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The flourishing growth of genome-wide association studies 
(GWASs) has provided comprehensive understanding of 
genetic determinants of disease susceptibility,1,2 shedding light 
on better prevention and treatment of diseases. The results 
from GWAS suggested the existence of “polygenicity” for 
complex diseases, which means that a complex disease is often 
affected by many variants with small effects. Due to polygenic-
ity, limited sample size of a single GWAS often has a relatively 
low statistical power of association identification and poor pre-
dictive ability.

To this end, many methods have been proposed to effec-
tively improve statistical efficiency by combining multiple data 
sets.3,4 These methods might take different types of data as 
input; integrating different sources of data is often feasible by 
leveraging pleiotropy.5,6 Recently, we have proposed a statistical 
method named LEP7 to integrate the individual-level geno-
type data and summary statistics in GWASs. LEP and other 
statistical methods that integrate individual-level data and 
summary-level data are becoming increasingly important. This 
is because we often have limited individual-level data (usually a 
few thousands of samples at hand) but can get access to sum-
mary-level data through many public gateways. Working on 
limited samples with individual-level data may lead to great 
uncertainty on the estimation of genetic effects on a complex 
trait. Fortunately, genome-wide summary-level data bring 
additional information about genetic effects on the trait. LEP 
explores this kind of information in the joint analysis of indi-
vidual-level data and summary-level data.

Originally, LEP was designed to integrate multiple traits of 
the same population by exploring pleiotropy among them. 
More specifically, pleiotropy means that a variant can affect 
multiple seemingly unrelated traits. LEP integrates the indi-
vidual-level data and the summary-level data by modeling 
their pleiotropic relationship. By introducing γ j  and Γ j  to 
indicate whether the jth variant is associated with the trait for 
the individual-level data and the trait for the summary-level 
data, respectively, LEP characterizes the pleiotropic relation-
ship between the trait for the individual-level data and the 
trait for the summary-level data through the following proba-
bilistic model
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Comprehensive simulation studies and real-data analysis 
demonstrated the effectiveness of LEP by leveraging pleiot-
ropy in the presence of heterogeneity among the individual-
level and summary-level data.

For a given trait/disease, GWASs have been conducted in 
different populations. As a matter of fact, many GWASs have 
been conducted in the populations of European ancestry. 
Because the allele frequency and linkage disequilibrium (LD) 
pattern of samples from different populations can be quite dif-
ferent,6,8,9 heterogeneity of genetic effects widely exists and the 
discoveries in 1 population could not be directly transferred to 
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another population. The study of different approaches to deal 
with the heterogeneous genetic effects in different populations 
is gaining increasing attention. Although LEP was designed to 
explore pleiotropy among different traits, the essential idea of 
LEP is to make use of the correlation of association status of 
multiple GWASs while accounting for the heterogeneity. 
Clearly, the probabilistic model given in equation (1) can 
account for heterogeneity in the presence of either pleiotropy 
or correlated genetic effects of the same trait in different popu-
lations. The pair of parameters { , }u v  measures the extent to 
which the genetic determinants of disease risk are likely to be 
shared by or specific to populations.

As an illustrative example, we applied LEP to analyze 
GWAS data of Crohn’s disease (CD) from several different 
populations. The individual-level data are from the Welcome 
Trust Case Control Consortium (WTCCC).10 The summary-
level data of CD are from the study by Franke et al,11 composed 
of the P-values of 7 GWASs in total. These data sets are sum-
marized in Table 1 (detailed information can be found in the 
study by Dai et al12). We first applied Bayesian variable selec-
tion regression13 to the individual-level data and obtained 
accuracy of 63.2% 0.4%±  (measured by the area under the 
curve [AUC]). Then, we applied LEP to incorporate summary-
level data sets and the accuracy was improved, as shown in 
Table 2. The corresponding estimated parameters { , }u v  are 

also given in Table 2, indicating that LEP successfully accounts 
for heterogeneity.

In summary, LEP can effectively account for heterogeneity 
when integrating individual-level data and summary-level data 
from GWAS. As a result, not only can LEP be applied to lever-
age pleiotropy for analysis of multiple traits in the same popu-
lation but also it can serve as an effective tool to analyze the 
same trait across different populations.
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(NiddkJ) and the non-Jewish study (NiddkNJ).

Table 2.  Estimated parameters u, v for every single GWAS jointly analysis with WTCCC data.
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