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S u n l l n a r y  

The latency-associated transcript (LAT) is the only herpes simplex virus (HSV) gene product 
detectable in latently infected humans and animals. In this report, we show that a 624-bp deletion 
in the promoter of the HSV-2 LAT had no discernable effect on viral growth in tissue culture 
or in acute genital infection of guinea pigs, but impaired LAT accumulation and led to a marked 
decrease in spontaneous genital recurrences when compared with the behavior of wild-type and 
rescuant strains. Differences in the ability of the mutant to replicate, or in how readily it established 
or maintained latency did not account for this finding. Thus, HSV LAT expression facilitates 
the spontaneous reactivation of latent virus. 

fter replication at sites of initial inoculation, herpes simplex 
virus types 1 and 2 (HSV-1 and -2) 1 establish lifelong 

latent infections of the sensory neurons of the ganglia serving 
those sites. Periodically, the virus reactivates, and travels cen- 
tripetally along the neuronal axon to cause symptomatic or 
asymptomatic recurrent mucocutaneous infections (1, 2). 
While many factors may influence the likelihood of a reac- 
tivation giving rise to a recurrent lesion, considerable interest 
has been focused recently on the molecular mechanisms of 
reactivation. 

Of the more than 75 HSV genes, only the latency-associated 
transcripts (LATs) are known to be expressed during latency 
(3, 4). The LATs are transcribed from within the long repeats 
of the viral genome, and consist of both an 8-9-kb "minor 
LAT" species (5, 6), and the abundant "major LATs" (of about 
1.9 and 1.5 kb in HSV-1 [%10] or of 2.2 kb in HSV-2 [11-13]; 
see Fig. 1) which appear to be processed from the minor species 
(14). The major LATs overlap the 3' terminus of the viral 
immediate-early transactivator ICP0 in an antisense direction. 
The minor LATs extend even further, overlapping not only 
the ICP0 gene but also the gene encoding the neurovirulence 

I Abbreviations used in thispalx.r: HSV-1 and -2, herpes simplex virus types 
I and 2; LAT, htency-associated transcripts; MOI, multiplicity of infection; 
UL, unique long. 

protein ICP34.5 and possibly the 3' end of the gene for ICP4, 
which encodes another immediate-early regulatory protein. 
Promoter sequences required for LAT transcription during 
latency reside upstream of the minor LAT (15-17). Studies 
of latently infected animals and humans have revealed no 
evidence for the translation of the LAT into a protein product. 
While HSV-1 and HSV-2 are genetically related viruses, and 
both encode LATs, the sequences of the HSV-1 and HSV-2 
major LATs share essentially random homology throughout 
the major LAT sequences (12, 18, 19). 

In humans, spontaneous reactivation of latent virus results 
in recurrent disease. Whereas several animal models have been 
used to study HSV-1 latency and the role of the LATs in the 
pathogenesis of infection, there is no model of latent HSV-1 
infection in which spontaneous reactivation produces recur- 
rent lesions. Hence, studies to define the effect of LAT ex- 
pression on HSV-1 reactivation have used nonphysiological 
methods including models that use various induction stimuli 
in order to provoke recurrences, or the use of explant cocul- 
tivation of latently infected ganglia in tissue culture to pro- 
duce ex vivo reactivation. Studies using a rabbit ocular model 
of virus reactivation have shown that LAT-deleted HSV-1 
mutants reactivate with reduced frequency compared to LAT- 
positive viruses when reactivation is induced by ocular ion- 
tophoresis of epinephrine, but that in this model, LAT dele- 
tion does not affect the number of spontaneous culture-positive 
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reactivations (20, 21). In other experimental systems, some 
HSV-1 mutants with deletions or interruptions in the LAT 
sequences or its promoter showed lower rates of reactivation 
(22-25), whereas others showed no effect (26-29). Because 
of the limitations of the HSV-1 animal models, these studies 
could not address the role of LAT in controlling spontaneous 
reactivation of latent virus. While the molecular biology of 
HSV-2 has been less extensively studied than that of HSV-1, 
there is an animal model of HSV-2 infection in which spon- 
taneous reactivation of latent virus occurs. The guinea pig 
model of genital HSV-2 disease shares many of the features 
of genital herpes in humans, including a natural route of in- 
oculation, generally self-limited primary infection, establish- 
ment of latency, and development of spontaneous recurrent 
genital lesions (30-32). In this report, we describe the con- 
struction of  two HSV-2 mutants, one in which sequences 
from the LAT promoter were deleted and a second in which 
the deletion was repaired. To examine the role of LAT in the 
control of spontaneous reactivation, we have characterized 
the primary, latent, and spontaneous recurrent infections pro- 
duced by these mutants in the guinea pig model of genital 
herpes. 

Materiah and Methods 
Cells and Viruses. Vero and SK-N-SH cells were obtained from 

the American Type Culture Collection (ATCC; Rockville, ME)), 
and maintained in 1:1 minimum essential medium/medium 199, 
with 10% heat-inactivated FCS, and 1% t-glutamine/anreomycin/ 
streptomycin/pendllin (all from Quality Biologicals, Gaithersburg, 
MD). Primary rabbit kidney cells were prepared from New Zealand 
white rabbits (HRP, Denver, PA), maintained in basal medium 
Eagles supplemented with 10% heat-inactivated FCS, amphotericin 
B, penicillin, streptomycin, and t-glutamine. HSV-2, strain 333, 
was obtained from Gary Hayward (Johns Hopkins University, Bal- 
timore, MD). To determine one step growth characteristics of wild- 
type and mutant viruses, '~10 e Veto cells were inocuhted in dupli- 
cate at time 0 with a multiplicity of 0.1 plaque forming units/cell 
of each virus. For the 3 and 20 h time points, virus was allowed 
to adsorb for 90 rain before addition of medium. Cells were scraped, 
freeze-thawed three times, and plaque-titered in duplicate at the 
specified time points. 

Clones. Restriction endonucleases were purchased from New 
England Biolabs (Beverly, MA), Boehringer Mannheim Corp. (In- 
dianapolis, IN), or Life Technologies (Gaithersburg, MD), and used 
in accordance with the instructions of the manufacturers. The 
SphI-BamHI clone of HSV-2 strain 333 was constructed by in- 
serting a Sall-BamHI fragment from the plasmid pgr90 (containing 
the HSV-2 HindlIl IK fragment, obtained from Gary Hayward) 
into the Sail and BamHI sites of the previously described SphI-SalI 
CAT construct (this insertion replaces the CAT gene in this con- 
struct with the HSV-2 SalI-BamHI fragment). To delete the 
NotI-NotI fragment, the SphI-BamHI clone was digested with 
NotI, and religated. 

Construction of Mutant Viruses. For the LAT promoter deletion 
mutant, the 624 bp NotI-NotI fragment was deleted from a clone 
spanning the SphI-BamHl fragment shown in Fig. 1. This DNA 
was cotransfected into Vero cells with purified HSV-2 strain 333 
viral DNA at a molar ratio of approximately 100:1. The resultant 
virus was plated in serial dilutions on 6-well plates, and individual 
plaques were selected and grown. DNA was purified from these 
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Figure 1. HSV-2 genome. Restriction endonuclease cleavage sites in 
the region of the LAT are shown relative to the HSV genome and the 
major LAT, the minor LAT, ICP0, ICP34.5, and ICP4. Introns in ICP0 
and ICP34.5 are shown with boxes. The Sphl-BamH1 insert of the plasmid 
used to construct the mutant viruses is also shown; the deleted LAT pro- 
moter sequences from NotI-NotI are shaded. Distance in base pairs are 
shown relative to the first Sphl site. Abbreviations: TRL, terminal repeat 
long; IRL, internal repeat, long; IRs, internal repeat short; Us, unique 
short; TRs, terminal repeat short. 

stocks by freeze-thawing three times, resuspending 70/A of stock 
in 330/A of lysis buffer (30 mM Tris, pH 7.5, 3.6 mM CaCi2, 
5 mM MgAc, 125 mM KC1, 0.5 mM EDTA, 0.5% NP-40, 4/~g/ml 
RNAse A) adding proteinase K to 100/~g/ml and incubating at 
56~ for 60 min, extracting with phenol/chloroform and precip- 
itating in 2.5 volumes of ethanol. The resultant crude DNA was 
resuspended in 20 pl of TE (10 ram Tris, 1 mM EDTA) buffer, 
digested with the restriction endonuclease PvulI or BamHI (New 
England Biolabs) in the supplied buffer, subjected to electropho- 
resis, and transferred to nitrocellulose membranes (Schleicher and 
Schuell, Keene, NH). Southern hybridizations using probes span- 
ning this region were performed according to the instructions of 
the membrane manufacturer. The frequency of plaques positive for 
recombinant virus ranged from m0.5-5% of the total screened. 
After identification of mutant virus, plaque purification was per- 
formed until Southern hybridization identified no evidence of con- 
tamination with the parent. At this point, two additional plaque 
purification was performed until Southern hybridization identified 
no evidence of contamination with the parent. At this point, two 
additional plaque purifications were performed to yield a stock 
of 333pLAT-. This procedure was repeated, using intact Sphl- 
BamHI DNA and 333pLAT- DNA to produce the rescuant, 
333pLAT ~. Additional Southern hybridizations were carried out 
on purified viral DNA digested with the enzymes NotI, BamHI, 
XhoI, and SphI. Blots were probed with ~2P-radiolabeled Sphl- 
BamHI plasmid, as well as with 3ZP-radiolabeled intact virion 
DNA. Other than the NotI-NotI deletion in 333pLAT-, no 
differences among the viruses were identified. 

Guinea Pig Studies. Female Hartley guinea pigs (Charles River 
Breeding Laboratories, Wilmington, MA) weighing 400-525 g were 
inoculated with approximately 10 s7 pfu of each virus on day 0 by 
rupture of the vaginal closure membrane with a moistened calcium 
alginate tipped swab and instillation of 0.1 cc virus. Lesion severity 
was scored daily (on a scale from 0 to 4) until resolution of the 
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acute infection. Acyclovir-treated guinea pigs received 25 mg/dose 
intraperitoneally twice a day for 7 d, starting 12 h after inocula- 
tion. These guinea pigs were observed daily for recurrence frequency 
from days 15 to 100. (Two guinea pigs infected with HSV-2 333 
had mild, unresolved lesions persisting until day 17. These lesions 
were not counted as recurrences.) All observations of the guinea 
pigs were performed by investigators blinded as to virus inoculum. 
Guinea pigs that were not evaluable for the entire observation period 
(either acute or latent infection) were excluded from analysis. 
Animals were housed in American Association for Accreditation 
of Laboratory Animal Care approved facilities and cared for in ac- 
cordance with institutional guidelines. To determine viral titers 
during acute infection, vaginal swab cultures were obtained on days 
1, 3, and 5 from guinea pigs inoculated in the absence of acyclovir 
and virus titers were obtained by plaque titration on primary rabbit 
kidney cells. To determine nervous system titers of acutely infected 
guinea pigs, animals were killed 4 d after inoculation. Their dorsal 
root ganglia and spinal cords were removed aseptically by dissec- 
tion, snap frozen, homogenized, and plaque titered on primary 
rabbit kidney cells. 

Northern Hybridizations. Vero cells were infected with each virus 
at a multiplicity of 1.0 pfu/cell. 20 h after infection, RNA was 
purified (33) from the infected cells. RNA was also extracted from 
latently infected guinea pig ganglia. 5/~g of each RNA was sub- 
jected to electrophoresis on 1.5% agarose/formaldehyde denaturing 
gels, and transferred to nitrocellulose membranes (Schleicher and 
Schuell) and hybridized according to the instructions of the manufac- 
turer. The blot was probed with the SphI-BamHI clone, radiola- 
beled with c~-[32p]dCTP using a nick translation kit (Amersham 
Corp., Arlington Heights, IL). 

Ganglion Cocuhivations. Ganglia were removed after enumera- 
tion of recurrences was completed from the guinea pigs untreated 
with acyclovir, chopped with a razor blade, and placed in tissue 
culture with rabbit kidney cells. Cultures were observed daily for 
evidence of cytopathic effect, and reported as positive on the first 
day that HSV cytopathic effect was evident. 

Semiquantitative Polymerase Chain Reactions. 100 ng of viral DNA 
(quantified spectrophotometrically) extracted from pooled $1-$3 
ganglia of each guinea pig killed 27 d after inoculation was sub- 
jected to polymerase chain reaction (94~ for 1.5 min, 52~ for 
3 rain, 72~ for 3 min) for 35 cycles, simultaneously using the 
primers CACCTGCCAGTCGAACGACCTCAT and AGCCGC- 
CACCCCCCTCCCCTC~GT (which are specific for a 500-bp 
product in the HSV-2 major transforming region [mtr-2], located 
in the HSV-2 BglII N fragment), and AGTCCATTTCTTGTC- 

and ~ C A A A G T A A G A G ' I E A A C  (which 
are specific for a 500 bp product in guinea pig lactalbumin). The 
products were electrophoresed and subjected to Southern hybrid- 
ization using 32p-radiolabeled gel-pure internal amplified fragments 
from a plasmid containing the HSV-2 BglII N fragment, and strain 2 
fetal guinea pig DNA as probes. Membranes were exposed to XAR 
film (Eastman Kodak, Rochester, NY) for 6 h, and bands were 
quantified by densitometry on a digital imaging system (IS-1000; 
Alpha Innotech Corp., San Leandro, CA). For each sample, the 
ratio of the HSV-2/gplac signals was calculated. 

Results 

Mutant Virus Design and Construction. Based on sequence 
comparisons with HSV-1 the HSV-2 LAT promoter was as- 
sumed to reside in the 624-bp NotI-NotI  fragment. This 
fragment contains TATA, CtLEB, and other homologies, with 
a high percentage identity with previously identified HSV-1 
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LAT promoter sequences. In preliminary experiments (not 
shown), deletion of this fragment from the SphI-SalI CAT 
construct abolished detectable promoter activity in transient 
expression assays. DNA fragments deleted for the 624-bp 
NotI-NotI fragment, flanked by native HSV-2 long repeat 
sequences, were cotransfected with wild-type HSV-2 strain 
333 DNA to produce by homologous recombination the LAT 
promoter deletion mutant, designated 333pLAT-. After 
plaque purification, this .deletion was restored with wild-type 
sequences to produce a rescuant virus, denoted 333pLAT R. 

The deletion and its restoration were verified by Southern 
hybridization. DNA from HSV-2 strains 333, 333pLAT-, 
and 333pLAT r~ was analyzed in Southern hybridizations 
with a 32p-radiolabeled SphI-BamHI plasmid probe (Fig. 2 
A). In wild-type HSV-2 333 (Fig. 2 A, lane l), digestion 
with BamHI yielded the 3.9-kb BamHI P fragment, and "~7 
and "~10 kb fragments representing segments from either end 
of the unique long (UL) portion of the genome that span 
its junction with the repeats. These fragments were dimin- 
ished in size by *600  bp in 333pLAT- (Fig. 2 A, lane 2), 
and were restored in the rescuant (Fig. 2 A, lane 3). Diges- 
tion with NotI gave identical restriction patterns (Fig. 2 A, 
lanes 4-6) among the three viruses, with the exception of 
the loss of the deleted 624-bp fragment in 333pLAT- (Fig. 
2 A, lane 5). In 333pLAT -, deletion of the NotI-NotI frag- 
ment eliminated the sole PvulI site in the long or short repeats 
of HSV-2 (Fig. 2 A, lane 8), causing changes in the sizes 
of all four bands seen in HSV-2 333 (Fig. 2 A, lane 7) and 
333pLAT R (Fig. 2 A, lane 9). Digestion with XhoI (Fig. 
2 A, lanes 10-12) also produced restriction fragment changes 
in 333pLAT- (Fig. 2 A, lane 11) compatible with the loss 
of the 624-bp deletion from the two XhoI fragments that 
span the UL-repeat junctions. Using 32p-radiolabeled HSV-2 
333 DNA as a probe (Fig. 2 B), hybridization of whole virus 
DNA digested with BamHI (Fig. 2 B, lanes 1-3) and PvulI 
(Fig. 2 B, lanes 4-6) also revealed no differences among the 
viruses other than those associated with the deletion of the 
624-bp NotI-NotI fragment in 333pLAT-. In other experi- 
ments (data not shown), a probe spanning the NotI-NotI  
fragment was shown not to hybridize with DNA extracted 
from 333pLAT- virus. 

Characterization of Acute Infections with Wild-type and Mu- 
tant Viruses. To determine whether the LAT promoter de- 
letion has any effect on acute viral replication, we compared 
the ability of each virus to grow in culture and in guinea pigs. 

To examine growth of virus in tissue culture, Vero cells 
were inoculated with each virus at a multiplicity of infection 
(MOI) of 0.1 pfu/cell and were harvested at 3 h and at 20 h 
after inoculation. Virus yield at each time point was deter- 
mined by plaque titration. One-step growth curves for each 
virus were comparable, with similarly reduced titers of virus 
at 3 h (corresponding to virus penetration of infected cells), 
and increased titers at 20 h post inoculation (corresponding 
to one-step growth of virus), as seen in Fig. 3 A. Similar 
one-step growth experiments were performed in SK-N-SH 
human neuroblastoma cells and in primary human fetal sen- 
sory ganglion cultures, and also showed no differences among 
the viruses (data not shown). 



Figure 2. Characterization of wild-type, mutant, and rescuant viruses by Southern hybridization. (A) DNA from HSV-2 333 (lanes I, 4, 7, and 
10), 333pLAT- (lanes 2, 5, 8, and 11), and 333pLAT R (lanes 3, 6, 9, and 12) was digested with BamHI (lanes 1-3), NotI (lanes 4-6), PvuII (lanes 
7-9), and XhoI (lanes I0-12) and subjected to Southern hybridization with a 32p-radiolabeled SphI-BamHI probe. Marker locations in kilobases are 
shown to the left of the autoradiogram. (B) DNA from HSV-2 333 (lanes 1 and 4), 333pLAT- (lanes 2 and 5), and 333pLAT r~ (hnes 4 and 6) was 
digested with BamHI (lanes I-3) and PvulI (lanes 4-6), and subjected to Southern hybridization with a 32p-radiolabded whole virus HSV-2 333 DNA 
probe. 

The severity and course of primary genital infection was 
studied in two independent experiments. Hartley guinea pigs 
were intravaginally inoculated with 10 s.7 pfu of each virus 
and scored daily either in the absence (Fig. 3 B) or the pres- 
ence (Fig. 3 C) of intraperitoneal acyclovir treatment. To com- 
pare primary infections, the area under the lesion score-day 
curves (AUC) shown in Fig. 3, B and C were calculated for 
each virus, and used as a measure of the severity of acute in- 
fection. In the experiment involving untreated animals, the 
mutant 333pLAT- caused acute infections comparable to 
those of the rescuant 333pLAT v" (AUC of 9.1 and 7.8, 
respectively), while the parental HSV-2 333 caused some- 
what higher scores (AUC 14.3). The severity of the acute 
infections was appropriately lower in the acyclovir-treated 
guinea pigs (AUC of 5.7 for 333pLAT-, 6.1 for 333pLAT R, 
and 9.7 for HSV-2 333). In each experiment, strain 333 yielded 
slightly higher scores than the other viruses, but no differ- 
ence in lesion scores were observed between the promoter 
deletion mutant and its rescuant. 

To determine whether viral replication in the guinea pigs 
differed, virus titers were obtained from vaginal swab speci- 
mens and neuronal tissues of the untreated guinea pigs. Virus 
titers from vaginal swabs collected at days 1, 3, and 5 post 
inoculation were compared among animals infected with each 
virus (Fig. 3 D). No differences in vaginal titers were observed. 
Moreover, virus titers obtained from homogenized sacral gan- 
glia and spinal cord from guinea pigs killed 4 d after the ini- 

tial infection with HSV-2 333pLAT- and 333pLAT v" were 
also comparable (Fig. 3 E). Thus, as measured by lesion scores 
and virus titers in genital and neural tissues, there were no 
significant differences in the course or severity of primary 
infections attributable to the LAT promoter deletion, or in 
spread of virus to or replication in the nervous system. 

Effect of L A T  Promoter Deletion on Recurrent Disease. Fol- 
lowing recovery from acute infection, animals were exam- 
ined daily from days 15-100 post inoculation for recurrent 
disease. Fig. 4, A and B show cumulative recurrences over 
time for each experiment. In animals not treated with acy- 
clovir (Fig. 4 A), strain 333 caused slightly more recurrences 
(mean 11.9, SE 2.0) than the rescued virus 333pLAT R (mean 
8.2, SE 1.9), but markedly more than the LAT promoter de- 
letion mutant 333pLAT- (mean 0.8, SE 0.5). In animals 
treated with acyclovir for the first 7 d of their primary infec- 
tion (Fig. 4 B), 333pLAT- lesions appeared spontaneously 
only an average of 1.4 times (SE 0.5) per animal, as com- 
pared with 6.3 (SE 1.8) and 11.4 (SE 2.2) recurrences for strains 
333 and 333pLAT v', respectively. In each experiment, differ- 
ences between 333pLAT- and its parent or rescuant strains 
were statistically significant. Using the two-tailed Wilcoxon 
test, median recurrence frequencies and p values for pairwise 
comparisons of recurrence frequencies associated with each 
virus were as follows. Untreated animals: 333pLAT- (n = 
5, median 0 recurrences) vs. HSV-2 333 (n = 7, median 11), 
iv = 0.006; 333pLAT- vs. 333pLATR (n = 6, median 8), 
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Figure 3. Characterization of acute infections with each virus (333 [O], 
333pLAT- [A], and 333pLAT ~ [I7]). (.4) 106 Veto cells were inoculated 
with each virus at a MOI of "~0.1 at time 0. Cultures were plaque-titered 
at 0, 3, and 20 h after inoculation. (B) Severity of primary genital infec- 
tion in guinea pigs inoculated on day 0 with 105.7 pfu of HSV-2 333 
(n = 12), 333pLAT- (n = 12), and 333pLAT r~ (n = 12) were scored 
daily on a scale from 0 to 4. (C) Lesions of guinea pigs infected on day 
0 with 10 s.7 pfu of HSV-2 333 (n = 14), 333pLAT- (n = 18), and 
333pLAT R (n = 18) were scored daily. These guinea pigs received in- 
traperitoneal acyclovir (25 mg/kg) twice daily for 7 d, starting 12 h after 
inoculation. (D) Vaginal swab cultures of guinea pigs were plaque titered 
1, 3, and 5 d post inoculation. (E) Spinal cords and pooled lumbosacral 
dorsal root ganglia of guinea pigs infected with 333pLAT - (n = 5) and 
333pLAT R (n = 4) were removed 4 d after infection, homogenized, and 
plaque titered. Error bars show standard errors. 

p = 0.004; HSV-2 333 vs. 333pLATR,/~ = NS. Acyclovir- 
treated animals: 333pLAT- (n -- 11, median 1) vs. HSV-2 
333 (n = 12, median 4.5), p = 0.016; 333pLAT- vs. 
333pLATR (n = 12, median 12),/~ <0.001; HSV-2 333 vs. 
333pLATR, p = NS. Thus, in both experiments, guinea pigs 
infected with the LAT promoter deletion mutant 333 
pLAT- experienced at least an 80% reduction in recurrences 
as compared with those infected with strain 333 or the res- 
cued virus 333pLAT p'. 

Effect of the LAT Promoter Deletion on LAT Expression during 
Latency and Acute Infection. To determine whether 333pLAT- 
produced LAT during latency, and whether there was any 
evidence of  viral replication in the ganglia, we performed 
Northern hybridizations of R N A  extracted from guinea pig 
sacral ganglia removed 27 d after inoculation. The 2.2-kb 
HSV-2 LAT was not detected from 333pLAT- infected or 
uninfected guinea pigs, but was readily detected in tissues 
from animals harboring the 333pLAT r~ strain (Fig. 5 A). 

Thus, the LAT promoter deletion abolished detectable LAT 
transcription during latency. ICP0 m R N A  was not detected 
in any latently infected guinea pigs, indicating no active virus 
replication. 

In contrast, during productive infection of Vero cells, the 
2.2-kb LAT was readily identified in R N A  extracted 20 h 
after infection with HSV-2 333 and 333pLAT P'. Cells in- 
fected with 333pLAT- also produced a 2.2-kb LAT, but the 
signal was clearly diminished (Fig. 5 B). At immediate-early 
time points, the LAT promoter deletion had no effect on ICP0 
transcription (data not shown). 

Effect of the LAT Promoter Deletion on Establishment and Main- 
tenance of Latency. To determine whether the 80% reduction 
in rate of spontaneous genital recurrences of the 333pLAT- 
virus could be explained by differences in establishment or 
maintenance of latency, we performed both ganglia explant- 
cocultivation experiments and semi-quantitative PCR studies 
to assess the relative viral D N A  burden in guinea pig ganglia 
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Figure 4. Spontaneous recurrences in latently 
in~xed guinea pigs. Guinea pigs infected with each 
virus (333 [O], 333pLAT- [A], 333pLAT R [D]) 
were observed for recurrences starting 14 d post 
infection. (a) Cumulative recurrences are shown 
for guinea pigs infected with HSV-2 333 (. = 7), 
333pLAT- (n = 5), and 333pLAT R (. = 6), 
whose acute infection is depicted in Fig. 3, B and 
D, untreated with acyclovir. (b) Cumulative recur- 
rences in guinea pigs inoculated with HSV-2 333 
(n = 12), 333pLAT- (. = 11), and 333pLAT R 
(n = 12) and treated with acyclovir during the acute 
infection. 

latently infected with the three virus strains. After enumera- 
tion of the recurrences reported in Fig. 4 A, ganglia from 
guinea pigs (untreated with acyclovir) latently infected with 
strain 333, 333pLAT-, or 333pLAT R were harvested and 
cocultivated with primary rabbit kidney cells (Table 1). Virus 
was recovered from all ganglia tested and in approximately 
the same period of time (15-21 d). Southern hybridizations 
confirmed the appropriate restriction endonuclease digestion 
patterns for each virus recovered by cocultivation (not shown). 

Similar conclusions were reached regarding viral DNA con- 
tent in the PCR experiments. Ganglia were harvested 27 d 
post inoculation and subjected to PCR simultaneously with 
primers specific for HSV-2 DNA, and with primers specific 

for the guinea pig lactalbumin gene. Southern hybridization 
of the PCR products was carried out using radiolabeled gel- 
purified specific internal amplified fragments as probes (Fig. 
6). The ratio of signal intensities for HSV DNA to lactal- 
bumin DNA for each animal was determined by densitom- 
etry, and used as an estimate of latent virus burden. All of 
the signal ratios fell between the ratios obtained in recon- 
struction experiments using 100 and 1,000 copies of the HSV-2 
viral genomes. The ratio of signal intensities found with each 
virus overlapped (ratios for 333pLAT- ranged from 1.62 to 
3.07; for 333pLAT v" they ranged from 0.88 to 3.26), indi- 
cating no difference in the amount of viral DNA persisting 
in the sacral ganglia of each animal. These cumulative data 
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Table  1. Explant Cocultivation of Latently Infected 
Guinea Pig Ganglia 

Time to 
Virus No. positive/no, tested positive culture 

days 
333 3/3 15, 15, 15 
333pLAT- 2/2 15, 21 
333pLAT R 3/3 15, 15, 20 

imply that the 333pLAT- mutant was able to establish and 
maintain latency with a frequency comparable to that of the 
parental and rescued virus strains. 

Discussion 

In the present series of experiments, it was determined that 
deletion of sequences directing latent transcription of the 
HSV-2 LAT had no apparent effect on productive infections 
in tissue culture or in guinea pigs, or on the establishment 
or maintenance of latency, yet there was a marked decrease 
in the frequency of spontaneous herpetic recurrences. Because 
the deletion in the LAT promoter did not impair viral growth 
in peripheral or neuronal tissues, recurrences can be correlated 
with the rate of ganglionic reactivation. This indicates that 
the LAT is required for efficient spontaneous reactivation of 
latent virus from latently infected neurons. Since it is the only 
gene whose transcription is detectable in these cells during 
latency, these data argue that LAT may be involved in the 
mechanism by which reactivation is triggered. 

We found the LAT promoter deletion mutant to be capable 
of transcribing small amounts of LAT during productive in- 
fection of Veto cells, but not during latency. This may be 
due to additional promoter elements not contained within 
the deleted NotI-NotI fragment, or to run on transcription 
from upstream genes transcribed during acute infection. In 
HSV-1, there is also evidence of previously unidentified LAT 
regulatory sequences (34, 35) which may play a role in acute 
phase LAT transcription, but not in latent phase transcription. 

Our cocultivation studies revealed that an approximately 
equivalent amount of reactivatable virus was present in each 
ganglion, regardless of the infecting virus strain. While it 
is possible that there were some differences in DNA quanti- 
ties that we were unable to discern by PCR, it is reasonable 

Figure 5. LAT production during infection with each virus strain. (A) 
LAT production during latent infection of guinea pigs by Northern hy- 
bridization. R.NA was extracted from guinea pigs latently infected with 

333pLAT R (lanes I and 2), 333pLAT- (lane 3), or uninfected guinea pigs 
(lane 4), subjected to electrophoresis, and probed with a radiolabeled 
Sphl-BamHI probe. (B) RNA was extracted 20 h after infection from 
Veto cells infected at a MOI of 1 pfu/cell with HSV-2 333 (lane 1), 
333pLAT- (lane 2), 333pLAT ~- (lane 3) and uninfected Vero cells (lane 
4). The blot was probed with a radiolabeled SphI-BamHl plasmid probe. 
The size of the 2.2-kb LAT is marked. Asterisks denote the positions of 
18S and 28S rRNAs. 
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Figure 6. Coamplification of guinea pig lactal- 
bumin and HSV-2 DNA in htentty infected gan- 
glia by PCK. Samples included DNA from unin- 
fected guinea pig {lane 1), guinea pigs latently 
infected with 333pLAT p- (lanes 2-4) and 
333pLAT- (lanes 5-7), sterile water (lane 8), and 
strain 2 fetal guinea pig cellular DlqA spiked with 
0, 10, 100, and 1,000 copies of HSV-2 strain MS 
genomes, respectively (lanes 9-12). (A) primers 
specific for 500 bp HSV-2 product, probed with 
ampli~ 2S0 bp internal prob~ (B) primm specific 
for 500 bp guinea pig lactalbumin product, probed 
with amplified 250 bp internal probe. 

to exclude differences in rates of the establishment or main- 
tenance of latency as a sufficient explanation for the observed 
differences in recurrence frequency. 

Several studies used the recovery of virus by cocultivation 
of ganglia as an endpoint for reactivation. We were able to 
recover virus from all latently infected ganglia by this method, 
and the likelihood of doing so and time required to do so 
did not correlate with frequency of spontaneous recurrences. 
Thus, our data suggest that cocultivation is not truly repre- 
sentative of the biological process of reactivation. This con- 
clusion is consistent with reported comparisons of cocultiva- 
tions and induced reactivations of an HSV-1 x HSV-2 
intertypic recombinant in latently infected rabbits (20), but 
differs from conclusions drawn from other experiments using 
HSV-1 in rabbits (23) and in mice (22, 24), in which muta- 
tions in the LAT region either led to reduced frequency or 
delayed kinetics of reactivation by explant cocultivation. In 
all published comparisons, rates of virus recovery using ex- 
plant cocultivation exceeded those of virus recovery by in- 
duced reactivation. Explant cocultivation appears to be useful 
in studying some aspects of LAT function in some animal 
models, but clearly represents a different situation from spon- 
taneous reactivation of HSV-2 in latently infected guinea pigs. 
It could be that HSV-1 and HSV-2 differ in this regard, or 
that different animal models have differing thresholds for reac- 
tivation by cocultivation. It is also possible that an ability 
to recover latent virus by cocultivation correlates with the 
quantity of latent virus DNA (as was reported in mice [22]), 
or that the very strong stimulus to reactivation (explantation 
presumably followed by cell death) generated with this model 
is not relevant to "clinically" meaningful outcomes like spon- 
taneous disease recurrences. 

While the acute infections with HSV-2 333 scored as being 
slightly more severe than those with the other two viruses 
(Fig. 3, B and C), this did not correlate with a difference 
in recurrence frequency (in the first experiment, HSV-2 333 
recurred more frequently than the rescuant, in the second, 
it recurred less frequently). Conceivably, the diffexence in acute 

infection severity could be attributable to some unrecognized 
genotypic difference between the parent and the other two 
viruses in a region distant from the LAT. There was, how- 
ever, no evidence for any genotypic differences (besides the 
LAT promoter deletion) between the mutant 333pLAT- 
and strain 333pLAT R, derived from it, and no phenotypic 
differences between these two strains except in rates of spon- 
taneous recurrence. 

These data show that HSV-2 LAT expression influences 
spontaneous recurrence rates of latent virus. The LATs also 
appear to play a role in HSV-1 recurrence. While the pri- 
mary infections of HSV-1 and HSV-2 in humans are indis- 
tinguishable, HSV-1 recurs most frequently from primary 
infections involving the trigeminal dermatome and latent 
HSV-2 recurs most frequently from sacral ganglia (2). This 
observation suggests that these viruses differ in their ability 
to either establish or reactivate from latent infections in a 
site-specific manner. Because the major LAT sequences of these 
viruses share essentially random homology, it is possible that 
the LATs of these viruses have evolved to facilitate reactiva- 
tion in specific cellular environments. 

The development of a ganglionic reactivation into a muco- 
cutaneous recurrence involves many factors including viral 
replication in neurons, peripheral replication, and the immune 
system. While deletion or mutation of other viral genes (e.g., 
thymidine kinase, ICP0) reduces recurrence frequency in some 
models, identifiable effects of those mutations on the growth 
and spread of virus has precluded making firm conclusions 
about their effect on reactivation. In contrast, deletion of se- 
quences from the HSV-2 LAT promoter did not affect neu- 
ronal or nonneuronal replication either in vitro or in vivo 
in immunocompetent guinea pigs. Thus, our findings assign 
a role to the LAT in reactivation of latent HSV-2. Further 
study of interactions between the LAT and other viral and 
cellular genes will be required to precisely establish the mech- 
anisms of HSV reactivation, and how LAT modulates disease 
recurrence. 
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