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Autonomic adaptations mediate 
the effect of hydration on brain 
functioning and mood: Evidence 
from two randomized controlled 
trials
Hayley A. Young1*, Alecia Cousins   1, Stephen Johnston   1, John M. Fletcher2 & 
David Benton1

Dehydration (water loss >2.0% of body weight) has significant negative effects on physical and mental 
performance. In two studies the effects of minor hypo-hydration (water loss <1.0% of body weight) 
on CNS function, mood and cardiovascular functioning were measured. Study 1: On two mornings 
twelve male participants were exposed to a temperature of 30 °C for four hours and either did or 
did not drink two 150 ml glasses of water during that time. Study 2: Fifty-six (25 M) individuals were 
exposed to the same 30 °C environment and randomly allocated to either drink (2 × 150 ml) or not 
drink. When not given water 0.59% (Study 1) and 0.55% (Study 2) bodyweight was lost. Participant’s 
heart rate variability (HRV) was measured, and they rated their thirst and mood. In study 1, participants 
participated in an fMRI protocol during which they completed a modified version of the Paced Auditory 
Serial Addition Test (PASAT), at the end of which they rated its difficulty. Decreases in fMRI BOLD 
activity in the orbito-frontal cortex, ventral cingulate gyrus, dorsal cingulate cortex, hypothalamus, 
amygdala, right striatum, post-central gyrus and superior parietal cortex were observed when 
participants were hypo-hydrated. These deactivations were associated with reduced HRV, greater 
perceived effort, and more anxiety. In study 2 declines in HRV were found to mediate the effect of 
hypo-hydration on ratings of anxiety. These data are discussed in relation to a model that describes 
how autonomic regulatory and interoceptive processes may contribute to the affective consequences of 
minor hypo-hydration.

It has been assumed that small variations in hydration status, in what might be described as the normal day to 
day range (water loss <1.0% of body weight), have no significant influence on higher mental functions such as 
cognition and mood1. Indeed, where dose – response relationships have been assessed, the largest psychological 
effects appear to occur with moderate levels of dehydration (water loss 2.0–5.0% of body mass), although findings 
may depend on the method used to induce dehydration2. In healthy individuals such large changes in hydration 
status are rare and are associated with water deprivation and prolonged exposure to hot environmental temper-
atures and/or exercise. Therefore, the relevance of such findings to the majority of the population is unclear. It 
is argued that thirst and homoeostatic mechanisms keep the hydration status of those with access to water and 
living in temperate environments within a narrow range. However, it is plausible that even when fluid balance 
is successfully maintained, certain counter-regulatory mechanisms may themselves have psychological conse-
quences – this possibility is yet to be explored. For the first time the present studies report that with as little as a 
0.6% decrease in body mass, changes in cardiovascular and autonomic functioning (heart rate variability) nega-
tively influence mood. These data highlight novel mechanisms that may contribute to the affective consequences 
of minor hypo-hydration.

The adverse consequences of dehydration (water loss >2.0% of body mass) have been well described and 
include declines in physical and mental performance, and increased blood pressure and heart rate3. Questioning 
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recieved wisdom we recently reported that participants exposed to a temperature of 30 °C for four hours lost less 
than 1% of their body mass but experienced a significant decline in memory and focused attention; effects that 
were reduced by drinking water4,5. In an experimental protocol that tested performance on a simulated driving 
task, hypo-hydration (loss of 1.1% body mass) caused increased errors and changes in EEG alpha and theta waves 
indicative of drowsiness6. Interestingly, the most commonly observed consequences of minor hypo-hydration 
may be subjective2,7,8. For example, in the study by Benton, et al.4, an increase in thirst was associated with a 
decline in subjective energy and increased anxiety and depression. Therefore, given that fluid balance is highly 
regulated9, there is a need to understand the mechanisms underpinning these psychological consequences of 
minor hypo-hydration.

The physiological regulation of fluid balance is relatively well understood10, several forebrain and brainstem 
circuitries interact with peripheral neural and humoral signals to collaboratively maintain the osmolality and 
volume of fluids. One counter-regulatory mechanism involves changes in cardiovascular and autonomic func-
tioning: hypo-hydration induces cardiovascular strain3, for every 1% decrease in body mass during exercise there 
is an increase in heart rate of 3.29 beats per min (bpm)11. Dehydration decreases the volume of blood (absolute 
hypovolemia), reducing cardiac output, and necessitating an increase in heart rate to maintain blood pressure. 
When there is a simultaneous elevation in skin temperature blood vessels are dilated resulting in relative hypo-
volemia; an inadequate distribution of blood volume between the periphery and core. These counter-regulatory 
changes, while part of normal body fluid homeostasis, may alter psychological functioning.

For example, fluid consumption has been shown to facilitate peripheral and cerebral perfusion when exposed 
to physiological12, orthostatic13 or psychological14 stress. Even in the absence of hypo-hydration, water inges-
tion is followed by an increase in cardiac vagal control15; an effect thought to counteract the pressor effects of 
sympathetic activation. Interestingly, neuroimaging studies that have attempted to understand our experience 
of hypo-hydration and thirst find changes in regions of the brain often associated with autonomic and cardiac 
control16,17; that is regions comprising the central autonomic network18. For example, Farrell, et al.19 observed 
that a state of osmotic thirst (induced with hypertonic infusions) was related to changes in blood flow to the 
somatosensory and motor cortices, prefrontal cortex, anterior mid cingulate cortex, and superior temporal gyrus.

According to the neuro-visceral integration model of emotion regulation18, the central autonomic network 
mediating sympathetic and parasympathetic control include regions of the limbic forebrain such as the subgenual 
and pregenual cingulate, amygdala/ventral striatum and medial prefrontal cortex20. Essentially the prefrontal cor-
tex exerts inhibitory GABAergic control over the limbic regions of the brain that ultimately control heart rate20,21. 
This implies that in the presence of a physiological or psychological stressor that necessitates an increase in heart 
rate, there will be an associated decline in prefrontal neural activity. The relevance is that individual differences in 
vagal tone (measured using heart rate variability (HRV)) predict mood and cognitive performance, especially in 
tasks associated with the prefrontal and cingulate cortices22–25. Thus, it is plausible that cardiovascular and auto-
nomic adaptations, may explain the affective consequences of minor hypo-hydration.

Although neuroimaging studies have attempted to understand our experience of thirst while at rest, only 
one study has considered the effect of hydration on brain functioning during a cognitive task. Kempton et al.26 
studied the effects of fluid restriction during a thermal exercise protocol on fMRI BOLD responses to the Tower 
of London task. Participants lost 1.64% bodyweight and heart rate was about 20 bpm higher during dehydration. 
There were no effects on two subjective rating of sedation although this may be explained by the confounding 
effects of physical activity. Similarly, performance on the task was not altered, participants had a greater BOLD 
response in the fronto-parietal cortex when dehydrated; an effect interpreted as reflecting a need for a higher level 
of neuronal activity to achieve the same performance level. Kempton et al.26 fMRI analysis used a region-of inter-
est approach which specifically examined task-related regions of activation. Therefore, it remains undetermined 
whether there were effects on brain regions linked with autonomic and cardiac control. In addition, although dif-
ferences in the degree of bodyweight lost and core temperature were correlated with differences in neural activity, 
heart rate was not. Therefore, the possibility that alterations in cardiovascular or autonomic functioning mediate 
the association between hydration and psychological/affective functioning remains unexplored.

The aim of the present two studies was to determine whether cardiovascular and autonomic adaptations, may 
explain the affective consequences of minor hypo-hydration. Study one reports, for the first time, that change in 
blood flow to particular neural systems, as indicated by fMRI, can be observed with as little as a 0.6% decrease in 
body mass. It was shown that hydration deficits resulted in changed activity in the blood flow to the ventral cingu-
late gyrus (vCG) and medial orbito-frontal cortex (mOFC) that reflected autonomic adaptations to the physiolog-
ical challenge of hypo-hydration (changes in HRV). In addition, it was observed that these adaptations correlated 
with changes in affect. Study two extends these novel findings showing that mild hypo-hydration reduced HRV 
that in turn mediated effects on mood.

Statistical Analysis
Hydration indices (Study 1 and Study 2).  Fluid loss due to perspiration and breathing (hereafter referred 
to as perspiration rate) was estimated as the percentage change in body mass from baseline to the end of the 
session prior to urination (Fig. 1). Total body mass lost, including urination, was calculated as total percentage 
change in body weight. For body temperature and osmolality, change scores were calculated (end of the morn-
ing minus baseline). Similarly, thirst change scores were calculated (end of morning minus thirst following the 
standard breakfast).

Heart rate variability (Study 1 and Study 2).  Interbeat (RR) intervals were recorded at rest for five min-
utes at the start of the procedure and again at the end. Interbeat interval data were analysed using Kubios HRV 
Analysis Software 2.027 (The Biomedical Signal and Medical Imaging Analysis Group, Department of Applied 
Physics, University of Kuopio, Finland). Data were visually inspected for artefacts caused by ectopic beats, poor 
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conductivity etc. A very low correction threshold was chosen for artefact correction (0.45 from local average) so 
not to distort natural variability. Less than 1% of beats were identified as artefacts. Time domain HRV indices 
included mean R-R interval (a measure of basic heart rate), the standard deviation of normal to normal R-R inter-
val (SDNN) (measures total variability in the series) and the root mean square of the standard deviation (RMSSD) 
(a measure of parasympathetic nervous system activity). To determine the effect of hydration, change scores were 
calculated (end of the morning minus baseline) for each index.

Subjective ratings (Study 1 and Study 2).  For ratings of anxiety, depression and energy change scores 
were calculated (end of morning minus mood following the standard breakfast).

fMRI analysis (Study 1).  BOLD sensitive echo planar images were collected as participants performed the 
arithmetic task (TE = 30 ms, TR = 3000 ms, flip angle = 90, axial plane, interleaved acquisition, voxels = 3 mm 
3 mm 3 mm, slices = 44). In each of the three separate runs a total of 135 volumes were collected. Additionally a 
high-resolution magnetization-prepared rapid acquisition with gradient echo (MPRAGE) 3D volume image was 
acquired for each participant (TE = 4.82 ms, TR = 2500 ms, flip angle = 7, sagittal plane, 1 mm3 isotropic voxels, 
179 slices).

Analyses were conducted using BrainVoyager QX 2.828 (Brain Innovations B.V., the Netherlands). Data were 
pre-processed as follows: 3D motion correction (6 degrees of freedom) with sinc interpolation to account for 
participant head movement during the scanning procedure, linear trend removal and temporal high pass filtering 
(low cutoff: 3 cycles per run), and spatial smoothing using a 6 mm Gaussian FWHM filter. Data were normalised 
to the standard Talairach space29 using sinc interpolation prior to group analysis. The group analysis involved esti-
mating task-correlated activity using a general linear model (GLM) approach. The predictors for the GLM were 
created by convolving the timecourse of the stimulation periods (arithmetic operation) with a canonical HRF 
response. Each participants beta estimates, obtained via the GLM, were then input into a voxel wise second level 
random effects analysis. The threshold set for statistical significant was a voxel-wise p < 0.05, with an additional 
multiple comparison correction applied via cluster level thresholding using the Monte Carlo simulation tool 
implemented in BrainVoyager QX 2.8 (also with a statistical acceptance threshold of p < 0.05).

Arterial spin labelling (ASL) analysis (Study 1).  For each participant an arterial spin labelling (ASL) 
sequence was run after the functional imaging experiment had been completed. The ASL sequence parame-
ters were TR = 2500 ms, TE = 12 ms, in-plane resolution = 4 mm × 4 mm, 90 averages for each label and con-
trol pair, slice thickness = 8 mm with a 2 mm gap, 9 slices were collected. The labelling time was 700 ms and the 
post-labelling time was 1800 ms. The labelling plane was placed 18.8 mm inferior to the bottom slice. Scans were 

Figure 1.  The experimental procedure.
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planned such that the ASL were in an AC-PC orientation, with the topmost scan aligned with the most supe-
rior aspect of the participant’s brain. ASL data were 3D motion corrected and normalised to Talairach space. 
Relative perfusion values were obtained for each participant and condition using the ASL toolbox implemented 
in BrainVoyager QX 2.8. Significant differences between dehydrated and water conditions were assessed using 
paired t-test of the relative perfusion values.

Results: Study 1
Verification of the hydration paradigm.  The effect of drinking on percentage total weight loss, per-
spiration rate and changes in osmolality, thirst and body temperature were analysed using RMANOVA. As 
expected when participants did not drink water they lost more weight both before (F(1,11) = 214.853, p < 0.0001, 
ηp

2 = 0.951) and after (F(1,11) = 34.777, p < 0.0001, ηp
2 = 0.760) urination; in total an average of 0.6% of their 

body mass (Table 1). Hypo-hydration resulted in a significant increase in urine osmolality (F(1,11) = 23.89, 
p < 0.001, ηp

2 = 0.749) and participants tended to be more thirsty when they did not drink (F(1,11) = 4.178, 
p < 0.07, ηp

2 = 0.317). There was no difference in participants body temperature depending on whether or not 
they consumed water (F(1,11) = 1.887, p = 0.197, ηp

2 = 0.146).

Heart rate variability.  The effect of drinking water on heart rate variability was considered using 
RMANOVA where change scores (end of the morning minus baseline) from each day were entered (Table 1; 
Fig. 2). When participants consumed water they had a larger increase in their average R-R interval, that is they 
had a lower heart rate (F(1,11) = 5.766, p < 0.03, ηp

2 = 0.344). In addition, when participants had drunk water 
they had higher heart rate variability as shown by a larger standard deviation of the R-R interval (F(1,11) = 9.120, 
p < 0.01, ηp

2 = 0.395), and a larger root mean squared of standard deviation of R-R interval (a measure of vagal 
activity) (F(1,11) = 6.128, p < 0.03, ηp

2 = 0.357).

Cognitive performance in the scanner.  Data were analysed using RMANOVA with condition (Water, 
No water) as a repeated measures factor. Main effects are shown in Table 2. The number of non-responses 
(F(1,11) = 0.277, p = 0.609, ηp

2 = 0.020), reaction times (F(1,11) = 1.884, p = 0.197, ηp
2 = 0.146) and accuracy 

(F(1,11) = 0.549, p = 0.474, ηp
2 = 0.048) did not depend on whether participants had drunk (Table 2).

Subjective ratings.  The subjective responses taken inside and outside the scanner were analysed using 
RMANOVA with condition (Water, No water) as a repeated measures factor. There were no effects of drinking 
on ratings of anxiety (F(1,11) = 0.693, p = 0.427, ηp

2 = 0.025), happiness (F(1,11) = 1.875, p = 0.204, ηp
2 = 0.172), 

energy (F(1,11) = 2.047, p = 0.186, ηp
2 = 0.185) or difficulty (F(1,11) = 0.123, p = 0.733, ηp

2 = 0.011) (Table 2) 
while participants were in the scanner. However, before entering the scanner (whilst still in the 30 degree envi-
ronment) participants were significantly less composed when they did not drink water; an effect prevented by 
drinking (F(1,11) = 4.978, p < 0.047, ηp

2 = 0.312). Participants also tended to be less depressed (F(1,11) = 4.211, 
p < 0.065, ηp

2 = 0.277), and more energetic (F(1,11) = 2.906, p < 0.116, ηp
2 = 0.209) if they drunk water but these 

effects did not reach significance.

Brain functioning.  fMRI results.  A comparison of activation during the arithmetic task in the water com-
pared to the dehydration condition revealed several clusters that achieved statistical significance. A large cluster 
was centred on the ventral cingulate gyrus (Talairach co-ordinate: 4, 14, −6; Fig. 4), that extended into both 
the hypothalamus and striatal brain regions. Specifically, striatal activity was observed in the bilateral caudate 
nucleus and putamen. The same cluster also spread inferiorly to right amygdala. To the anterior aspect the activity 
spread into the medial orbito-frontal cortex. A second small cluster was observed in the dorsal cingulate gyrus 
(Talairach co-ordinate: 9, 23, 20). The final cluster of activity was seen in left post-central gyrus (‘PoCG’, Talairach 

Study 1 Study 2

No Water Water No Water Water

Weight lost before urination (%) −0.40 (0.01)** −0.01 (0.03)** −0.32 (0.04)** −0.08 (0.04**
Weight lost after urination (%) −0.59 (0.03)** −0.26 (0.05)** −0.54 (0.05)* −0.36 (0.05)*
∆ Osmolality (mOsm/kg) 219.77 (57.50)** −190.00 (55.47)** 116.88 (33.66)* −9.03 (33.66)*
∆ Temperature (°C) 0.75 (0.11) 0.50 (0.19) 0.32 (0.07) 0.32 (0.07)

∆ Thirst (VAS) 24.40 (4.64) 12.30 (5.92) 18.82 (6.62) 5.96 (6.62)

∆ R-R interval 17.75 (19.47)* 88.42 (31.90)* 20.90 (27.44)** 160.94 (27.44)**
∆ SD of R-R interval 12.59 (10.43)* −12.80 (5.68)* −5.34 (4.38)* 8.77 (4.38)*
∆ RMSSD 3.87 (6.96)* 13.38 (5.89)* −0.67 (4.44)* 13.21 (4.44)*

Table 1.  The effect of drinking compared with not drinking on hydration indices and heart rate variability. 
Data are mean (s.e.) for change scores across each morning (end of the morning minus baseline) for study 1 and 
study 2. In both studies, compared to when they drunk, when participants did not drink they lost more weight 
both before and after urination and their osmolality increased. They had a significantly greater increase in 
HRV (RR interval, SDNN, RMSDD) when they drunk compared to when they did not drink. ∆ Change across 
the morning, *Water vs. No water significant at p < 0.05, **Water vs. No water significant at p < 0.001. RR, 
interbeat interval, SDNN, standard deviation of normal to normal R-R interval, RMSSD, root mean square of 
the standard deviation.
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co-ordinate: −36, −19, −35; Fig. 3) and extended superior and anterior into the superior parietal cortex (Figs 3, 
4 and 6). There were no significant areas of activation for the reverse contrast of dehydration >water.

Cerebral blood flow.  A voxel wise paired contrast of the perfusion values, obtained via the ASL scans, did not 
reveal any significant differences in resting perfusion for either the contrast of dehydration vs. water, or water vs. 
dehydration (all p’s > 0,05, uncorrected for multiple comparisons).

Association between differences in brain activity, HRV and mood.  Peaks of activity occurred on the ventral cingu-
late gyrus (vCG), the border of the medial orbitofrontal cortex (mOFC) and in the left post-central gyrus (PoCG). 
To investigate the possible mechanisms behind the observed differences in brain (see above), the difference in 
brain activity between when participants had, or had not consumed water, was correlated (Pearson’s r) with dif-
ference scores (no water minus water) for heart rate variability and mood. Results are displayed in Table 3. Heart 
rate variability correlated significantly with activity in the mOFC (r = 0.78, p < 0.005) and vCG areas (r = 0.77, 
p < 0.05; Fig. 4); in both instances a smaller increase in R-R interval (i.e a higher heart rate) was associated with 
lower activity brain activity when no water had been drunk. Similar effects were found for the HRV indices; 
both the SDNN and RMSSD correlated significantly with activity in the mOFC (r = 0.42, p < 0.05 for SDNN and 
r = 0.48, p < 0.05 for RMSSD) and vCG (r = 58, p < 0.05 for mOFC and r = 0.52, p < 0.05 for vCG) regions, indi-
cating that the hypo-hydration-associated decline in activity may reflect changes in cardiac vagal activity. Overall 

Figure 2.  The effect of drinking water on the average length of the RR interval, SDNN and RMSSD. Data are 
the changes (end of the morning minus baseline) for each index compared across the two conditions. Top panel: 
Study 1. When participants were hypo-hydrated they had a lower R-R (i.e a higher HR) (p < 0.03), lower SDRR 
(i.e a lower HRV) (p < 0.01) and reduced parasympathetic activity (i.e. lower RMSSD) (p < 0.03). Bottom panel: 
Study 2. If water was consumed participants had an increase in their average R-R interval (p < 0.001), a larger 
standard SDNN (p < 0.027), and a larger RMSSD (p < 0.031). RR, interbeat interval, SDNN, standard deviation 
of normal to normal R-R interval, RMSSD, root mean square of the standard deviation.

https://doi.org/10.1038/s41598-019-52775-5


6Scientific Reports |         (2019) 9:16412  | https://doi.org/10.1038/s41598-019-52775-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

these findings suggested that the decline in brain activation that was observed when participants didn’t drink 
reflected autonomic responses to the low-level physiological challenge of hypo-hydration.

To determine whether the observed changes in autonomic and brain functioning have consequences for affect 
these differences were correlated (Pearson’s r) with ratings of perceived difficulty and mood. (Table 4). The average 
length of the R-R interval correlated with both anxiety (r = −0.61, p < 0.03) and perceived difficulty (r = -0.45, 
p = 0.06); a lower RR interval (i.e higher heart rate) in the no water condition was related to greater anxiety and 
more perceived effort (Fig. 4). Similar associations were found between the subjective ratings and activity in 
the mOFC (r = −0.72, p < 0.01 for anxiety; r = −0.60, p < 0.02 for difficulty) and between the subjective ratings 
and activity in the vCG (r = −0.77, p < 0.007 for anxiety; r = −0.75, p < 0.004 for difficulty); in each case lower 
activity was associated with more anxiety and greater difficulty. Outside the scanner, composure again correlated 
with the average length of the RR interval (r = 0.47, p < 0.05), SD of the RR interval (r = 0.44, p < 0.05), and a 
depressed mood correlated with activity in the vCG (r = 0.75, p < 0.01).

Study 1 Study 2

No Water Water No Water Water

No of non-responses 20.08 (7.50) 16.91 (3.21) — —

Reaction time (RT in s) 0.611 (0.02) 0.627 (0.01) — —

Accuracy (No correct) 200.08 (9.36) 206.83 (3.93) — —

Perceived difficulty (VAS) 181.16 (12.0) 175.00 (12.0) — —

Anxiety (VAS) 103.50 (14.6) 90.20 (17.78) — —

Happiness (VAS) 148.60 (7.77) 157.50 (7.52) — —

Energy levels (VAS) 112.30 (9.69) 132.80 (13.72) — —

∆ Composed (VAS) (outside the scanner) −9.50 (2.95)* −0.75 (3.26)* −16.39 (5.32)* −0.07 (5.32)*
∆ Energetic (VAS) (outside the scanner) −14.33 (5.94) −2.33 (5.20) −16.03 (4.59) −16.50 (4.59)

∆ Depressed (VAS) (outside the scanner) −7.91 (3.97) 0.41 (4.23) −12.12 (3.56) −7.85 (3.56)

Table 2.  Effects of drinking compared with not drinking on performance, perceived difficulty and mood 
(inside and outside the scanner) in study 1 and study 2. Data are mean (s.e.). VAS, Visual Analogue Scale.  
*Water vs. No water significant at p < 0.05.

Figure 3.  Peak activity in PoCG (top) and mOFC (bottom) water >hypo-hydration.
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Figure 4.  (A) Peak activity in vCG water >hypo-hydration. Correlation between neuronal activity in the vCG 
and (B). RR interval (C). anxiety and (D). difficulty ratings. Data are Pearson’s r coefficient for difference scores 
(no water – water).

Figure 5.  Schematic illustration of the mediation analysis used in study 2. The total effect of water on rating of 
anxiety was significant (B = 16.321, LLCI 3.729, ULCI 28.913). The direct effect (when the influence of SDNN 
was considered) was not significant (B = 12.763, LLCI -0.257, ULCI 25.784). When water was not consumed 
participants were more anxious (F(1,54) = 4.706, p < 0.034). A decrease in HRV (SDRR) was associated with an 
increase in anxiety levels (r = 0.335, p < 0.012). The indirect effect Water → SDNN → Anxiety was significant 
(B = 3.557, LLCI 0.212, ULCI 8.321).
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Results: Study 2
Given the small samples size invariably associated with studies involving neuroimaging a second behavioral study 
was conducted to replicate and extend the main findings from study 1. Specifically it was hypothesized that 
declines in HRV would mediate the effect of hypo-hydration on mood.

Verification of the hydration paradigm.  The effect of drinking on percentage total weight loss, per-
spiration rate and changes in osmolality and thirst were compared across the two conditions using ANOVA. 
As observed in study 1, participants who did not drink water lost more weight both before (F(1,54) = 15.963, 
p < 0.0001, ηp

2 = 0.227) and after (F(1,54) = 4.705, p < 0.03, ηp
2 = 0.087) urination; losing an average of 

0.55% of their body mass. In addition, those who didn’t drink had a significant increase in urine osmolality 
(F(1,54) = 6.994, p < 0.011, ηp

2 = 0.117), although the effect of thirst was not significant (F(1,54) = 1.885, 
p < 0.175, ηp

2 = 0.034). Thus in both studies there was evidence that the current paradigm is a valid way of manip-
ulating small changes in hydration without exposing participants to physical activity (Table 1).

Heart rate variability.  The effect of drinking water on heart rate variability was considered by compar-
ing change scores (end of the morning minus baseline) using ANOVA (Table 1; Fig. 2), the findings in study 
2 were similar those in study 1. If water was consumed participants had an increase in their average R-R inter-
val (F(1,54) = 13.023, p < 0.001, ηp

2 = 0.194), a larger standard deviation of the R-R interval (F(1,54) = 5.187, 
p < 0.027, ηp

2 = 0.088), and a larger root mean squared of standard deviation of R-R interval (F(1,54) = 4.873, 
p < 0.031, ηp

2 = 0.083). Therefore, the studies provided consistent evidence that minor hypo-hydration results in 
an increased heart rate and decreased heart rate variability.

Subjective ratings.  Data were analysed using ANOVA where change scores were compared across con-
ditions. When anxiety was considered, participants who did not drink water became significantly more anx-
ious (F(1,54) = 4.706, p < 0.034, ηp

2 = 0.080). However, the effect was not significant when ratings of depression 
(F(1,54) = 0.734, p < 0.395, ηp

2 = 0.013) and energy (F(1,54) = 0.152, p < 0.698, ηp
2 = 0.003) were considered 

(Table 2).

Association between HRV and mood.  A decrease in average R-R interval was associated with an increase 
in rating of depression (r = 0.276, p < 0.040), although no association was observed with ratings of anxiety 
(r = 0.141, p < 0.301) or energy levels (r = 0.008, p < 0.955). A decrease in SDRR was associated with an increase 
in rating of depression (r = 0.315, p < 0.018) and an increase in anxiety levels (r = 0.335, p < 0.012), but again 
no association with observed with reported energy (r = 0.104, p < 0.445). RMSSD was not associated with any 
of the mood measures (anxiety; r = 0.095, p < 0.488, depression; r = 0.215, p < 0.111, energy levels; r = −0.195, 
p < 0.151).

To confirm whether changes in HRV mediate the effect of hypo-hydration on mood a mediator analysis was 
conducted using Hayes PROCESS model 4 (Fig. 5). As anxiety was the only mood measure to show a significant 
main effect of drinking water this was the dependent variable (Y). Water consumption was the dichotomous 
independent variable (X), and SDNN was the mediator (M). As reported previously, the total effect of water on 
rating of anxiety was significant (B = 16.321, LLCI 3.729, ULCI 28.913), however, the direct effect (when the 
influence of SDNN was considered) was not significant (B = 12.763, LLCI -0.257, ULCI 25.784). The indirect 

mOFC vCG PoCG

∆ RR interval 0.787** 0.776** 0.145

∆ SD of R-R interval 0.428* 0.580** 0.027

∆ RMSSD 0.486* 0.529* 0.350

Table 3.  Correlations between differences in brain activation and differences in heart rate variability. Data are 
Pearson’s correlation coefficient (r) ∆ Difference, **p < 0.005, *p < 0.05, RR, interbeat interval, SDNN, standard 
deviation of normal to normal R-R interval, RMSSD, root mean square of the standard deviation, mOFC, 
medial orbitofrontal cortex, PoCG, post-central gyrus, vCG, ventral cingulate gyrus.

Perceived 
difficulty Happy Energetic Anxious

Depressed (outside 
of the scanner)

Energetic (outside 
of the scanner)

Composed (outside 
of the scanner)

∆ RR interval −0.456* 0.086 0.145 −0.613* 0.336 −0.179 0.475*
∆ SD of R-R interval −0.540* −0.068 −0.133 −0.746* 0.650* −0.041 0.445*
∆ RMSSD −0.298 0.058 −0.195 −0.259 0.382 0.433 −0.129

mOFC −0.601* 0.278 0.247 −0.722* 0.393 −0.101 0.158

vCG −0.754* −0.228 −0.296 −0.774* 0.752* −0.032 0.114

PoCG −0.026 −0.036 −0.034 −0.319 0.007 0.471 0.103

Table 4.  Correlations between differences in brain activation, hydration parameters and performance and 
difficulty ratings in the scanner. *p < 0.05 RR, interbeat interval, SDNN, standard deviation of normal to 
normal R-R interval, RMSSD, root mean square of the standard deviation, mOFC, medial orbitofrontal cortex, 
PoCG, post-central gyrus, vCG, ventral cingulate gyrus.
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effect Water → SDNN → Anxiety was significant (B = 3.557, LLCI 0.212, ULCI 8.321). This finding suggested that 
hypo-hydration associated increases in anxiety levels are fully mediated by autonomic adaptations as indexed by 
a reduction in HRV.

Discussion
In two studies it is reported that hypo-hydration adversely influenced mood and brain functioning. In study 1, as 
a result of not drinking water during the experimental protocol, task related activity in the autonomic network of 
the brain was reduced; specifically activity in the orbito-frontal cortex, ventral cingulate gyrus, dorsal cingulate 
cortex, hypothalamus, amygdala, right striatum, post-central gyrus and superior parietal cortex was affected. 
When participants were hypo-hydrated they had a higher HR and lower HRV; effects that correlated with peak 
activation in the vCG and mOFC. Importantly, these effects were associated with a decline in mood. The deleteri-
ous effect of hypo-hydration on HRV was replicated in study 2 where this variable was found to mediate the influ-
ence of not drinking water on mood. These observations are consistent with the hypothesis that hypo-hydration 
elicits a change in autonomic regulatory activity and brain function, with potential adverse consequences for 
aspects of mood.

In the context of exercise severe hypo-hydration (>2% loss of body weight) elevates HR1 but there has been 
little study of the effect of everyday fluctuations in hydration status on cardiac functioning. The present studies 
found that in participants at rest, hypo-hydration resulted in a shorter average R-R interval i.e a higher HR (on 
average 5.8 beats per minute higher) and lower HRV (Fig. 2). Interestingly, limited evidence suggests that drink-
ing water, even in the absence of hypo-hydration, may modulate the cardiac vagal response; 20 and 25 min after 
drinking 500 ml of water heart rate fell from 67 to 60 bpm and RMSSD increased by 13 ms15. This latter finding 
is important because it might help explain how acute water supplementation can benefit mood, irrespective of 
hydration status30.

Areas of the brain mediating sympathetic and parasympathetic control of the ANS include regions of the 
limbic forebrain such as the subgenual and pregenual cingulate, amygdala/ventral striatum and medial prefron-
tal cortex20: as can be seen in Fig. 6, changes in many of the same regions were associated with hypo-hydration. 
Mathews et al.31 studied the association between activity in the vCG and peak high frequency power (a HRV 
index of vagal activity) during a Stroop task; they found a positive association such that greater activity in the 
vCG was associated with a higher vagal tone. Similarly, in the present study, having higher activity in the vCG 
and mOFC was associated with greater parasympathetic activity (indexed by the average RR interval, SDRR 
and RMSSD). These findings indicated that the hydration related differences in brain activity in these regions 
may be the result of hydration induced autonomic modulation. Interestingly, drinking water both ameliorated 
the task related decline in brain activity, as indicated by fMRI, and increased HRV. A novel hypothesis is that 
hypo-hydration induces increased cardiovascular strain, which in turn necessitates a decline in activity in the 
autonomic network of the brain, effects that could compromise cognitive and affective processing.

Even in a healthy population lower HRV is associated with poorer mood and cognition and higher perceived 
stress22. Similarly, study 1 found that a higher heart rate and lower HRV were associated with increases in anxiety 
and perceived effort during scanning; these effects were also associated with having a greater deactivation in the 
mOFC and vCG. In addition, the association between lower HRV and increased anxiety was replicated in study 
2. Hypo-activation of the anterior cingulate and frontal cortices is common in a range of anxiety disorders32 and 
during induced anxiety33. In addition, interventions known to reduce anxiety increase activity in these regions34; 
it is therefore plausible that the benefits of drinking water reflect similar mechanisms. These observations are 
important as they may have clinical implications for populations characterized by raised anxiety levels.

Notably, in study 1, mood monitored while participants were in the scanner did not differ according to 
whether or not they consumed water (Table 2), however, before they left the 30 °C environment (see methods 

Figure 6.  Map showing the brain areas associated with autonomic modulation. Left data from present study. 
Right areas controlling HRV reproduced from Thayer et al. (2012) with permission.
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section) there were between condition differences in anxiety; an effect subsequently replicated in study 2. Ambient 
temperatures in excess of 27 °C exacerbate the effects of dehydration, induce peripheral vasodilatation and result 
in relative hypovolemia, increasing cardiac strain1. Thus, autonomic adaptations that mediate the effects of hydra-
tion are likely to be enhanced by a warm environment. It is plausible that by the time participants entered the 
scanner (on average 22 °C) the exacerbating effect of heat would have been diminished. Supporting this view, 
Farrell et al.35 recently reported that regions of the central autonomic network were activated in response to both 
thermogenic and psychogenic sweating, in particular the anterior cingulate cortex, lentiform nuclei and parietal 
cortex. In the present study perspiration rate correlated significantly with activity in all three regions of difference; 
the mOFC, vCG and PoCG (Table S1). If such regions are also involved in hypo-hydration associated cognitive 
and affective deficits, this might help to explain the effects of the interaction between thermoregulation and 
hypo-hydration on cognition and mood. Future research might consider replicating these findings using a water 
deprivation paradigm that doesn’t involve exposure to increased ambient temperatures.

The present findings support the hypothesis that even a relatively minor decline in hydration necessitates 
a counter-regulatory autonomic response which may have affective consequences. However, an alternative 
hypothesis might be that, rather than altering neural activity, hypo-hydration reduces cerebrovascular cou-
pling. Given that brain functional imaging methods, such as fMRI, are sensitive to changes in cerebral blood 
flow (CBF) it is plausible that the observed differences in regional BOLD activity might reflect differences in 
CBF. Hypo-hydration of 1.3% reduced mean middle cerebral artery blood flow velocity during a cold pressor 
test, suggesting that the cerebrovascular response to acute stressful stimuli may be altered by hydration status36. 
However, the present study found no effects of hydration on global or regional blood flow using resting state ASL; 
nonetheless, it remains possible that dynamic cerebrovascular reactivity, rather than resting state auto-regulation, 
may have been compromised under the present conditions. This remains an important consideration for future 
research that examines the effects of hydration on brain functioning using imaging.

The limitations of the present study should be considered. Firstly, it is unclear whether hypohydration related 
changes in anxiety and perceived effort are driving the associated differences in HRV and brain activity, or vice 
versa. Further research might consider the potential influence of individual differences in afferent baroreceptor 
activity and interoceptive abilities which has been shown to modulate the processing of emotional informa-
tion37,38, and may be increased following water consumption. A factor that could limit the generalizability of the 
results is the small sample sizes. Although we were able to replicate findings, the possibility exists that the studies 
were underpowered to detect some smaller differences in mood (e.g. energy levels/depression). In addition, the 
sample comprised only young university students and future research may consider different populations who 
may be more susceptible to the effects of hypohydration; for example children and older adults. Finally, although 
the majority of studies of HRV have not measured respiration it is potentially a confounding variable. Although 
there is no reason to believe that respiration varied systematically, such that it would have biased the present find-
ings, it is a question to be addressed in future studies.

In conclusion, the present study reports that when participants consumed water, compared with when they 
were mildly hypohydrated (0.6% loss in body weight) they had improved mood as indicated by VAS ratings, and 
increased neural activity as indicated by fMRI when faced with a demanding task. For the first time we have high-
lighted important regulatory neural mechanisms that may account for the psychological benefits of maintaining 
hydration status. When water was not consumed more weight was lost, osmolality increased and HRV decreased; 
effects that predicted a larger task related deactivation in the autonomic network of the brain. Only recently have 
the interactions between bodily reactions and affective processes begun to be elucidated and such phenomena 
are still often treated as confounding factors. Indices of ANS function have been used as objective measures of 
affective states and these responses have been treated as epiphenomena, rather than intrinsic to the cognitive or 
emotional process. As evidenced here, it is possible that changes in ANS activity have consequences for mood. 
As such hypo-hydration to the extent that it influences ANS activity per se may have negative consequences for 
brain functioning and mood.

Given the prevalence of voluntary hypo-hydration these findings have important implications for vulnerable 
cross-sections of the population. Furthermore, the psychological benefits of drinking may have important impli-
cations for populations, such as older adults and children39 who are at a significant risk of dehydration. The fact 
that mild changes in hydration affected cardiovascular functioning is also a concern; the HR of participants was 
on average 5.8 beats per minute lower when they had consumed water. Given that there is a progressive increase 
in the risk of heart-disease as resting heart rate increases40, and hyper-osmolarity predicted a 4.3-fold increased 
risk of cardiovascular mortality41, maintaining adequate hydration may be an important factor for maintenance 
of cardiovascular health. In general, repeated low level physiological challenges such as hypo-hydration may 
overtime increase allostatic load, predisposing to possible negative health outcomes.

Methods
Sample characteristics (Study 1).  The sample size was based on the expected power for a hypothesized 
within participants effect. Total sample size was calculated using G*power based on the following parameters: one 
group, two within subject levels (Water/No water) with an expected correlation of 0.6, α = 0.05, a two-tailed test, 
and 80% power to detect a medium to large sized effect (Cohen’s f2 = 0.4). This gave an estimated N of 12 which 
is in line with previous studies that have examined the neural effects of hydration e.g.26.

Twelve healthy young males (average age 23.3 years (19–34), average BMI 25.4 (19–34)), gave their written 
informed consent after being screened for MRI safety. Participants were excluded if they had any health com-
plaint that would affect cardiovascular functioning such as diabetes or hypertension. Similarly, anyone with a 
neuropsychological illness was also excluded as were those taking medication. All participants were right handed, 
non-smokers; before the start of the study they were asked to refrain from drinking alcohol for at least 24 hours 
and told to fast and avoid any beverages for at least twelve hours.
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Sample characteristics (Study 2).  The sample size was based on the expected power for a hypothesized 
between participants effect. Total sample size was calculated using G*power based on the following parameters 
that were deduced from study 1: two groups (Water/No water), α = 0.05, a two-tailed test, and 80% power to 
detect a medium to large sized effect (Cohen’s f2 = 0.4). This gave an estimated N of 52.

Twenty-five males and thirty-one females (average age 21.0 years (18–28), average BMI 23.3 (17–35)), gave 
their written informed consent and were randomly allocated to either the water or no water condition (Water 15 F, 
13 M, No water 16 F, 12 M). As it has been suggested that gender may be a determining factor in the correlation 
between hypo-hydration and its psychological consequences2, this factor was initially considered. Preliminary 
analysis found no significant interactions between gender and water consumption for any of the dependent vari-
ables (all p > 0.1). Exclusion criteria and pre-study instructions were the same as for study 1.

Procedure (Study 1).  On two occasions participants attended the laboratory that was heated to 30 degrees. 
Using a repeated measures design, in a randomly derived order, they received either two 150 ml glasses of water 
or nothing (Fig. 1). Upon arriving at the laboratory, participants were asked to provide a urine sample and were 
asked to completely empty their bladder, following which they were weighed and their body temperature meas-
ured. They were then fitted with a RS800 Polar heart rate monitor electrode transmitter belt (T61) and a Polar 
RS800 HR monitor (Polar Electro, Kempele, Finland) that was used to collect interbeat interval measurements 
at a sampling rate of 1000 Hz, while participants rested in a seated position. This instrument has been previ-
ously validated for the accurate measurement of R-R intervals and for analysing Heart Rate Variability (HRV)42. 
Participants were then provided with a standard breakfast consisting of 50 g of Quaker Oat So Simple Original 
Porridge (187 kcal, 2.9 g fat, 10.6 g sugar, 0.11 g salt) plus 150 ml of either decaffeinated tea or coffee. After break-
fast participants were weighted again, and rated their mood and thirst. After this they were allowed to rest while 
either watching TV or reading. Three hours later participants were asked to provide another urine sample and 
again had their HRV, body temperature and weight measured, and rated their mood and thirst. Finally, they were 
escorted to the MRI laboratory for the scanning procedure. The procedure was approved by Swansea University 
ethics committee (ref: 01.01.2015.1) and carried out in accordance with the principles laid down by the declara-
tion of Helsinki 2013. ClinicalTrials.gov Identifier: NCT03525470 (15/05/18).

Procedure (Study 2).  The procedure for study 2 was identical with the exception that it employed a between 
participants rather than within subject design. In addition, participants did not complete the fMRI protocol. The 
procedure was approved by Swansea University ethics committee (ref: 01.03.2018.1) and carried out in accord-
ance with the principles laid down by the declaration of Helsinki 2013. These data were collected as part of a larger 
trial: ClinicalTrials.gov Identifier: NCT02671149 (02/02/16).

Mood (Study 1 and Study 2).  Mood measures were identical across both studies. Participants were asked 
to report on visual analogue scales how they felt “at this moment” using visual analogue scales with pairs of 
adjectives at the ends of 100 mm lines; Composed/Anxious; Elated/Depressed; Energetic/Tired; as described by 
McNair and Lorr43.

Figure 7.  Arithmetic task and Visual analogue scale example stimuli. The crosses are fixation points when 
otherwise the screen is blank. At the third image the participant indicated whether the right or left number was 
correct by pushing a button.
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Thirst (Study 1 and Study 2).  In both studies, participants were asked to responds to the question 
“how thirsty are you feeling right now” on a single 100 mm visual analogue scale anchored by “Not at all” and 
“Extremely”.

Osmolality (Study 1 and Study 2).  The osmolality of urine was assessed using an Osmomat 3000 freezing 
point osmometer (Gonotec GmbH, Berlin, Germany).

Body temperature (Study 1).  Body temperature was measured using a TH8 Infrared Ear Thermometer 
(Radiant Innovation, Taiwan).

Body mass (Study 1 and Study 2).  Body mass was measured using an electronic scale (Kern KMS-TM, 
Kenr and Sohn GmbH, Germany) that, to avoid problems associated with movement, took 50 assessments over 
a 5 second period and produced an average value. It was sensitive enough to weigh to within 5 grams (17% of an 
ounce) and could pick up over short periods changes in body mass due to breathing and perspiration. Participants 
were weighed on arrival, both before and after breakfast, and again at the end, both before and after urination.

Scanning procedure (Study 1).  Participants were presented with an arithmetic task, modified for use in 
the scanner, similar to the Paced Auditory Serial Addition Task: a ‘stressful’ task that measures calculation ability 
and is known to elicit an autonomic response44. Pairs of two digit numbers appeared on a screen in red and par-
ticipants were required to mentally add or subtract the numbers. After 2 seconds the screens was removed and a 
second screen appeared containing a correct and an incorrect answer. Participants were required to press either a 
left or right button to indicate which answer was correct (Fig. 7). The speed of presentation is designed to be just 
at the level that it is possible to perform the task although it required mental effort and was ‘stressful’. This allowed 
investigation of areas of the brain associated with working memory but also those associated with emotional 
arousal. Data analysed from the task were number of missed responses, the number of correct responses and 
average reaction time in milliseconds (on the trials that participants responded). Three blocks of four minutes 
were performed. At the end of each block four visual analogue scales appeared and participants were asked to 
rate, using the left and right key to move a cursor, how difficult they found the proceeding block and how happy, 
energetic and anxious they felt at that moment. The visual analogue scales were rated on a scale of 1–100.
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