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Abstract

Agricultural production is vital for the stability of the country’s economy. Controlling weed

infestation through agrochemicals is necessary for increasing crop productivity. However,

its excessive use has severe repercussions on the environment (damaging the ecosystem)

and the human operators exposed to it. The use of Unmanned Aerial Vehicles (UAVs) has

been proposed by several authors in the literature for performing the desired spraying and is

considered safer and more precise than the conventional methods. Therefore, the study’s

objective was to develop an accurate real-time recognition system of spraying areas for

UAVs, which is of utmost importance for UAV-based sprayers. A two-step target recognition

system was developed by using deep learning for the images collected from a UAV. Agricul-

ture cropland of coriander was considered for building a classifier for recognizing spraying

areas. The developed deep learning system achieved an average F1 score of 0.955, while

the classifier recognition average computation time was 3.68 ms. The developed deep

learning system can be deployed in real-time to UAV-based sprayers for accurate spraying.

Introduction

Agriculture is recognized as the largest sector in ’Pakistan’s economy. It contributes to about

24% of GDP (Gross domestic product). Additionally, it is the largest foreign exchange source

and feeds the entire urban and rural population [1]. In Pakistan, nearly 62% of the country’s

population dwells in rural areas and depends directly or indirectly on agriculture for their live-

lihood [2]. Pakistan has fallen behind since the 1980s in agriculture due to the lack of technol-

ogy being used to overcome the losses. These losses are caused by pests and insects, which

ultimately reduces productivity. Agrochemicals are used to overcome the aforementioned

issue, though if sprayed manually in the crop field, they can severely impact a typical person’s

life. Furthermore, the overuse of pesticides has ramifications on human health. According to

the World Health Organization (WHO), one million adverse effects were reported when man-

ual spraying of pesticides is employed in the crop field [3]. Children are specifically susceptible
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to the harmful impacts of agrochemicals, and even very little exposure during the development

of a child can harm their health [1]. Remedial actions were needed to be taken to safeguard the

population against these effects, and taking advantage of the new technologies led to the intro-

duction of Unmanned Aerial Vehicles (UAVs) and other kinds of robots in this field. UAVs

have been used in different precision agriculture applications such as spraying [4, 5], detecting

weeds [6–8], disease detection [9–11], etc. Among these applications, the spraying operations

need to be robust, i.e., to avoid spraying in areas where there are no crops, as the payload

capacity of a UAV is minimal. The ability to accurately recognize spraying areas (crops and

orchards) becomes more vital in autonomous UAV based spraying systems. The latest

advancement in deep learning and the internet of things (IoT) can help significantly in devel-

oping efficient autonomous systems [12–15]. The study aims to extend this by developing a

deep learning-based real-time robust recognition system for the UAV to recognize the spray-

ing area for precision spraying.

The remaining paper is organized as follows: Section 2 discusses the related work. The pro-

posed methodology is presented in section 3. Experiments and results are described in sections

4 and 5, respectively. Section 6 discusses the results, while Section 7 concludes the article.

Related work

’UAVs’ are already established in different fields [16, 17], and it is expected that its market will

increase to $200 billion in the upcoming years [18]. Yamaha developed its first model (Yamaha

RMAX) for crop monitoring and pest control, whose production was discontinued in 2007

[3]. Y. Huang et al. [19] developed a spray system for the UAV application platform. The inte-

gration of the spray system with the UAV resulted in an autonomous spray system that was

used for pest management and vector control. A Pulse Width Modulation (PWM) controller

for UAV precision agriculture sprayer was employed [20], and the UAV was remotely con-

trolled or flown autonomously by preprogrammed flight plans. The PWM controlled tech-

nique provided higher precision for spraying applications. A low-volume sprayer was

developed for vector control and extendable to crop production management [21]. The system

was able to deliver liquid to 30m swath width, 42m downwind. The technology was found use-

ful for providing chemicals precisely to the right place at the right time. According to Bruno S.

Faiçal et al. [22], an architecture was proposed for UAV having a wireless sensor network

(WSN) for pesticide spraying in the crop fields. The proposed architecture reduced the risk of

errors caused by adverse weather conditions. WSN provided feedback on pesticide concentra-

tions, based on which route was changed gradually until the node identified the product’s

proper application. In another instance, a spray system was mounted on an unmanned aircraft

[23]. The system was deployed in high-value specialty crops in California. The system had a

UAV and an associated ground control station providing remote piloting of the aircraft. Spray-

ing application rates and deposition rates were comparable to the manned observed aerial

spraying. External problems like wind speed changes and direction required for spraying on

crop fields were addressed [24]. An artificial neural network was proposed on programmable

UAVs. The UAV was programmed to spray chemicals on the target crop based on a dynamic

context. Particle Swarm Optimization (PSO) was employed for finding optimum parameters

on which neural network was trained for improving the UAV route in dynamic environments.

Results showed an improvement in precision spraying in dynamic environments by using the

proposed technique [24]. Xinyu Xue et al. designed a UAV-based automatic control spraying

system. It had a single-chip microcomputer with an independent functional module, which

allowed route planning software for directing the UAV to the desired spray area. The UAV

flew in the designated spray routes with precision [25]. In another instance, a quadcopter
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(FREYER) was developed, which carried pesticides spraying the farm. To reduce the ’farmer’s

work, a user-friendly interface for the farmers was developed. The drone’s control was per-

formed through an android app using a Wi-Fi module that was interfaced in the drone [26].

Similarly, a drone-mounted sprayer was developed and evaluated for pesticide applications of

crops by Yallappa et al. the entire drone-mounted operation sprayer was controlled through a

transmitter at the ground, and a live spraying operation was monitored using a first-person

view (FPV) camera. The sprayer was useful in places where human interventions were not pos-

sible and helped reduce the cost of pesticide application and environmental pollution [27].

Likewise, a vision-based autonomous spray system was developed by B. Dai et al., to design a

UAV system for autonomous completion of a precise spraying mission in an unsupervised

manner [28]. During the mission ten foam boards were numbered randomly and fixed on a

vertical wall and were assumed as fruit areas that were needed to be sprayed preciously; the sys-

tem included the design, algorithm for task scheduling, and used vision for identification and

localization which performed efficiently [28]. Sheng Wen et al. [29] developed a variable spray

system using neural network-based decision making. Back Propagation (BP) neural network

model was trained based on the factors affecting droplet deposition. The factors were ambient

temperature, humidity, wind speed, flight speed, flight altitude, propeller and nozzle pitch, and

the prescription value. The BP neural network was combined with variable rate spray control

with multiple sensors collecting real-time information. The spray system’s flow rate was regu-

lated for determining the deposition rate based on the predicted deposition amount neural

network [29].

It is evident from the literature that extensive work has been carried out to perform spray-

ing operations through UAVs, but the primary focus remained on the task of spraying instead

of onboard recognition systems, which is of utmost importance in spot spraying applications.

It is estimated that only 50% of targets are being sprayed through UAVs when the altitude is

less than 1m [30], which makes it even more important for such devices that a system for accu-

rate recognition is in place. Pengbo Gao et al [31] developed a recognition system for crops

and orchards for UAVs using a Mutual Subspace Method (MSM). However, the system was

able to achieve only 65.1% accuracy for real-time recognition of crops. This research aimed to

develop a more accurate recognition system for crops using a deep learning approach to view

the computational constraints associated with the UAVs. It is assumed that low computation

shape and color detection systems employed with a less complex deep learning model can

achieve the aforementioned objectives.

Methodology

The proposed framework aims to accurately recognize the target by recognizing and locating

the target within an image plane. The proposed framework comprises two steps to accomplish

the goal, as shown in Fig 1. In contrast to conventional techniques, for recognizing targets

through predefined knowledge of target such as shape, texture, etc., which are prone to errors,

the proposed framework primarily depends upon a deep learning classifier for target recogni-

tion. The two steps that constitute the proposed methodology are explained in the subsequent

section.

Target proposal

This component of the framework considers the computational constraint associated with the

UAV and is responsible for generating the candidate proposal for the target recognizer mod-

ule. This component uses shape and color detection algorithms to enhance the effectiveness of

the posterior recognition stage. Contours are utilized to detect shapes, while blue-green red
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(BGR) color space is used to detect color. Based on the color and shape information, this com-

ponent can be utilized by the posterior stage for computing the target’s relative pose and ulti-

mately used for readjusting the UAV. Furthermore, this combination of shape and color can

provide an intraclass classification of the targets (e.g., spraying area, non-spraying area, plants,

etc.).

Target recognizer

This module’s primary goal is to accurately detect targets and minimize the errors linked with

target detectors employing predefined knowledge of color, shape, etc. The target recognizer

module involves two steps: Off-board and onboard/Real-time recognition systems briefly

explained as follows.

Off-board recognition system

It is used for training and then validating the trained system which is used in the online rec-

ognition system for real-time target detection. The module comprises two stages: The train-

ing and Testing/Validation stage. During the preprocessing stages, videos are converted

into images through the Joint Photographic Experts Group (JPEG) converter. The images

are divided into two datasets for training and testing the classifier [32, 33]. The training pro-

cess is continued until the loss value is less than 0.1, while the testing/validation dataset is

mapped into prediction class by the classifier, as illustrated in Fig 2. The training data set is

labeled manually, while TensorFlow and Keras open-source deep learning are employed for

experimentation.

The experimental platform used is the Intel i7 7700HQ quad processor, 16 GB RAM, and

NVIDIA GeForce GTX 1080 GPU.

On-board/real-time recognition system

This module is deployed as the primary target recognition algorithm in real-time after image

processing is performed through the bottom camera. During the recognition system, a new

video is captured, the target proposal component proposes candidates, and through the trained

system and supervised learning classifier, the system recognizes the target in real-time, as

depicted in Fig 3.

Different supervised learning classifiers are implemented for training and evaluation, the

details of which are provided in the experiment section. After evaluating experiments, the

selected classifier architecture consists of five (05) Convolutional layers, four (04) max-pooling

Fig 1. Proposed target recognition framework.

https://doi.org/10.1371/journal.pone.0249436.g001
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layers, five (05) dropout layers, two (02) dense layers with one (01) fully connected layer hav-

ing a hidden layer of 512 units. The last layer is a dense layer with sigmoid activation. The size

of the filter is 3�3.

Experimentation

To validate the robustness of the developed system, simulated and real flight experiments were

conducted. The experiment’s main aim was to test the reliability of the system by repeating the

Fig 2. Off-board recognition system.

https://doi.org/10.1371/journal.pone.0249436.g002

Fig 3. On-board/real-time recognition system.

https://doi.org/10.1371/journal.pone.0249436.g003
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experiment multiple times. Five custom Convolutional Neural Network (CNN) models

(Table 1) by varying the layers were considered during the study for evaluation.

The subsequent sections describe the simulation experiments and field experiments in

detail.

Experimental scenario

The experimental scenario for both the simulation and field tests is shown in Fig 4. Two-way

points A and B were selected, and the UAV had to take off and move from one waypoint to

another with a height of 3m. The targets were placed in between the waypoints.

Simulation experiments

It is essential to refine and test the system before deploying the system on any field flight test.

Hence, different simulation approaches were explored in the study to obtain realistic results.

PX4 software in loop (SITL) was chosen for simulating the experiments because its simulation

is almost ideal. Gazebo robotic simulator [34] and autopilot software stack was used for setting

up the environment. The simulated world and the quadcopter model were developed similar

Table 1. CNN configurations.

Architecture No. of Conv Layers No. of Max Pool Layers No. of Dropout layers Filter Size Feature Map

CNN1 3 2 2 3�3 32,32,64

CNN2 4 3 3 3�3 32,32,64,128

CNN3 5 4 5 3�3 32,32,64,128,128

CNN4 6 5 4 3�3 32,32,64,128,128,256

CNN5 7 6 5 3�3 32,32,64,128,128,256,256

https://doi.org/10.1371/journal.pone.0249436.t001

Fig 4. Experimental scenario. A and B represent waypoints while the search area was 40m�40m.

https://doi.org/10.1371/journal.pone.0249436.g004
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Fig 5. Simulation environment, UAV moving from one-way point to another while searching for the target a)

UAV taking off b) searching target c) target recognized.

https://doi.org/10.1371/journal.pone.0249436.g005
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to the real experimental world. The environment was developed using a single row of crops

immersed in a muddy background identical to the real field. Crops were considered targets

with shape and color (light green) similar to standard crops and mud. A simulated camera

model similar to the actual camera’s parameters was used in the real tests attached to the quad-

copter. The PX4 parameters were adjusted accordingly to make the flying velocity similar to

field tests.

Fig 5a shows the UAV taking off and moving from one waypoint to another. Fig 5b depicts

UAV searching for a target, while Fig 5c shows target recognized in real-time using the tensor

flow at the backend.

A custom data set consisting of targets (spraying area), and non-targets (non-spraying area)

was established to evaluate the developed system. A total of 10000 images for the spraying class

and 6000 for the non-spraying area were collected. 70% of data was deployed for training,

while 15% was used for validation and testing.

Field experiment

Flight tests were conducted at Turangzai (District Peshawar, Khyber-Pakhtunkhwa, Pakistan,

Coordinates 34˚ ’12’ "57" North, 71˚ ’44’ "50" East) on different days over one month. UAV data

for coriander was used in the study. A quadcopter UAV was developed for performing out-

door experiments using an Arducopter open-source autopilot. Fig 6 shows the hardware sys-

tem deployed in the study for conducting the field experiments. Raspberry Pi4 onboard

computer, camera, and intel neural computer stick 2 were attached to the UAV. To acquire

images for training a height of 2 meters was selected. The developed framework was executed

entirely in the onboard Raspberry Pi4 computer with intel neural computer stick 2.

Two classifier datasets for coriander were collected for the off-board recognition system:

one data set for spraying areas and another for non-spraying areas. Images were obtained

from the video recorded at the preprocessing stage. A total of 1200 images for the spraying

class and 900 for the non-spraying area were obtained. Similar to the simulation experiments,

the data were classified into training (70%), validation (15%), and testing (15%). An input

image of size 448�448 obtained through preprocessing was given as input images. Images were

Fig 6. UAV used in the experiment.

https://doi.org/10.1371/journal.pone.0249436.g006
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collected during different lighting conditions in one-month; average temperature and ambient

humidity were 20.5˚C and 60%, respectively.

Results

Following rigorous experimentation, encouraging results were recorded for all the classifiers

after conducting multiple tests. The results illustrated in Fig 7a and 7b are summarized in

Fig 7. Comparing the supervised learning classifiers’ results on five different evaluation sets a) F1 score for training sets b) F1

score for testing sets.

https://doi.org/10.1371/journal.pone.0249436.g007
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Tables 2 and 3, respectively. Average F1 score values of the five tests for training and testing

sets are depicted in the following tables. Among the classifiers, CNN5 achieved the best average

F1 score of 0.965, followed by CNN4, achieving an average of 0.961. The remaining classifiers

(CNN 1, CNN2, and CNN3) achieved an average F1 score of 0.895, 0.915, and 0.955, respec-

tively. The recognition of the spraying area in coriander and their respective confidence score

is illustrated in Fig 8.

Typically, UAVs have limited computational capabilities. So, it is essential to find the bal-

ance between the performance and computational cost. Keeping in view this constraint, in

addition to the performance (F1 score) of the classifier, test time (processing) is also of great

importance (shown in Table 3) while selecting the appropriate classifier for the desired recog-

nition task. The recognition time has been measured through ’UAV’s onboard computer for

calculating the processing time per image (average of 256 images). It takes into account the

time required for feature extracting and then the desired classification. For better visualization,

both the F1 score and test time is plotted in Fig 9.

The best possible classifier taking into account the F1 score (maximizing) and processing

time (minimizing), CNN3 has been selected as the most appropriate classifier for the devel-

oped method.

A comparison for evaluation

To justify the capability of the developed method, it was essential to perform a comparative

analysis with MSM [31] and two pre-trained models LeNet-5 [35] and VGG 16 [36].

MSM is usually deployed for recognizing targets based on image sets. It is an extension to

the subspace method (SM) by classifying input patterns into their subsequent classes based on

multiple canonical angles between the input and class subspaces. The entire process for recog-

nizing targets using MSM is similar to SM except having an input subspace replacing the input

vector used in SM [31]. The similarity between the subspace is illustrated in Fig 10.

LeNet-5 is a classical CNN model developed by Yann Le Cun et al. for optical character rec-

ognition [35, 37]. A typical LeNet-5 architecture is illustrated in Fig 11. The architecture con-

sists of six layers, comprising three convolutional layers and two sets of pooling layers, and one

fully connected layer [35]. The SoftMax classifier is deployed at the end of the model.

Table 2. Average training results of classifiers for the five evaluation tests.

Target CNN 1 CNN 2 CNN 3 CNN 4 CNN 5

F1

Score

Train Time (s/

epoch)

F1

Score

Train Time (s/

epoch)

F1

Score

Train Time (s/

epoch)

F1

Score

Train Time (s/

epoch)

F1

Score

Train Time (s/

epoch)

Crops 0.93 28 0.94 29 0.97 30 0.97 33 0.98 35

Non-

Crops

0.94 0.95 0.98 0.98 0.99

https://doi.org/10.1371/journal.pone.0249436.t002

Table 3. Average testing results of classifiers for the five evaluation tests.

Target CNN 1 CNN 2 CNN 3 CNN 4 CNN 5

F1

Score

Test Time (ms

/image)

F1

Score

Test Time (ms

/image)

F1

Score

Test Time (ms

/image)

F1

Score

Test Time (ms

/image)

F1

Score

Test Time (ms

/image)

Crops 0.89 3.5 0.91 3.6 0.95 3.68 0.958 4.4 0.96 4.65

Non-

Crops

0.90 0.92 0.96 0.964 0.97

https://doi.org/10.1371/journal.pone.0249436.t003
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The effect of convolutional depth on accuracy in image recognition problem was studied by

Simonyan and Zisserman in 2014 and led to the introduction of a new model named Visual

Geometry Group (VGG) [36, 37]. One of this group’s special architecture includes VGG- 16,

which was used for recognizing handwritten Bengali characters [38]. The architecture of

VGG-16 constitutes 13 convolutional layers and three fully connected layers, and a single Soft-

Max layer [36]. The typical architecture of VGG-16 is illustrated as follows in Fig 12.

The aforementioned models were applied to the same data set, and the average F1 score val-

ues obtained for the five tests for testing sets are shown in Table 4.

Fig 8. Recognition with a confidence score.

https://doi.org/10.1371/journal.pone.0249436.g008
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The overall F1 score of MSM [31] was 0.795 with a recognition time of 2.9ms. Similarly, for

LeNet-5 [35], the overall F1 score was 0.905, and recognition time was 3.45ms. Furthermore,

the recognition system for VGG-16 achieved an overall F1 score of 0.975 and a time of 5.84ms.

A comparison of the models with the selected model is illustrated in Fig 13.

It is evident from Fig 13 that based on the F1 score, the developed model showed improve-

ment compared to MSM (16% increase) and LeNet-5 (5% increase). At the same time, VGG-

16 achieved a higher score (2% increase) than the developed model. However, the processing

time, which is an essential parameter for the UAV (limited computational capability) in VGG-

Fig 9. Average F1 score and processing time for all configurations.

https://doi.org/10.1371/journal.pone.0249436.g009

Fig 10. MSM for comparing two sets of images [31].

https://doi.org/10.1371/journal.pone.0249436.g010
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16, is also higher. So, keeping in view both the parameters, i.e., maximizing the F1 score and

minimizing the processing time, the developed model acts as an optimum model for the

desired task of recognizing spraying areas in real-time.

Discussion

It is essential for a country with an agricultural economy like Pakistan to use modern technolo-

gies to cope with the emerging challenges to internal food security and achieve international

price competitiveness. Millions of dollars are lost due to crop loss and expenses on pesticides.

The introduction of agriculture robots is considered a significant boost in this field due to the

Fig 11. Typical LeNet-5 architecture [35].

https://doi.org/10.1371/journal.pone.0249436.g011

Fig 12. VGG-16 model for bird species classification [36].

https://doi.org/10.1371/journal.pone.0249436.g012

Table 4. Average testing results of classifiers for the 5 evaluation tests.

Target MSM [31] LeNet-5 [35] VGG-16 [36]

F1 Score Test Time (ms /image) F1 Score Test Time (ms /image) F1 Score Test Time (ms /image)

Crops 0.79 2.9 0.90 3.45 0.97 5.84

Non-Crops 0.80 0.91 0.98

https://doi.org/10.1371/journal.pone.0249436.t004
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use of different sensors, electronic and knowledge systems, allowing more precise and cost-

efficient monitoring and control of various fluxes on the farm and easier dissemination of

information to the farmers. In this regard, a robust real-time spraying area recognition system

for UAV based sprayer was developed. A simulated environment similar to the real-world

experiment was employed for refining the system, while the coriander field was selected for

performing field experiments and testing the system. The data were collected on different days

over a month, and our system yielded efficient results, as evident from the data set. UAVs usu-

ally operate at high speed and have limited battery life. As a result, it requires high computa-

tional speed and fast operation with optimal recognition capability. Given these constraints,

the developed real-time recognition system achieves considerably high accuracy with less pro-

cessing time, which is essential for achieving the desired task.

The developed deep learning system was compared with existing methods to prove its effi-

cacy. Based on testing results and ground truth information, it was observed that the developed

system was able to achieve better results. Though VGG 16 achieved higher accuracy than the

developed method, it also had higher processing time, which is an important parameter when

working with UAV as it has limited computational capability. Thus, making the developed

model an ideal system for the study. The developed deep learning system can easily recognize

targets with minimal processing time and can be easily incorporated into different precision

agriculture applications such as recognizing pests/bugs, weed control, yield estimation, crop

health monitoring, etc. The developed system has the potential to be deployed on UAVs for

the aforementioned precision agriculture applications.

Conclusion

In this study, a deep learning-based real-time recognition system was developed for a UAV.

The system was based on a flexible architecture that can perform real-time recognition in a

fully unsupervised manner. This system’s capability was achieved through a two-step pro-

cess, where the target recognizer component is based on a CNN model. Different supervised

learning classifiers were extensively assessed for the desired target recognition purpose. The

final selected model consists of five (05) convolutional layers, four (04) max-pooling layers,

Fig 13. Average F1 score and processing time for comparison.

https://doi.org/10.1371/journal.pone.0249436.g013
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five (05) dropout layers, two (02) dense layers with one (01) fully connected layer having a

hidden layer of 512 units, and the last layer is a dense layer with sigmoid activation. The

developed system was compared with the existing methods, and on the comparison, our

model was able to perform better than machine learning (MSM) and current pre-trained

deep learning models (LeNet-5, VGG16) based on the two essential parameters, i.e., accuracy

and processing time. The developed system achieved an F1 score of 0.955 with a processing

time of 3.68 ms. It showed a good tradeoff between accuracy and computational cost,

addressing the hard-computational constraint associated with a UAV. The integration of the

real-time recognition system into an autonomous UAV spraying system is in progress as

part of our future endeavors.
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8. Pérez-Ortiz M., Peña J. M., Gutiérrez P. A., Torres-Sánchez J., Hervás-Martı́nez C., and López-Grana-
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