cytokines from bronchial epithelial

cells, tissue mast cells and blood basophils and increase allergen specific IgE production [19–

22]. The biological functions of the HDM group 2 allergens (Der p 2 and Der f 2) are elusive.

Der p 2 and Der f 2 have approximately 87% sequence identity and they share tertiary structure

[23]. Their structure is similar also to the MD-2 (bacterial lipopolysaccharide binding protein)

[24] and Niemann-Pick Type 2 (NPC2; cholesterol-binding protein) [25]. IgE epitopes of

the group 2 allergens are more dependent on the conformational structure than the linear

sequences [26].

Allergen specific immunotherapy (AIT) has curative potential for allergy. AIT not only

mediates long-term mitigation or abolishment of the allergic symptoms which leads to reduc-

tion of drug usage, but also prevents sensitization to new allergen [7,27–31]. The mechanisms

of AIT and immune tolerance to allergens have been reviewed recently [32]. It is evident that

the AIT causes generation of regulatory T cells (Tregs) and B cells (Bregs) which produce

immunosuppressive cytokines including IL-10, TGF-β and IL-35 [32–34]. Tregs and their

cytokines suppress effector T cells and control the allergic diseases by several means which

lead to reduced production of Th2 cytokines (IL-4, IL-5, IL-13); suppression of T cell homing

to tissues; very early basophil tolerance and early decrease of mast cell and basophil activity;

decrease numbers and mediator secretions of tissue mast cells and eosinophils; and suppres-

sion of excessive IgE synthesis and induction of IgG4 and IgA by allergen-specific B cells [32].

Bregs indirectly inhibit differentiation of Th1 and Th17 cells by suppressing pro-inflammatory

cytokine production by DCs [35–37]. Also through production of TGF-β, Bregs induced apo-

ptosis and anergy of effector CD4+ and CD8+ T cells, respectively [38,39]. Several studies have

demonstrated the efficacy of the AIT for a variety of allergens including pollens, grass, trees,

Hymenoptera sting, pet and HDM [40]. Nevertheless, the immunotherapy of HDM allergy by

using crude mite extracts was not only less effective than the other allergen immunotherapies,

but also frequently causes adverse effects, both local and systemic (anaphylaxis), especially

in children [41]. The crude extracts may induce also new IgE reactivity to other mite compo-

nents [42]. Thus, there have been attempts to reduce the side effect of the HDM immunother-

apy by using either recombinant allergens, allergen-derived T cell peptides or recombinant

hypoallergenic allergen derivatives prepared by different methods instead of the native crude

HDM extract [43–49]. In this study, a fundamentally different approach was attempted for

Liposome-entrapped refined Dp allergen vaccines

PLOS ONE | https://doi.org/10.1371/journal.pone.0188627 November 28, 2017 2 / 20

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0188627


immunotherapy of the HDM allergy. Details of the experiments and results of the immuno-

therapy are reported herein.

Materials and methods

Preparation of whole body (crude) extract of D. pteronyssinus (Dp)

Live adult Dp collected from the cultures maintained at the Department of Parasitology, Fac-

ulty of Medicine Siriraj Hospital, Mahidol University, Bangkok, were washed with distilled

water. Each gram of the cleaned mites were homogenized in 4 ml of phosphate buffered saline,

pH 7.4 (PBS) by sonication (OmniRuptor 4000 Ultrasonic Homogenizer, OmniInternational,

Georgia, USA) at 4˚C for 15 min using power level 35 and pulse-off 50%. Protein content of

the crude mite extract (Dp-CE) was determined using Bradford reagents (Bio-Rad, CA, USA).

Preparation of Dp allergic mice

All animal experiments were approved by the Siriraj Animal Care and Use Committee, Faculty

of Medicine Siriraj Hospital, Mahidol University (SiACUC no. 013/2558). For preparing Dp

allergic mice, 6–8 week old male BALB/c mice (National Laboratory Animal Center, Mahidol

University) were sensitized with Dp-CE as described previously [50]. Individual mice were

injected intraperitoneally (i.p.) with three doses of 150 μg of Dp-CE in PBS mixed 1:3 (v/v)

with alum adjuvant (Pierce, USA) on days 0, 7 and 14. On day 21, each mouse was challenged

intranasally (i.n.) with 200 μg of the Dp-CE in 20 μl of normal saline solution (NSS) (10 μl into

each nostril). On days 23, 25 and 27, the mice were nebulized with 10 ml of aerosolic PBS con-

taining 10 mg of the Dp-CE. Sham mice were also prepared and they were injected i.p. with

PBS mixed with alum, challenged i.n. with 20 μl of PBS and nebulized with 10 ml of aerosolic

PBS using the same timeline as for the Dp-CE allergenized mice.

Mouse sample collection

On day 28 (one day after nebulization), all mice were bled and the sera were collected sepa-

rately for determining specific IgE and IgG1 by indirect ELISA [50]. After bleeding, four each

of the allergenized, sham and naive mice were sacrificed by cervical dislocation performed by

qualified veterinarian and/or scientist who hold certificates for use of laboratory animals in

research from the National Research Council of Thailand (NRCT). Diaphragmatic lobe of the

right lung of each mouse was preserved in 5% paraformaldehyde and 4% sucrose in PBS for 24

h. The fixed lung was embedded in paraffin and 5-μm sections were prepared. Sections were

stained with hematoxylin and eosin (H & E) dyes and examined under a light microscope for

histological features of the bronchioles and lung parenchyma. The remaining portion of the

lung was preserved in an RNA stabilization reagent (RNA Later™, Qiagen GmbH, Germany) at

-80˚C. Total RNA was isolated from each preserved sample and used as a template in the study

of cytokine expression profile by quantitative reverse transcription-PCR (qRT-PCR).

Indirect ELISA

The indirect ELISA was used for determination of the mouse serum IgE and IgG1 specific to

the Dp-CE. The assay was performed as described previously [50]. Each well of an ELISA plate

was coated with Dp-CE (1 μg in 100 μl carbonate-bicarbonate buffer, pH 9.6) and blocked

with 200 μl of 1% BSA in PBS. Triple Dp-CE-coated wells were added with individual mouse

serum samples (diluted 1:4 for IgE and 1:100 for IgG1 determinations). After keeping the

plates at 37˚C for 1 h, all wells were washed with PBS containing 0.05% Tween-20 (PBST) and

then added with 100 μl of rat anti-mouse IgE-biotin (Abcam1, Cambridge, USA) diluted
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1:3,000 in PBST for IgE detection or goat anti-mouse IgG1-biotin (Southern Biotech, Birming-

ham, Alabama, USA) diluted 1:10,000 for IgG1 detection. The plates were incubated at 37˚C

for 1 h. Streptavidin-horseradish peroxidase conjugate (Southern Biotech) and freshly pre-

pared 2,2’-azino-bis(3-ethyl benzothiazoline-6-sulfonic acid; ABTS) substrate (Gaithersburg,

MD, USA) were used for color development. The color reaction was stopped by adding 50 μl

of 1% SDS to each well. Wells added with PBS instead of the mouse serum served as blank.

Optical density (OD) at 405 nm of the content in each well was determined against the blank.

Data are presented as mean ± standard deviation (SD) of OD405nm of serum samples of mice

of the same group.

Histologic study of the mouse lungs

H & E stained mouse lung sections were observed by a pathologist who was blinded to the

mouse treatment groups. The degrees of the histopathological features in the bronchioles and

lung parenchyma including the numbers of inflammatory cells infiltrated into peribronchiolar

areas and morphology of the bronchiolar structure (epithelial cells and subepithelial layer)

were evaluated using scoring system, 0–4, as described previously [50].

Quantitative RT-PCR

The qRT-PCR was used for measuring cytokine gene expressions [50]. Total RNAs extracted

from the lung tissues were treated with RNase-free DNase 1 (Invitrogen, CA, USA) and

cDNAs were synthesized. The cDNAs were used as templates for quantification of mRNAs of

cytokine gene expressions including IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, TNF-α, IFN-γ, IL-
12A (p35), IL-12B (p40), TGF-β, and IL-35 (ebi3). The nucleotide primers for amplification of

the genes are listed in S1 Table. The qRT-PCR was performed on 1 μl of cDNA and 300 nM of

each PCR primer in SYBR Green PCR Master Mix (Applied Biosystems, USA). A StepOne™
Real-time PCR system was run for 40 cycles and data were analyzed using StepOne™ software

version 2.1. The expressions of individual genes were normalized to the mRNA of β-actin

gene. Data are shown as fold change of the mRNA expression of the target gene in comparison

to the β-actin mRNA level.

Preparation of native (n) Der p 1 and nDer p 2

Native Der p 1 and nDer p 2 were prepared from the Dp-CE by using specific monoclonal

antibody-based affinity resins as described previously [51]. Briefly, monoclonal IgG antibodies

specific to Der p 1 or Der p 2 were fixed separately onto CNBr-Sepharose beads (GE Health-

care, Buckinghamshire, UK). After blocking the empty sites on the beads with 5% BSA in PBS,

Dp-CE was added to mix with the affinity beads and the preparation was kept overnight on a

rotating platform at 4˚C. Unbound components were removed by washing with PBS and the

affinity resin was packed into a 10 × 100 mm column. The resin was washed with PBS until the

effluent had no detectable OD at 280 nm. The column bound protein was eluted from the

affinity beads by using glycine-HCl buffer, pH 2.0, and immediately added with few drops of 1

M Tris-HCl, pH 8.5. The nDer p 1 and nDer p 2 preparations were dialyzed against distilled

water and lyophilized. Protein contents of the preparation were determined (Bradford assay).

Preparation of liposome

Multilamellar liposome was prepared as described previously [50]. Lipoid-S-100 phosphatidyl-

choline (PC) derived from fat-free soybean lecithin (Lipoid AG, Switzerland) and cholesterol

(C) (Sigma-Aldrich, Germany) were used for preparing the micelles.
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Didecyldioctadecylammonium bromide (DDAB; Fluka, Germany) was used as a cationic sur-

factant. Lipid stock was prepared by mixing 153 mg DDAB, 148 mg PC and 72.5 mg C (molar

ratio 2:1:1) in 25 ml dichloromethane. One ml aliquots of the lipid stock (30 μM) were rotated

manually in round bottom flasks until a dried thin film was obtained in each flask.

Liposome-encapsulated vaccines and the vaccine characterization

Four vaccine formulations were prepared: 1) liposome-encapsulated Dp-CE (L-CE); 2) lipo-

some-encapsulated nDer p 1 (L-Der p 1); 3) liposome-encapsulated nDer p 2 (L-Der p 2); and

4) liposome-encapsulated mixture of the nDer p 1 and nDer p 2 (L-Com). Vaccine compo-

nents, i.e., 5 mg of Dp-CE; 500 μg of either nDer p 1 or nDer p 2; or mixture of nDer p 1 and

nDer p 2 (250 μg each) in 500 μl PBS were mixed separately with the gel film prepared from 1

ml of the lipid stock until a homogeneous creamy preparation was obtained. Placebo (L-PBS)

was 500 μl PBS added to mix with the lipid film. Endotoxin contents in 500 μl of individual

vaccine preparations were determined [Limulus amebocyte lysate (LAL) test kit; Associates of

Cape Cod, Inc. (ACC), MA, USA] and amount of the endotoxin in each vaccine dose was

calculated.

Zeta potential, polydispersity and sizes of the vaccines and placebo were determined by

means of dynamic light scattering under an automatic mode of the Zeta sizer (Nano-ZS, Mal-

vern, UK) at 25˚C. For the size distribution (polydispersity) study, each sample was diluted

appropriately with double distilled water. The data were reported as mean ± SD of triplicate

measurements of two independent experiments. The percentage of immunogen entrapment

into the liposome was determined: an aliquot of each preparation was centrifuged at 12,000 ×
g, 4˚C for 20 min. Amount of the protein in the supernatant was determined (Bradford assay).

The percent immunogen entrapment was calculated from the original protein amount added

to the liposome.

Immunization and allergen provocation of the Dp allergic mice

Two weeks after the Dp-CE nebulization (day 41), the Dp-CE allergic mice were divided into

five groups of 10 mice each. The mice of groups 1–4 were immunized i.n. with L-CE, L-Der p

1, L-Der p 2, and L-Com, respectively. Mice of group 5 (control) received L-PBS (placebo). All

mice were given seven booster doses of the respective vaccines/placebo on alternate days. One

week after the last booster (day 62), mice of each treatment group were provoked by nebulizing

with aerosolic Dp-CE (10 mg in 10 ml PBS). Sham mice were given eight doses of PBS instead

of the vaccines/placebo and received 10 ml PBS nebulization. Two independent experiments

were performed.

Vaccine efficacy evaluation

On day 63 (24 h post-provocation; PP), all mice were bled and their serum samples were tested

for CE-specific IgE and IgG1 by indirect ELISA. Thereafter, they were sacrificed as above.

Lungs were processed for histopathological study and cytokine gene expressions as described

above.

Statistical analysis

Statistic software SPSS 11.5 was used. Data were analyzed using one-way ANOVA followed by

post-hoc comparison using the least significant difference and the independent t-test for num-

bers of inflammatory cells, lung histopathology grades and levels of mRNAs of cytokine genes.
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Paired t-test and the Mann-Whitney U tests were used for analysis of the IgE and IgG1 levels.

P� 0.05 was considered statistically significant.

Results

Dp-CE allergic mice

The levels of mouse serum specific IgE to Dp-CE determined by indirect ELISA are shown in

Fig 1. OD405nm (mean ± SD) of serum IgE of naïve (normal), sham and Dp-CE-allergenized

mice were 0.238 ± 0.044, 0.238 ± 0.028, and 0.696 ± 0.314, respectively. The allergenized mice

had significantly higher IgE levels than the normal and sham mice (p< 0.05) (Fig 1A). Like-

wise, the allergenized mice had also significantly higher IgG1 level (OD405nm 1.710 ± 0.04)

than the normal (0.269 ± 0.01) and sham (0.266 ± 0.01) mice (p< 0.05) (Fig 2A). The antibod-

ies of sham and normal mice were not different (p> 0.05).

Numbers of inflammatory cells in lungs of the normal, sham and Dp-CE-allergenized mice

are compared (Table 1). Average number [mean ± standard deviation (SD)] of the total inflam-

matory cells (neutrophils, lymphocytes, eosinophils and macrophages) in one microscopic

field (magnification 10 × 40) of the lungs of the allergenized mice was 215 ± 91 cells which

was significantly higher than those of the sham mice (47 ± 26) and the normal mice (8 ± 7)

(p< 0.05). Predominant cells infiltrated into the allergenized mouse lungs were lymphocytes

and neutrophils while the predominant cells in the sham mouse lungs were neutrophils.

Descriptions for different histopathological grades of mouse lungs are given in S2 Table.

Representative appearances of the histopathological grades 0–4 of the mouse lungs are

depicted in S1 Fig. Mean ± SD of the histopathological grades of the Dp-CE-allergenized lungs

(2.65 ± 0.80) was significantly higher than those of the sham (0.80 ± 0.41) and the normal

(0.21 ± 0.42) mice (p< 0.05) (Fig 3A).

Fold changes of various cytokine mRNAs in the lungs of normal, sham and allergenized

mice compared to β-actin gene mRNA are shown in Fig 4. The Dp-CE-allergenized mice

had up-regulations of IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, TNF-α and TGF-β above the sham

and the normal mice. Both sham and allergenized mice had slightly higher expressions of

TNF-α, IFN-γ, IL-12A and IL-12B than the normal mice. Based on the serum IgE levels, lung

Fig 1. Indirect ELISA OD405nm (means ± SD) of Dp-CE-specific IgE in sera of allergenized mice compared to

sham and normal mice (A) before receiving vaccines/placebo (BV). (B) PP, Dp-CE-specific IgE in sera of

allergic mice after treatment with vaccines (L-CE, L-Der p 1, L-Der p 2, and L-Com) and provoked with

aerosolic Dp-CE compared with placebo (L-PBS) and sham mice. Bars with different superscripts of BV or PP

were different at p� 0.05.

https://doi.org/10.1371/journal.pone.0188627.g001
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histopathology, infiltrated inflammatory cells, and lung cytokine gene expressions, the Dp-CE-

exposed mice were allergic to Dp. They were used further in the efficacy testing of the allergen

vaccines.

Characteristics of liposome and liposome-encapsulated vaccines/

placebo

Sizes, polydispersity, zeta potential and % immunogen entrapment of the liposome-encapsu-

lated vaccines and placebo are shown in Table 2. Micelles of all vaccines and placebo were

Fig 2. Indirect ELISA OD405nm (means ± SD) of Dp-CE-specific IgG1 in sera of allergenized mice

compared to sham and normal mice (A) before receiving vaccines/placebo (BV) and (B) Dp-CE-

specific IgG1 in sera of allergic mice after treatment with the vaccines and provoked with aerosolic

Dp-CE compared with placebo and sham mice (PP). Bars with different superscripts of BV or PP were

different at p� 0.05.

https://doi.org/10.1371/journal.pone.0188627.g002

Table 1. Inflammatory cells in lungs of Dp-CE allergic mice compared with normal and sham mice before vaccination (BV) and after vaccination/

placebo and provocation with Dp-CE (PP).

Group Mean ± SD of cells/microscopic field*

Neutrophil Lymphocyte Eosinophil Macrophage Total cells

Before vaccination (BV)

Normal 4.46 ± 3.32 a 3.05 ± 6.57a 0 0.188 ± 1.68a 7.70 ± 7.47a

Sham 37.28 ± 25.83b 9.275 ± 5.70b 0 0 46.55 ± 26.27b

Allergenized mice 88.66 ± 43.47 c 125.44 ± 71.89c 1.15 ± 2.27 a 0 215.25 ± 90.85c

After vaccination and provocation (PP)

Sham 31.76 ± 22.90b 11.41 ± 14.01b 0 0 43.18 ± 35.02b

L-CE 119.33 ± 56.17c 61.44 ± 64.87d 0.96 ± 1.69a 0.10 ± 0.27a 181.84 ± 89.86d

L- Der p 1 48.73 ± 36.99d 37.79 ± 37.75e 0.24 ± 0.75b 0.05 ± 0.30a 86.81 ± 64.31e

L-Der p 2 55.42 ± 12.70e 36.36 ± 8.47e 0.45 ± 0.81c 0 92.23 ± 24.47e

L-Com 46.31 ± 26.35d 35.76 ± 34.16e 0.25 ± 0.91b 0.05 ± 0.29a 82.37 ± 47.74e

L-PBS 68.54 ± 44.31c,e 41.91 ± 53.89e 0.20 ± 1.02b 0.04 ± 0.28a 110.69 ± 87.30f

*, Average of at least 20 microscopic fields (10 × 40) per mouse

Entries with different superscripts (a, b, c, d, e and f) of the same column are statistically different (p <0.05)

https://doi.org/10.1371/journal.pone.0188627.t001
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cationic (zeta potentials ranged from 31.33 ± 0.58 to 35.40 ± 0.794) with the sizes ranged

from 1.025 ± 0.002 to 4.556 ± 0.023 μm. The mean ± SD of polydispersity indices were

0.311 ± 0.078 to 1.00 ± 0.00. The immunogen entrapments were 81.64 to 90.56%. The L-CE,

L-Der p 1, L-Der p 2, L-Com and L-PBS contained 69, 12, 10, 12, and 3 EU of endotoxin/

dose, respectively.

Therapeutic efficacies of the liposome-encapsulated vaccines

Results of indirect ELISA for determining serum specific IgE of the allergic mice after treat-

ment with vaccines/placebo and allergen provocation (PP) are shown in Fig 1B. There was no

change in the serum IgE levels in the vaccinated and placebo mice after provocation (PP) com-

pared with the pretreatment levels (BV). Serum IgG1 levels of the allergic mice treated with

L-Der p 2 and L-Com were not different from the pretreatment levels after the allergen provo-

cation. IgG1 above the pretreatment levels were found in mice treated with L-CE, L-Der p 1

and placebo (L-PBS) (p< 0.05) (Fig 2B).

Histopathological grades (mean ± SD) of lung tissues of allergic mice after treatment with

vaccines/placebo and provocation (PP) are shown in Fig 3B. Mice of all vaccinated groups had

significant reduction of lung histopathological severity. The histopathology was not changed

in the placebo mice. Representative images of the lung histological grades of all groups of aller-

gic mice after treatments are shown in S2 Fig.

Total inflammatory cells in lung tissues of allergic mice that received vaccines/placebo at 24

h post-provocation with aerosolic CE (PP) compared to the cell numbers before treatment

(BV) are shown in Table 1. All vaccines were effective in reducing the numbers of the infil-

trated cells into lungs of the treated mice. The effectiveness of L-Der p 1, L-Der p 2 and

L-Com were not different (p> 0.05; superscript e in last column of Table 1). Although the

L-CE treated allergic mice had the highest number of infiltrated inflammatory cells in their

lungs compared to the other vaccinated mouse groups (superscript d in the last column of

Fig 3. Histopathological grades (mean ± SD) of lung tissues of (A) allergenized, sham and normal

mice (BV) and (B) allergenized mice that received vaccines/placebo followed by provocation (PP).

Bars with different letters (a and b in A) and (a, b, c, and d in B) are statistically different at p� 0.05.

https://doi.org/10.1371/journal.pone.0188627.g003
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Table 2. Characteristics of L-CE, L-Der p 1, L- Der p 2, and L-Com vaccines and placebo (L-PBS).

Parameter Vaccine formulation Placebo

(L-PBS)L-CE L-nDer p 1 L- nDer p 2 L-Com

Average size (μm)

(Mean ± SD)

4.566 ± 0.023a 1.999 ± 0.034b 2.016 ± 0.120b 1.025 ± 0.002c 1.93 ± 0.02b

Polydispersity

(Mean ± SD)

0.311 ± 0.078a 0.799 ± 0.071b 0.788 ± 0.070 b 0.536 ± 0.020c 1.00 ± 0.00d

Zeta potential

(Mean ± SD)

31.33±0.58a 35.40 ± 0.794a 33.60 ± 1.058a 35.00 ± 0.00a 34.3 ± 2.15a

% Entrapment 81.64 88.03 90.56 88.34 NA

NA, not applicable

Entries with different superscripts (a, b, c and d) of the same horizontal line are statistically different (p <0.05)

Percent entrapment was calculated from one aliquot of each vaccine

https://doi.org/10.1371/journal.pone.0188627.t002

Fig 4. Cytokine expression profiles of normal, sham and allergenized mice.

https://doi.org/10.1371/journal.pone.0188627.g004
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Table 1 at PP), but the number was significantly lower than that of the allergic mice at BV

(superscript c in the last column of Table 1) (p< 0.05). The L-PBS showed some placebo effect

on this parameter.

Fold change of cytokine gene mRNAs in lung tissues of allergic mice after vaccination and

provocation in comparison with the β-actin gene expressions are shown in Fig 5. Overall pic-

ture of Th2 cytokine expressions of allergic mice treated with all vaccine formulations were

lower than the placebo mice (p� 0.05). L-Der p 1, L-Der p 2 and L-Com caused also a signifi-

cant reduction of IL-6 expression compared to placebo (p< 0.05) while the L-CE did not. IL-
17 expression was not different among the treated mouse groups after provocation. L-Der p 2

conferred increases of expressions of IFN-γ, IL-12A and IL-12B, IL-10, TGF-β and IL-35 ebi3
compared to placebo (p� 0.05). L-Der p 1 caused up-regulation of IFN-γ and IL-10 but not

IL-12, TGF-β and IL-35 ebi3 compared to the placebo. The L-CE induced significant up-

regulation of IFN-γ and no different in regulatory cytokine expressions compared to L-PBS.

Although the L-Com readily mediated reduction of Th2 cytokine gene expressions (IL-4, IL-5,

IL13), IL-6 and TNF-α, this vaccine did not up-regulate expressions of IFN-γ, IL-12, IL-10,

TGF-β and IL-35 compared with placebo.

Fig 5. Cytokine expression profiles of Dermatophagoides pteronyssinus allergic mice after treatment with

liposome-encapsulated vaccines/placebo and allergen provocation.

https://doi.org/10.1371/journal.pone.0188627.g005
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Discussion

The Dp-CE-allergenized mice were found to have significantly higher allergen-specific serum

IgE than the sham and normal mice which conformed to the data reported previously [52].

They also had high IgG1 response. The role of IgG in allergy has been controversial due to

their binding affinity to different Fcγ receptors (FcγRs) which may lead to different immune

response outcomes, depending on whether the FcγRs are activating (FcγRI and FcγRIIIa) [53]

or inhibitory (FcγRIIb) receptors [54,55] on the immune cells [53,56,57]. Thus, the IgG1 that

was increased in allergenized mice of this study may have either pathogenic or protective role

depending upon the FcγR that they fixed on a particular cell type. The Dp-CE allergenized

mice had predominant lymphocyte and neutrophil infiltrations into the lungs with few eosino-

phils. Although the mouse model of allergy cannot completely resemble human allergic mani-

festations, it has been reported previously from the data performed on human endobronchial

biopsies that there are two distinct pathologic, physiologic and clinical subtypes of asthma

[58]. One is eosinophil-positive (a classic eosinophilic process) with associated lymphocytes,

mast cells and macrophages and another is eosinophil-negative (nearly absent of eosinophils; a

pathologically unclassic process) [58]. In both groups, neutrophils were increased [58]. The

increased numbers of neutrophils have been found in a more severe allergic disease [58], in

nocturnal asthma [59], and during asthma exacerbation [60]. Previous study [52] reported

peaked neutrophil infiltration in bronchoalveolar lavage fluids of the mice at 8 h after the last

HDM challenge while the lymphocyte population showed steady increase beyond 8 h to 72 h

after last HDM challenge. In another study, OVA sensitized mice had increase in neutrophil

numbers from 2 h after intranasal OVA challenge, peaking at 8 h and remained higher than

the control mice at 12 and 24 h [61]. In this study, the mice were sacrificed at 24 h post allergen

challenge and found high neutrophil number in the allergenized mouse lungs (the earlier

time points were not investigated). The Dp-CE mouse model of this study had similar airway

inflammatory cell signatures to the previously reported allergic mouse models. Neutrophils

were predominant cells infiltrated into the lungs of sham mice which should be due to non-

allergy-related tissue irritation and perhaps partly due to endotoxin contained in the PBS (neg-

ligible amount) that was used for intranasal challenge (20 μl/mouse) and nebulization (10 ml

aerosolic PBS for 10 mice; it is not known how many EU of endotoxin were inhaled by individ-

ual mice).

BALB/c mice was chosen for generating the Dp allergy model as they have been shown to

develop a vigorous Th2 response due to their inherent robust IL-4 production [62]. BALB/c

mice exposed repeatedly to HDM extract exhibited features of airway tissue remodeling

including hyperplasia of epithelial cells, metaplasia of goblet cells and subepithelial smooth

muscle hyperplasia and hypertrophy which appeared as thickened airway wall [52,63]. In the

study, the intraperitoneal route of alum-precipitated Dp-CE was used to prime the allergen-

naïve mice as it has been shown that the APCs in the mouse peritoneal cavity were constitu-

tively mature with highly expressed levels of CD40 and B7 co-stimulatory molecules as well as

MHC class-II in comparison to the APCs in the respiratory tract which did not express consti-

tutively the maturation markers [64]. After priming, the mice were then challenged via the

respiratory route. The average histopathological grade of the allergenized mice was signifi-

cantly higher than those of the controls, both sham and normal, and also revealed high degree

of hypertrophic and proliferative epithelial cells, airway obstruction, and subepithelial smooth

muscle hypertrophy, degeneration and detachment from the basement membrane as well as

airway wall thickening; all of which are the characteristics of the tissue remodeling. Besides,

the allergen-challenged mice had the Th2 response hallmark, i.e., increased expressions of IL-
4, IL-5 and IL-13 and TNF-α genes which are the airway cytokine signatures of HDM allergy
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[52,65]. The Dp-CE allergenized mice had also up-regulations of IL-17A, IL-6, IL-10 and TGF-
β. The IL-17A is a pro-inflammatory cytokine which induced IL-8 causing increased neutro-

phil influx to the lung; this cytokine also involved in asthma severity, airway remodeling and

Treg suppression [66,67]. The IL-6 recruits eosinophils to the lung during the development of

allergic airway inflammation; this cytokine causes mucus hypersecretion by airway epithelial

cells in response to allergen [68]. IL-6 and TGF-β could induce generation of Th17 cells,

termed regulatory Th17 (Treg17) cells that play protective and non-pathogenic role in

inflammation while Th17 cells generated through IL-6 and IL-23 induction (termed effector

Th17 or Teff17) were pathogenic [69]. Unfortunately, IL-23 expression was not determined

in this study. However, high expression of the IL-17 gene indicates that the Teff17 cells were

generated after the allergen exposure. Usually IL-10 is a potent anti-inflammatory cytokine

which has important role in the regulation of Th2 in allergic response [70–72]. Up-regulation

of the IL-10 in the Dp-CE allergenized mice should reflect an attempt of the immune system to

counteract the exacerbating Th2 response. Allergenized mice had up-regulation of TNF-α,

IFN-γ and IL-12A and IL-12B which should be due to the airway irritation and/or inflamma-

tion stimulated by pathogen-associated molecular patterns (PAMPs) such as endotoxin con-

tained in the CE (658.79 EU/ml). The high expressions of TNF-α, IFN-γ and IL-12A and IL-
12B of sham mice was most likely from tissue irritation as mentioned above. The characteristic

features of the Dp-CE-sensitized mice indicated that they were allergic to Dp. Thus the animals

were used further for testing of the therapeutic efficacy of the intranasal liposome-encapsu-

lated allergen vaccines.

Various strategies and protocols have been attempted to reduce adverse effects caused by

immunotherapy using crude (native) allergenic extracts. These include allergen modifications,

altered therapeutic formulations, optimization of the vaccine introduction route, innovative B-

cell-focused approach by inducing IgE-competitive IgG response, different choices of vaccine

carriers and adjuvants, and combined treatment of the allergy using both AIT and pharmaco-

logic/biologic agent [65]. In this study, we have chosen to use liposome as the vaccine delivery

vehicle and adjuvant and the intranasal route of the allergen vaccine administration. It has

been shown that the liposome could reduce toxicity/adverse activity of the encapsulated com-

ponents [73] which in this study were potent Dp allergens. The lipid micelles also protected the

content from the hostile environment such as host proteases [74,75]. Liposome acts as an

immunological adjuvant for cell-mediated immune response [76]. The phosphatidylcholine

and cholesterol used for making liposome of this study are normal constituents of mammalian

cells. Thus, the liposome-encapsulated vaccines should be innocuous. It was observed that the

allergic mice that received the vaccines did not show any sign of morbidity. All of the formu-

lated Dp vaccines were fairly homogeneous as shown by their polydispersity indices (�1.0). All

vaccines and placebo carried positive charges. Cationic liposome has been shown to coalesce

better with the APCs than the anionic counterpart and larger amount of the cargo was deliv-

ered from the positively charged liposome directly to the cytoplasm [77] where the antigen pro-

cessing occurred. Then, the antigenic epitopes in the cytoplasm could be transported to the

Golgi apparatus and the endoplasmic reticulum where they can fit to the MHC class-I peptide

groove and later expressed on the cell surface for induction of CD8+ T cell response [78]. More-

over, large sized-liposome (> 200 nm) that was delivered either parenterally or mucosally had

tendency to localize at the early endosome after endocytosis and induced Th1 response to the

entrapped antigen [79]. Thus, liposome is well suited as the delivery vehicle and adjuvant of the

vaccines that aimed to counteract the pathogenic Th2 response [80]. The intranasal route is

non-invasive and relatively immunogen sparing compared to the sublingual immunization.

The immune responses induced in the upper airway can be effective at the allergen-induced

inflamed lower respiratory tissues due to the common mucosal traffic of the effector cells [81].
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Crude mite extracts used in AIT for HDM allergy had several drawbacks. Not only the aller-

gen amounts in the extracts from different lots and sources of the raw materials were varied

and difficult to standardize, but also the extracts contained complex mixtures of allergenic and

unidentified components. AIT using the crude extract also induced new sensitization to the

patients [42]. The well-defined allergenic molecule (exclusion of impurity), particularly the

major allergen that is responsible for allergy of most patients has potential advantages over the

crude extract as has been advocated [50,82]. The refined allergen is easy to standardize and

also free of other unidentified and non-allergenic components. Moreover, the precise immune

mechanisms underlying the refined allergen immunotherapy can be investigated without any

other confounding factors. Thus in this study, the therapeutic efficacies of vaccines made of

refined Der p 1 and Der p 2 or their combination were compared to the crude allergen vaccine

as the proof-of-concept.

Allergic mice that received vaccination and placebo did not have any change of serum levels

of specific IgE from before vaccination and provocation, indicating that the humoral immune

response was already maximal and sustained until the time of vaccine efficacy evaluation. Pre-

vious data have shown that the specific IgE levels tended to rise shortly after successful immu-

notherapy and later reduced [83]. Nevertheless, the reduced levels were not necessarily below

the pretreatment levels [83]. Allergic mice vaccinated with the liposome-adjuvanted vaccines

and then provoked with the allergen had changes in several other parameters. They had signifi-

cant reduction of numbers of inflammatory cells and lung histopathology grades compared to

pretreatments. Among the four vaccine formulations, the L-CE was the least effective vaccine

in decreasing the inflammatory cell infiltration into the lungs which might be due to the rela-

tively high LPS content of this vaccine (69 EU/dose) compared to the other vaccines (12, 10, 12

and 3 EU/dose of L-Der p 1, L-Der p 2, L-Com and L-PBS, respectively) and/or the unidenti-

fied allergenic/irritating components contained in the CE that might cause recruitment of

the cells. The L-PBS had some placebo effect in terms of reduction of inflammatory cell infil-

tration into lungs of the treated mice which should be due to the adjuvanticity of the liposome

as mentioned previously. Nevertheless, the L-PBS did not confer any reduction in the lung his-

topathology in the treated mice in contrast to all vaccinated allergic mouse groups that had sig-

nificant decrease of the lung histopathology.

There were profound changes in the cytokine expression profiles of the vaccinated mice.

Although all vaccines caused suppression of Th2 cytokine expressions, only the liposome

entrapped single allergen vaccines induced immunosuppressive cytokine gene expressions.

L-Der p 1 induced significant up-expression of the IL-10. The L-Der p 2 vaccine caused up-

regulations of the cytokine genes of Th1 (IFN-γ and IL-12A/B) and Tregs/Bregs (IL-10, TGF-β
and IL-35), indicating that this vaccine could cause immune deviation from the pathogenic

Th2 towards the Th1 and the regulatory immune responses. A shift of cytokine profile from

Th2 to Th1 (IFN-γ and IL-12) after successful immunotherapy has been observed for AIT of

allergies caused by many allergens such as cockroach, grass pollen, insect venom [50,84–86].

Also, it has been known that successful AIT led to induction of Tregs which suppress the

effector T cells (Teff) either directly or indirectly (via APCs) rendering anergy of the latter

[65,87,88]. The direct suppression of Teff by Tregs can involve several immune-suppressive

soluble factors and/or cell-cell contact. Tregs can generate immunosuppressive adenosine or

transfer cAMP to the Teff, both CD4+ and CD8+. Tregs can rapidly suppress TCR-induced

Ca2+, NF-AT, and NF-κB signaling. Tregs can also produce immunosuppressive cytokines

(IL-10, TGF-β, IL-35), and they can suppress by IL-2 consumption or induce Teff death via

perforin and granzyme. Furthermore, Tregs can suppress Teff indirectly by down-regulating

costimulatory molecules on APCs via CTLA-4 [87,88]. Likewise, the regulatory mechanisms

and modulate effects of Bregs have been demonstrated in a variety of chronic inflammations
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including allergic airway diseases and asthma [89]. Bregs produce IL-10, TGF-β, IL-35, natural

IgM, catalytic IgG and/or adenosine and express programmed-death ligand 1 (PD-L1), Fas

ligand (FasL), CD38hi, CD73hi, GITRL, ICAM-1/LFA-1, FcγRIIB, and B cell receptors (BCR)

[90]. The Breg-derived IL-10 could control lung inflammation through modulating the T

helper balance in mice [91]. Breg TGF-β induced death of Teff, inhibits DC function, enhanc-

ing Treg functions and induction of CD4+CD25hiFoxp3+ regulatory T cells (converting Teff

into Tregs [90–92]. The regulatory function of B cells has been associated with the presence

and activation of molecules such as CD40, CD19, CD1d, CD24hi [92,93]. B cells mainly

exert their regulatory effect through the inhibition of proliferation and production of pro-

inflammatory mediators, such as TNF-α, IFN-γ, and IL-17 by CD4+ T cells [92]. Bregs also

suppress T cell function via IL-10 and PD-L1 [94]. Besides, Bregs have propensity to produce

both IgG and IgA that block the harmful factor and impair activity of APCs [89]. IL-35

secreted by both types of regulatory lymphocytes is an anti-inflammatory cytokine that has

been known to suppress inflammation [95]. Bregs suppress the function of pathogenic T cells

via IL-35, ICAM-1/LFA-1 or FasL [96]. Although the molecular mechanisms of the up-regu-

lated immunosuppressive cytokines that led to mitigation of the tissue inflammation in the

vaccinated mice await investigation in detail, the overall results indicate that the regulatory

immune response which is the most required immunological features of the allergen-specific

immunotherapy could be induced effectively by the liposome-encapsulated refined major

allergen vaccines: L-Der p 2 (induced IL-10, TGF-β and IL-35 up-regulation) and L-Der p 1

(induced IL-10 upregulation) and nil by L-CE and L-Com. Inability of a liposome-encapsu-

lated crude allergenic extract in inducing the regulatory response was also observed previously

for cockroach allergy [50].

Conclusions

Mice that showed signatures of allergy to Dermatophagoides pteronyssinus (Dp) crude extract

were generated. They were treated with eight doses of intranasal liposome-encapsulated Dp

vaccines made of refined allergens (L-Der p 1, L-Der p 2 and L-com) in comparison to the vac-

cine made of crude mite extract (L-CE). All vaccinated allergic mice had significant reduction

of lung inflammation and allergen-specific pathogenic Th2 response. Nevertheless, only the

liposome-encapsulated single allergens induced immunosuppressive cytokine responses

(L-Der p 1 induced expression of IL-10 and L-Der p 2 induced expressions of IL-10, TGF-β
and IL-35). Although allergic mice treated with L-CE caused reduction of airway remodeling

and inflammatory cytokine response as well as increased Th1 IFN-γ expression, the vaccine

caused increased inflammatory cell infiltration into the lungs after allergen provocation

[which might be due to the pathogen associated molecular patterns (PAMPs) including endo-

toxin and/or unknown impurity in the preparation] and failed to generate the regulatory

responses which are the most effective immunological features in controlling the allergic dis-

eases. Taken together, the data provide compelling evidence that liposome-encapsulated vac-

cines made of single refined major allergens were more effective than the vaccine made of

crude mite extract in immunotherapy of the mite allergy in the murine model. Clinical efficacy

of the L-Der p 1 and L-Der p 2 should be evaluated further.
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