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Many human characteristics must be evaluated to comprehensively understand an

individual, and measurements of the corresponding cognition/behavior are required.

Brain imaging by functional MRI (fMRI) has been widely used to examine brain function

related to human cognition/behavior. However, few aspects of cognition/behavior of

individuals or experimental groups can be examined through task-based fMRI. Recently,

resting state fMRI (rs-fMRI) signals have been shown to represent functional infrastructure

in the brain that is highly involved in processing information related to cognition/behavior.

Using rs-fMRI may allow diverse information about the brain through a single MRI scan

to be obtained, as rs-fMRI does not require stimulus tasks. In this study, we attempted to

identify a set of functional networks representing cognition/behavior that are related to a

wide variety of human characteristics and to evaluate these characteristics using rs-fMRI

data. If possible, these findings would support the potential of rs-fMRI to provide diverse

information about the brain. We used resting-state fMRI and a set of 130 psychometric

parameters that cover most human characteristics, including those related to intelligence

and emotional quotients and social ability/skill. We identified 163 brain regions by VBM

analysis using regression analysis with 130 psychometric parameters. Next, using a 163

× 163 correlation matrix, we identified functional networks related to 111 of the 130

psychometric parameters. Finally, wemade an 8-class support vector machine classifiers

corresponding to these 111 functional networks. Our results demonstrate that rs-fMRI

signals contain intrinsic information about brain function related to cognition/behaviors

and that this set of 111 networks/classifiers can be used to comprehensively evaluate

human characteristics.

Keywords: resting-state fMRI, functional network, neuronal plasticity, human characteristics, psychometric

parameters

INTRODUCTION

Humans exhibit diverse characteristics of emotion, cognition, and behavior that describe
individuals. Many different psychometric parameters from questionnaires or behavioral tasks have
been developed to evaluate human characteristics of cognition/behavior (Diener et al., 1985; Raine,
1991; Carver andWhite, 1994; Yamauchi et al., 2009). Brain function underlies cognition/behaviors,
and thus, it is possible that the characteristics of an individual can be evaluated by measuring brain
function.
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Functional MRI (fMRI) is the most widely used non-
invasive method of measuring human brain function (Ogawa
et al., 1992; Kim and Ugurbil, 1997). Measurements of human
cognition/behavior by fMRI require psychometric parameters
describing cognition/behavior that are embodied as tasks to
induce neuronal processing in the brain (brain activation). Some
psychometric parameters are easy to formalize, whereas others
are not (Rupp and Zumbo, 2006). For the former type of
parameters, a task can be established to evoke brain activation,
and the corresponding fMRI signals of brain activation can be
detected from the relevant brain areas.

Brain imaging by task-based fMRI (tb-fMRI) has provided
information about the brain areas and brain networks that
represent given tasks (Poldrack et al., 2013). However, most
brain imaging studies have focused on specific psychometric
parameters (Gauthier et al., 2000; Grill-Spector et al., 2004;
Fernández-Alcántara et al., 2016; Krendl and Kensinger, 2016;
Kogler et al., 2017) rather than considering a comprehensive set
of psychometric parameters that can describe the diverse human
characteristics of cognition/behavior. This is because it is very
difficult to identify brain areas/networks responsible for themany
diverse human characteristics due to limitations in task designs
and time to perform tests.

In contrast to tb-fMRI, resting-state fMRI (rs-fMRI) signals
come from intrinsic brain activities not designated to explicit
tasks (Fransson, 2005; Fox and Raichle, 2007), and thus, there
is no information to link a measured rs-fMRI signal with a
specific brain function. However, functional networks produced

FIGURE 1 | Procedure for MRI data processing. P1, P2, etc., stand for processing steps. (A) Diagrams of data flow for the primary experiment. Brain areas are

identified by psychometric parameters and MRI data by regression analysis (P1, P2). fMRI signals are extracted from the ROIs, and the correlation matrix is

constructed (P3, P4). Regression analysis and network based statistics (NBS) analysis were performed for the correlation matrices of 153 subjects (134 for IQ and 123

for EQ), and significant brain networks are identified (P5, P6, P8). Inputs to the SVM classifiers are determined from the edges of the identified functional networks (P7,

P8). Scores of psychometric parameters are estimated by classifiers and compared with psychologically measured scores to calculate accuracy. Numbers and letters

in the parenthesis stand for specific information obtained after the processing at each step. PP, psychometric parameter; SVM, support vector machine; rs-Fmri,

resting-state functional MRI; FC, functional connectivity; BN, brain network; MCC, multiple class classifiers; T1w, T1 weighted. (B) Diagrams of data flow for the

supplementary experiment. Bypassing the regression analyses used during training, fMRI signals are extracted from the ROIs, and the edges of functional networks

are calculated (P3, P4, P8) for input into the SVM classifiers (P9). Scores of psychometric parameters are estimated by the classifiers.

from the correlation of rs-fMRI signals with certain brain areas,
such as the default mode network, are known to represent
various aspects of brain function (Greicius et al., 2004; Mason
et al., 2007). Recent studies have further shown that task
performance can be estimated by brain networks identified by
rs-fMRI (Tavor et al., 2016; Craig et al., 2017; Song et al.,
2017). In addition, some studies have proven that brain areas
or functional connectivity in a rs-fMRI network are correlated
with the scores of an explicit task used to identify functional
areas by tb-fMRI (Finn et al., 2015; Meskaldji et al., 2016).
These previous studies suggested that rs-fMRI signals can be used
to identify brain networks that represent sensory and higher-
order cognitive function or higher-order social function (Finn
et al., 2015; Lei et al., 2017; Yang et al., 2017). That is, rs-fMRI
signals may represent functional infrastructures for processing
information in the brain that is highly involved in the brain
function related to cognition/behavior. These characteristics of
rs-fMRI may allow diverse information about the brain to be
obtained from rs-fMRI signals acquired during a single MRI
scan if appropriate supporting information is provided that can
explain the characteristics of rs-fMRI signals or the correlation
between brain areas based on the signals.

Using behavioral data about psychometric parameters as the
supporting information, we attempted to test whether functional
networks of the brain could be identified by rs-fMRI signals
and psychological parameters (Figure 1). Recently some studies
have shown that it is possible to decode brain states from fMRI
responses using machine learning algorithms, such as a support
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TABLE 1 | List of psychometric parameters.

Parameters

1 Cognitive competence

2 Extracurricular competence including physical competence

3 Social competence with friends of the same sex

4 Social competence with friends of opposite sex

5 General self-worth

6 Perceived competence scale for adolescence

7 Inhibitory control

8 Activation control

9 Attentional control

10 Japanese version of Effortful Control (EC) scale for adults

11 Trust vs. mistrust

12 Autonomy vs. shame/doubt

13 Initiative vs. guilt

14 Industry vs. inferiority

15 Identity vs. role confusion

16 Intimacy vs. isolation

17 Japanese version of Rasmussen’s Ego Identity Scale (REIS)

18 Behavioral inhibition system (BIS)

19 BAS/driver

20 BAS/reward

21 BAS/fun seeking

22 Behavioral Inhibitory System (BIS)/Behavioral Activate

System (BAS) scale

23 Rosenberg Self Esteem Scale (RSES)

24 Anxiety regarding others’ evaluation of oneself and perceived

maladjustment to interpersonal situations

25 Emotional disturbance

26 Difficulty in expressing opinions

27 Japanese version of Jones and Russell’s social reticence

scale for college students

28 Beginning social skills

29 Advanced social skills

30 Skills for dealing with feelings

31 Skill alternatives to aggression

32 Skills for dealing with stress

33 Planning skills

34 Kikuchi’s Scale of Social Skills (KiSS-18)

35 Public self-consciousness

36 Private self-consciousness

37 Self-consciousness scale for Japanese

38 Japanese version of the Self-Concept Clarity (SCC) scale

39 Self-continuity function subscale

40 Directing-behavior function subscale

41 Social-bonding function subscale

42 Japanese version of the TALE (Thinking About Life

Experiences) scale

43 Japanese version of the Ego-Resiliency Scale (ER89)

44 Positive Problem Orientation (PPO)

45 Negative Problem Orientation (NPO)

46 Problem Definition and Formulation (PDF)

47 Generation of Alternative Solution (GAS)

(Continued)

TABLE 1 | Continued

Parameters

48 Decision Making (DM)

49 Solution Implementation and Verification (SIV)

50 Rational Problem Solving (RPS)

51 Impulsivity/Carelessness Style (ICS)

52 Avoidance Style (AS)

53 Japanese version of the Social Problem-Solving

Inventory-Revised (SPSI-R)

54 Negative-Self (NS)

55 Positive-Self (PS)

56 Negative-Other (NO)

57 Positive-Other (PO)

58 Japanese version of the Brief Core Schema Scale (JBCSS)

59 Intentional behavior

60 Planfulness

61 Readiness for change

62 Using resource

63 Japanese version of the Personal Growth Initiative Scale-II

(PGIS-II)

64 Subjective Happiness Scale (SHS)

65 The Satisfaction with Life Scale (SWLS)

66 State Anxiety (A-State)

67 Trait Anxiety (A-Trait)

68 Japanese edition of state-trait anxiety inventory

69 Positive symptoms

70 Negative symptoms

71 Disorganization

72 Schizotypal Personality Questionnaire (SPQ)

73 Social skill

74 Attention switching

75 Attention to detail

76 Communication

77 Imagination

78 Autism-spectrum quotient

79 Verbal Intelligence Quotient (VIQ)

80 Performance Intelligence Quotient (PIQ)

81 Full scale Intelligence Quotient (FIQ)

82 Fluid intelligence

83 Crystallized intelligence

84 Verbal comprehension

85 Perceptual organization

86 Vocabulary

87 Similarities

88 Arithmetic

89 Digit span

90 Information

91 Comprehension

92 Picture completion

93 Digit symbol

94 Block design

95 Matrix reasoning

96 Picture arrangement

(Continued)
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TABLE 1 | Continued

Parameters

97 Emotional awareness

98 Self-efficacy

99 Perseverance

100 Enthusiasm

101 Self-decision

102 Impulse control

103 Patience

104 Sharing positive emotion

105 Sharing negative emotion

106 Personal consideration

107 Voluntary support

108 Personal management

109 Sociability

110 Cooperation

111 Decision making

112 Optimism

113 Group consideration

114 Influence

115 Risk management

116 Tactfulness

117 Adaptability

118 Self-awareness

119 Self-motivation

120 Self-control

121 Empathy

122 Altruism

123 Interpersonal relationship

124 Situational awareness

125 Leadership

126 Flexibility

127 Intrapersonal Emotional Quotient Scale (EQS)

128 Interpersonal (EQS)

129 Situational (EQS)

130 EQS total scale

Social ability/skill: 1-78, IQ: 79-96, EQ: 97-130.

vector machine (Guo et al., 2015; Altmann et al., 2016; Hu et al.,
2017; Zafar et al., 2017). To verify that the functional networks
identified represent the corresponding psychological parameters,
and also to evaluate human characteristics from the rs-fMRI
signals, we used a support vector machine (SVM).

We attempted to derive a specific SVM classifier
related to each identified functional network. Second,
we aimed to identify a set of functional networks of the
brain to comprehensively evaluate human characteristics
(Figure 1). For this purpose, we prepared a set of
130 psychometric parameters (Table 1; Supplementary
References), including those related to intelligence quotient
(IQ), emotional quotient (EQ), and social ability/skill
that can explain the most conceivable aspects of human
cognition/behavior by which an individual can be
described.

MATERIALS AND METHODS

The experiments in this study comprised a primary experiment
and a supplementary experiment. The primary experiment was
designed to identify functional networks and to design the SVM
classifiers. The supplementary experiment was performed to test
the SVM classifiers developed in the primary experiment.

Measurements of Psychometric
Parameters
In the primary experiment, psychometric parameters were
measured on three separate days: one day for the Wechsler
Adult Intelligence Scale (WAIS; a measure of IQ), one day for
the Emotional Quotient Scale (EQS) (Uchiyama et al., 2001),
and one day for the other psychometric parameters including
those related to social ability/skill. The psychometric parameters
related to IQ consisted of 11 subset scores, 5 IQ scores, and 2
sub-indices derived from the subset scores. The psychometric
parameters related to EQS consisted of 21 sub-factors, 12 major
factors derived from the sub-factors, and a total score. The
other psychometric parameters consisted of 59 sub-factors and 19
major factors, some of which were derived from the sub-factors.
The parameters are listed in Table 1. Major scores and factors
appear in bold type. The total number of parameters including
major parameters and sub-parameters was 130. To the best of our
knowledge, the number of parameters in this study is greater than
in any previous psychological study. This set of 130 parameters
covers most conceivable human characteristics and is considered
to provide sufficient information to complete a comprehensive
evaluation of human characteristics, therefore, all 130 parameters
were used for the identification of functional networks.

MRI Measurements
For both the primary experiment and the supplementary
experiment, each subject underwent an MRI using a 3-Tesla
MRI scanner (Skyra-fit; Siemens Co., Erlangen, Germany).
All subjects were scanned in two sessions corresponding
to a structural image (T1) measurement for VBM and a
functional image measurement (resting-state fMRI). Structural
images were acquired using the following parameters: repetition
time= 1,900ms, echo time= 2.52ms, matrix size= 256× 256,
in-plane resolution = 1 × 1 mm2, slice thickness = 1mm, and
number of slices = 192. The imaging orientation was sagittal.
Resting-state fMRI data were acquired using the following
parameters: repetition time = 1,000ms, echo time = 24ms,
matrix size = 64 × 64, in-plane resolution = 3.4 × 3.4 mm2,
slice thickness = 3.4mm, and number of volumes = 480. In the
resting-state fMRI session, subjects were asked to lie on the bed
and not to wander their mind with their eyes open and to gently
focus their eyes on the center of the visual field. The lights in the
room were turned off during all MRI scans.

Participants
Primary Experiment
A group of 162 participants consisting of university freshmen
and sophomores [55 males, 107 females; mean age and standard
deviation (SD) 20.10 ± 0.86 years; 26 left hand, 136 right hand]
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TABLE 2 | Behavioral scores of 130 psychometric parameters (mean and

standard deviation).

N Mean SD

1 153 58.38 10.40

2 153 56.70 14.66

3 153 73.22 12.25

4 153 56.55 20.05

5 153 56.90 12.00

6 153 60.16 9.49

7 153 66.71 9.19

8 153 64.31 10.45

9 153 58.48 10.66

10 153 63.07 8.23

11 153 56.52 10.08

12 153 60.33 11.32

13 153 45.61 9.88

14 153 57.34 10.67

15 153 53.84 10.33

16 153 51.52 12.06

17 153 54.07 7.82

18 153 69.56 8.21

19 153 80.72 10.30

20 153 59.97 17.37

21 153 77.61 16.35

22 153 73.24 8.27

23 153 59.43 12.00

24 153 54.17 18.22

25 153 71.53 17.56

26 153 56.14 21.67

27 153 58.61 15.17

28 153 63.09 18.37

29 153 66.10 12.82

30 153 63.05 14.43

31 153 62.53 13.33

32 153 64.92 14.59

33 153 64.58 14.40

34 153 64.05 10.74

35 153 73.36 11.74

36 153 65.16 12.04

37 153 69.45 10.02

38 153 57.31 10.42

39 153 60.87 16.47

40 153 67.58 15.26

41 153 69.35 16.33

42 153 65.51 12.63

43 153 68.43 10.48

44 153 58.10 16.82

45 153 56.06 19.76

46 153 63.17 14.36

47 153 53.69 16.09

48 153 58.99 15.68

49 153 50.82 18.65

50 153 56.67 13.09

(Continued)

TABLE 2 | Continued

N Mean SD

51 153 47.57 14.03

52 153 44.72 16.73

53 153 52.09 11.44

54 153 25.41 17.65

55 153 73.67 16.07

56 153 11.47 13.51

57 153 63.94 16.52

58 153 43.62 11.00

59 153 64.35 13.66

60 153 56.49 13.34

61 153 53.35 13.42

62 153 59.66 14.68

63 153 58.27 11.03

64 153 66.34 13.87

65 153 50.16 14.18

66 153 72.17 10.21

67 152 63.15 10.08

68 152 67.63 8.93

69 153 26.31 20.39

70 153 52.70 23.65

71 153 43.90 26.40

72 153 40.70 17.61

73 153 40.13 28.42

74 153 53.79 18.74

75 153 46.14 24.31

76 153 40.13 21.18

77 153 31.90 15.93

78 153 42.42 13.50

79 137 103.90 10.06

80 137 98.79 11.60

81 137 101.77 10.08

82 137 126.73 13.77

83 137 101.36 13.80

84 137 104.18 10.30

85 137 97.94 13.82

86 137 43.60 10.01

87 137 65.89 11.17

88 137 58.90 11.66

89 137 63.92 11.14

90 137 57.80 11.80

91 137 57.49 13.25

92 137 65.33 9.98

93 137 71.10 10.66

94 137 76.60 13.60

95 137 78.66 10.78

96 137 77.87 10.92

97 123 57.18 20.34

98 123 47.09 20.72

99 123 58.54 20.37

100 123 52.98 17.89

101 123 49.73 21.76

(Continued)
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TABLE 2 | Continued

N Mean SD

102 123 57.52 22.77

103 123 44.11 18.44

104 123 76.08 21.63

105 123 58.74 22.28

106 123 68.02 24.48

107 123 63.41 21.33

108 123 37.74 21.53

109 123 43.63 24.05

110 123 55.56 19.84

111 123 42.07 23.59

112 123 42.07 22.55

113 123 66.19 18.98

114 123 36.31 26.53

115 123 42.41 22.86

116 123 47.15 21.89

117 123 53.59 22.66

118 123 52.13 18.82

119 123 55.76 17.52

120 123 50.45 16.42

121 123 67.41 20.41

122 123 65.72 19.59

123 123 45.64 18.62

124 123 50.11 17.51

125 123 39.36 23.08

126 123 50.37 20.81

127 123 52.45 14.82

128 123 57.60 16.26

129 123 47.12 18.36

130 123 52.39 14.61

participated in both psychometric measurements and underwent
MRI as part of the primary experiment. The aim of the primary
experiment was to identify functional networks and to derive the
classifiers.

Supplementary Experiment
In the supplementary experiment to test the networks and
classifiers obtained in the primary experiment, a group
of 57 participants (10 males, 47 females; mean age and
SD 21.97 ± 1.47 years) participated in the psychometric
measurements (parameters related to social ability/skill; refer
to Measurements of Psychometric Parameters) and MRI
measurements.

None of the participants had a history of neurological
disease or any medical condition (i.e., pregnancy, use of a
cardiac pacemaker, or claustrophobia). After the participants
had been provided a complete description of the study,
written informed consent was obtained in accordance with
the Declaration of Helsinki. This study was approved by
the Institutional Review Board Tohoku Fukushi University
(Japan), and all experiments were performed with the

relevant guidelines and regulations of the Institutional
Review Board, which approved all the experimental
protocols.

MRI Data Analysis: Primary Experiment
The analysis of the primary experiment was performed through
several processing steps for 153 participants after the removal of
participants withmotion artifacts (n= 9) duringMRI acquisition
(Figure 1A).

VBM Analysis
For identification of functional networks anatomical brain
templates such as automated anatomical labeling (AAL) atlas
(Yahata et al., 2016) have been used. To avoid partial volume
effect and improve sensitivity, in this study, we tried to identify
brain areas specific to psychometric parameters in each of gyri
in AAL atlas. MRI data were analyzed using VBM8 (http://
dbm.neuro.uni-jena.de/vbm/) implemented in the Statistical
Parametric Mapping software (SPM 12; Wellcome Department
of Imaging Neuroscience, London, United Kingdom), which
was implemented via Matlab 2015a (MathWorks, Sherborn,
MA, USA). The pre-processing by VBM8, with the default
parameters used in each step, included segmentation with a bias-
corrected option and spatial normalization with diffeomorphic
anatomical registration using exponentiated Lie algebra
(DARTEL) (Ashburner, 2007), normalization to the Montreal
Neurological Institute and Hospital (MNI) coordinate system
with smoothing with an 8-mm full-width at half-maximum
(FWHM) filter, and modulation by Jacobian determinants,
which provided segmented, normalized, and modulated gray
matter images. After preprocessing, a statistical test (simple
regression analysis) was used to identify brain areas correlated
with each psychometric parameter (P1 and P2 of Figure 1A).
In the regression analysis, total brain value (TBV) was used as a
covariate. Our purpose was to find specific brain areas in AAL
gyri we performed a small volume correction in each gyrus based
on the AAL atlas to correct for multiple comparisons (Gur et al.,
2000; Singh et al., 2014). The statistical threshold was set at an
uncorrected p = 0.001 and at p = 0.05 for family-wise error
(FWE) correction at the voxel level.

rs-fMRI Analysis
For functional MRI data, we used the data processing assistant
for resting-state fMRI software (DPABI) (Chao-Gan and Yu-
Feng, 2010; Yan et al., 2016) to pre-process the data of all 153
subjects. The pre-processing included slice-scan time correction,
3D motion correction (maximum head motion: 151 subjects
passed the maximum threshold of 1.5mm and 1.5◦, and other
two subjects passed the maximum threshold of 3.0mm and 3◦),
removal of head motion effects by the Friston 24-parameter
model, bandpass temporal filtering (between 0.01 and 0.1Hz),
and artifact rejection based on the CSF signal. These functional
images were smoothed with a 6-mm FWHM filter and co-
registered with each corresponding structural image. All resting-
state functional images were analyzed by ROI-based correlation
analysis for the predefined 163 ROIs identified by VBM (P3 of
Figure 1A). In the analysis, for the time courses of the 163 ROIs,
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correlations were calculated, and correlation coefficient matrices
(163 × 163 × 153) were created (P4 of Figure 1A). A simple
regression of the correlation coefficient matrices was performed
with psychologically measured scores of the psychometric
parameters, and then network-based statistics (NBS) were
performed to identify sets of significant brain networks (i.e.,
a brain network for each psychometric parameter). Zalesky
et al. (2010) (P6 of Figure 1A) to identify sets of significant
brain networks (mostly a brain networks for each psychometric
parameter; P7 of Figure 1A). In this step, randomly shuffled
correlation matrices were generated for a permutation test. Then,
correlational analyses were performed on the true correlation
matrix with psychometric parameters, and a non-parametric
permutation test was performed on random correlation matrices
with 5,000 iterations. Correction for multiple comparisons based
on NBS statistics was performed at an initial threshold of p <

0.005, and the number of edges in the network was limited to as
close to 15 as possible. Previous research has shown that a small
number of brain connections can predict a psychiatric disorder
(Yahata et al., 2016).

SVM Analysis
Classifier Design
SVMs are typically used to identify a hyperplane that
distinguishes between 2 groups. But in this study we attempted to
design 8-class SVM classifiers. Behavioral scores are measured on
a scale of 1–100. Our purpose is ideally to measure psychometric
parameters by MRI at the same scale. However, there are several
limitations such as sensitivity and number of samples. So, we

reduced it to a scale of 1–10, 10 levels. But in classification
study such as the neural network, the number of levels should
be a power of 2. Therefore we decided to use 8 (i.e., 23)
classes. The 8-class SVM classifier can estimate the score of
a psychometric parameter from rs-fMRI data into 8 levels.
Although psychometric parameter scores are linear and some
regression analyses such as support vector regression can be
applied, we attempted to design the SVM classifiers because a
discretization is generally stable to variations and some variations
would exist in fMRI and psychometric measurements.

Multiple class classification with the one-against-all (OAA)
method (Bishop, 2007) was performed using LIBSVM (Chang
and Lin, 2011), which was implemented in Matlab 2015a
(MathWorks, Sherborn, MA, USA). The OAA method involved
two steps: training a single classifier per class with one positive
sample of each class and all other negative samples of the
remaining classes and repeating the procedure for the total
number of classes. The classifier with the highest classification
score was selected as a final multi-class classifier.

Data Preparation for Training—Classification
Data sets for the SVM classifier design were prepared from the
results of the brain network analysis and the psychologically
measured data. The input dataset consisted of data matrices
of features (P8 of Figure 1A) and labels (P9 of Figure 1A). A
feature data matrix consisted of edges of a network (correlation
coefficients of networks at P8 of Figure 1A) and a label matrix
consisted of psychologically measured data (P9 of Figure 1A).
For classification label data (the label matrix), the scores

FIGURE 2 | Brain maps of 163 regions of interest (ROIs) for 96 psychometric parameters. Those ROIs were identified by the regression analysis (P1 and P2 of

Figure 1A). The psychometric parameters corresponding to the ROIs are shown in Table S1.

Frontiers in Neuroscience | www.frontiersin.org 7 March 2018 | Volume 12 | Article 149

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Sung et al. Functional Brain Networks and Human Characteristics

of psychologically measured psychometric parameters were
normalized and divided into eight classes by the equation {(x-
min)/(max-min)} ∗ 8, where× is the score of the psychologically
measured psychometric parameter. In the calculation results, the
number after the decimal point was rounded up. The dimensions
of a feature matrix were the number of edges by the number of
subjects, and the number of feature matrices was the number
of functional networks. Therefore, the dimensions of the input
data set for the SVM were the number of edges by the number
of functional networks by the number of subjects (the number
of edges were omitted in Figure 1B for simplification). The
dimensions of the label matrices were the number of functional
networks (scores of psychologically measured psychometric
parameters rated into one of eight classes) by the number of
subjects.

Training of Classifiers
With the data sets of all psychometric parameters, a leave-one-
out cross validation was run using a radial basis function (RBF)
kernel defined as K (x, y) = exp (−γ ‖ x − y ‖ 2) for optimizing
the C and gamma (γ) values. In parameter optimization, the grid-
search method was performed with various ranges of C and γ

values (C = 2−5, 2−4, . . . , 215, γ = 2−15, 2−14, . . . , 215). After
cross validation, the multiple class classifiers of the psychometric
parameters with the best C and γ values were varied and deemed
significant (P7 of Figure 1A).

Procedure for MRI Data: Supplementary
Experiment
Test of Classifiers
In the supplementary experiment, the analyses were
performed on 57 participants to test the classifiers. MRI
data were preprocessed via the same procedures as in the
primary experiment but bypassing the regression analyses
in the training procedure. fMRI signals were extracted
from the ROIs, the edges of the functional networks
were calculated (P3, P4, P8), and inputs for the SVM
classifiers were determined from the edges (P8). Scores of
psychometric parameters were estimated by the trained
classifiers (Figure 1B). The estimated scores were compared
with the psychologically measured scores to calculate the
accuracy.

Summary of the Data Processing
Procedures
Training Procedure Figure 1A
Brain areas were identified by the psychometric parameters
and the MRI data via a regressing analysis (P1, P2). From
the ROIs, fMRI signals were extracted, and raw correlation
matrices were constructed (P3, P4). A regression was performed
and then a network-based statistics (NBS) analysis was
performed, to identify significant brain networks (P5, P6, P7).
The inputs for the SVM classifiers were from edges of the
identified functional networks (P8). Scores for the psychometric
parameters were estimated using a scale from 1 to 8 by the
SVM classifiers and compared with psychologically measured

scores, which were also rescaled to 8 levels, to calculate
accuracy.

Test Procedure Figure 1B
Bypassing the regression analyses in the training, fMRI signals
were extracted from the ROIs, and then the edges of functional
networks were calculated (P3, P4, P7, P8). The extracted edges
were used for the inputs for the SVM classifiers and the scores of
psychometric parameters were estimated by the classifiers.

RESULTS

Psychological Data
Scores for the psychometric parameters were acquired for all
153 participants (153 for social ability, 134 for IQ, and 123 for
EQ; as data were acquired over several days, IQ and EQ data
could not be acquired for some participants) included in the
primary experiment (see the Materials and Methods section) and
are listed in the order of the MRI measurements performed.
We used all 130 parameters for subsequent MRI processing to
map each parameter to the brain, such that each functional
network to be identified would have sufficient information to
evaluate the psychometric parameters. The behavioral scores for
all 130 parameters are listed in Table 2 for the participants in the
primary experiment.

Voxel-Based Morphometry
Brain areas that were significantly correlated with each
psychometric parameter, reflecting a specific function of
cognition/behavior related to the parameter, were identified
by correlation analysis of the VBM data with the score of
each psychometric parameter (P1 of Figure 1A). Brain areas
for 96 parameters among 130 total psychometric parameters
were identified by the analysis (p = 0.05, corrected; see section
Materials and Methods for more details), which corresponded to
a total of 187 brain areas, as some parameters were correlated
with multiple brain areas. An ROI was defined as a 5-mm-
diameter sphere around the voxel corresponding to the peak
t-value in each of the 187 brain areas. Among the 187 ROIs,
some ROIs overlapped with others. Therefore, the overlapping
ROIs, except the first overlapping ROI in the parameter list,
were removed, leaving a total of 163 remaining ROIs (P2 of
Figure 1A). The locations of the ROIs in the brain are shown in
Figure 2, and their coordinates are given in Table 3. The ROIs
were distributed over the frontal, parietal, temporal, occipital,
and cerebellar cortices and sub-cortices of the brain.

rs-fMRI
Functional networks were identified from the rs-fMRI time
series. The rs-fMRI time series from the 163 ROIs were used
to construct correlation matrices by correlation analysis (P3 of
Figure 1A). After constructing of correlation matrices between
ROIs (P4 of Figure 1A), a regression analysis was performed
between the set of correlation matrices and the scores for
the psychometric parameters to estimate statistically significant
networks. Next, network-based statistics (NBS) were applied
for network-based correction (P6 of Figure 1A). Networks were
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TABLE 3 | Description of 163 regions of interest and the coordinates of the

regions in MNI coordinates.

# Region MNI coordinates Psychometric parameters

x y z

1 MFG_R 31 18 48 Cognitive competence

2 SFG_R 16 −7 69 Cognitive competence

3 MFG_ope_R 48 15 40 Cognitive competence

4 MFG_ope_L −29 39 −16 Cognitive competence

5 MTG_L −57 −37 −7 Cognitive competence

6 IPG_L −49 −40 35 Social competence with friends

of the same sex

7 PoCG_R 44 −16 56 Social competence with friends

of the same sex

8 FG_R 44 −41 −21 Social competence with friends

of the same sex

9 FG_L −36 −74 −18 Social competence with friends

of opposite sex

10 IPG_R 50 −46 36 General self-worth

11 PoCG_R 50 −17 49 Perceived competence scale

for adolescence

12 IFG_orb_L −38 58 −15 Inhibitory control

13 MFG_L −29 38 20 Inhibitory control

14 MTG_R 44 −50 11 Inhibitory control

15 MTG_L −52 −37 −8 Inhibitory control

16 MFG_L −32 35 23 Activation control

17 MOG_L −27 −92 18 Activation control

18 IFG_orb_L −26 19 −22 Activation control

19 AG_L −32 −59 37 Attentional control

20 SPG_L −15 −66 47 Japanese version of Effortful

Control (EC) scale for adults

21 MTG_R 69 −38 6 Japanese version of Effortful

Control (EC) scale for adults

22 SPG_L −15 −75 58 Trust vs. mistrust

23 SPG_L −3 −70 59 Trust vs. mistrust

24 SMG_R 62 −30 35 Trust vs. mistrust

25 FG_R 33 −42 −19 Intimacy vs. isolation

26 Calc_L −11 −83 11 Intimacy vs. Isolation

27 Calc_R 9 −78 13 Intimacy vs. isolation

28 MFG_L −25 10 56 Intimacy vs. isolation

29 Hipp_L −20 −35 −3 Japanese version of

Rasmussen’s Ego Identity

Scale (REIS)

30 IFG_orb_R 10 70 −5 Japanese version of

Rasmussen’s Ego Identity

Scale (REIS)

31 PrCG_R 48 −1 44 Behavioral Inhibition System

(BIS)

32 SPG_L −8 −63 45 BAS/driver

33 PrCG_R 30 −20 68 BAS/driver

34 Cu_L −8 −61 21 BAS/reward

35 TP_Inf_R 41 6 −38 BAS/fun seeking

36 SPG_L −21 −44 69 BAS/fun seeking

37 IPG_L −51 −32 39 BAS/fun seeking

38 FG_R 39 −40 −16 BAS/fun seeking

39 SFG_orb_R 13 65 0 Rosenberg Self Esteem Scale

(RSES)

(Continued)

TABLE 3 | Continued

# Region MNI coordinates Psychometric parameters

x y z

40 Hipp_R 19 −31 0 Difficulty in expressing opinions

41 Cu_R 9 −77 19 Japanese version of Jones and

Russell’s social reticence scale

for college students

42 PoCG_L −37 −32 69 Beginning social skills

43 MOG_L −37 −73 22 Beginning social skills

44 SFG_L −21 −5 53 Advanced social skills

45 SMG_L −54 −42 32 Advanced social skills

46 SFG_orb_R 17 64 0 Skills for dealing with feelings

47 IPG_L −49 −33 44 Skills for dealing with feelings

48 PoCG_L −32 31 71 Skill alternatives to aggression

49 PoCG_L −47 −31 47 Skills for dealing with stress

50 PoCG_L −39 −30 58 Planning skills

51 PrCG_L −21 −20 70 Planning skills

52 Hipp_R 33 −16 −8 Planning skills

53 SMA_L −7 −19 60 Kikuchi’s Scale of Social Skills

(KiSS-18)

54 IPG_R 46 −37 52 Public self-consciousness

55 SFG_L −15 6 56 Private self-consciousness

56 TP_Mid_R 54 3 −29 Private self-consciousness

57 ACC_R 10 37 1 Private self-consciousness

58 MFG_R 31 37 48 Japanese Version of the

Self-Concept Clarity (SCC)

Scale

59 FG_R 44 −41 −15 Self-continuity function

subscale

60 MTG_L −60 −50 −8 Self-continuity function

subscale

61 SPG_L −12 −69 42 Directing-behavior function

subscale

62 MOG_R 42 −71 35 Directing-behavior function

subscale

63 SOG_L −54 −54 37 Japanese version of the TALE

(Thinking About Life

Experiences) scale

64 FG_R 33 −15 −35 Decision Making (DM)

65 SPG_L −29 −77 47 Decision Making (DM)

66 SMG_R 58 −47 31 Decision Making (DM)

67 MTG_R 66 −29 2 Impulsivity/Carelessness Style

(ICS)

68 IFG_orb_R 28 22 −26 Impulsivity/Carelessness Style

(ICS)

69 RectusG_L −2 15 −19 Impulsivity/Carelessness Style

(ICS)

70 IPG_L −35 −76 44 Impulsivity/Carelessness Style

(ICS)

71 IFG_orb_L −22 16 −25 Impulsivity/Carelessness Style

(ICS)

72 IFG_orb_L −54 12 3 Avoidance Style (AS)

73 IFG_orb_L −24 11 −27 Japanese version of the Social

Problem-Solving

Inventory-Revised (SPSI-R)

74 SOG_R 28 −67 25 Positive-Self (PS)

(Continued)
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TABLE 3 | Continued

# Region MNI coordinates Psychometric parameters

x y z

75 MFG_L −44 29 20 Positive-Self (PS)

76 FG_L −36 −73 −14 Positive-Self (PS)

77 Cerebellum_L −44 −60 −43 Negative-Other (NO)

78 PCC_L −6 −46 20 Positive-Other (PO)

79 ITG_R 61 −55 −21 Positive-Other (PO)

80 MFG_R 7 65 −7 Japanese version of the Brief

Core Schema Scale (JBCSS)

81 Cerebellum_L −21 −36 −29 Planfulness

82 Cerebellum_R 52 −59 −37 Planfulness

83 Cerebellum__R 30 −45 −37 Planfulness

84 SOG_R 26 −73 25 Planfulness

85 SOG_L −27 −73 24 Planfulness

86 IPG_L −40 −56 54 Planfulness

87 MFG_orb_R 44 54 −12 Readiness for change

88 MFG_R 38 39 22 Readiness for change

89 Cerebellum_R 51 −62 −43 Readiness for change

90 SFG_L −20 18 52 Using resource

91 Cerebellum_L −26 −41 −36 Japanese version of the

Personal Growth Initiative

Scale-II (PGIS-II)

92 Th_L −2 −14 16 Subjective Happiness Scale

(SHS)

93 Th_R 3 −17 14 Subjective Happiness Scale

(SHS)

94 Cerebellum_R 48 −70 −34 The Satisfaction with Life Scale

(SWLS)

95 Cerebellum_L −44 −75 −31 The Satisfaction with Life Scale

(SWLS)

96 Hipp_L −32 −14 −10 The Satisfaction with Life Scale

(SWLS)

97 IPG_L −34 −39 41 State Anxiety (A-State)

98 IPG_R 35 −38 47 State Anxiety (A-State)

99 TP_Inf_L −40 2 −36 Trait Anxiety (A-Trait)

100 Putamen_L −27 −9 −5 Disorganization

101 MTG_L −51 −51 −1 Disorganization

102 IFG_Med_R 3 56 −11 Disorganization

103 IFG_Tri_R 44 38 5 Disorganization

104 TP_Mid_L −19 12 −42 Social skill

105 FG_R 31 −41 −10 Attention switching

106 IFG_Tri_L −50 41 7 Attention switching

107 TP_Inf_R 43 6 −35 Attention switching

108 TP_Inf_R 52 6 −42 Attention switching

109 SFG_L −19 69 5 Attention to detail

110 SFG_L −9 −4 56 Attention to detail

111 Cerebellum_L −12 −64 −29 Attention to detail

112 IFG_Tri_R 50 16 22 Communication

113 PrCG_R 49 3 26 Communication

114 Cerebellum_R 43 −54 −32 Imagination

115 SFG_Med 0 47 34 Imagination

116 PCC_L −7 −44 17 Verbal IQ

117 PreCu_R 13 −59 44 Performance IQ

(Continued)

TABLE 3 | Continued

# Region MNI coordinates Psychometric parameters

x y z

118 SFG_Med_R 11 48 −17 Full scale IQ

119 IFG_Med_R 5 40 −21 Full scale IQ

120 SFG_Med_L −13 56 −5 Full scale IQ

121 PHG_L −24 −24 −25 Full scale IQ

122 PCC_L −7 −44 −16 Full scale IQ

123 PCC_L −13 −43 9 Fluid intelligence

124 IFG_Tri_R 45 29 −1 Crystallized intelligence

125 SPG_L −16 −57 53 Crystallized intelligence

126 PCC_L −6 −38 23 Crystallized intelligence

127 TP_Sup_R 35 25 −30 Verbal comprehension

128 SFG_orb_L −8 51 −21 Similarities

129 SFG_orb_R 14 49 −19 Similarities

130 Hipp_L −22 −26 −11 Arithmetic

131 IFG_Tri_R 45 26 28 Arithmetic

132 PrCG_R 60 12 30 Arithmetic

133 SFG_R 22 35 54 Arithmetic

134 PrCG_L −31 −4 64 Information

135 SMG_L −59 −21 26 Information

136 PCC_L −4 −42 18 Comprehension

137 SPG_L −33 −44 57 Picture completion

138 Hipp_R 30 −39 3 Digit symbol

139 PoCG_R 55 −21 52 Digit symbol

140 SOG_R 27 −76 39 Digit symbol

141 PCC_L −8 −43 9 Block design

142 IFG_Tri_L −50 25 24 Matrix reasoning

143 IOG_R 29 −97 −9 Matrix reasoning

144 PoCG_R 49 −20 62 Picture arrangement

145 SMG_L −53 −50 25 Emotional awareness

146 PoCG_R 62 −17 36 Self-efficacy

147 SMG_R 47 −40 24 Perseverance

148 Cerebellum_L −16 −87 −29 Impulse control

149 PCC_M_L −2 −17 32 Impulse control

150 PCC_M_R 3 −23 42 Impulse control

151 IFG_Tri_R 55 23 26 Patience

152 MFG_R 29 49 20 Patience

153 PrCG_L −59 0 28 Patience

154 PrCG_L −46 −5 28 Sharing positive emotion

155 ITG_R 56 −34 −16 Sharing negative emotion

156 MFG_R 38 32 17 Voluntary support

157 MTG_L −48 −15 −9 Voluntary support

158 Th_R 10 −9 9 Decision making

159 MTG_L −57 −46 −3 Decision making

160 ITG_L −34 −3 −35 Optimism

161 MTG_L −53 −8 −7 Group consideration

162 SPG_R 36 −71 52 Adaptability

163 MTG_L −52 −16 −5 Situational awareness

identified for a fixed significance level of p = 0.001 (corrected),
which had different numbers of edges ranging from a few
edges to more than 50. To obtain a similar number of edges
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for every identified network, two thresholds were used: one
was at a significance level of p = 0.005 (corrected; see the
Materials and Methods section for more details) and the other
was the number of edges, namely, 15 per network (Termenon
et al., 2016). Therefore, the number of edges in the identified

networks were limited to as close to 15 as possible, except

for those that had fewer than 15 edges even at the threshold
of p = 0.005. For 116 of the 130 psychometric parameters,
128 significant functional networks were identified, of which

82 corresponded to social ability/skill parameters, 17 to IQ
parameters and 29 to emotion quotient scale (EQS) parameters
(P7 of Figure 1A). The functional networks corresponded

to 116 psychometric parameters (74 for social ability/skill
parameters, 15 for IQ parameters and 27 for EQS parameters),
as 12 psychometric parameters corresponded to more than
one functional network (8 for social ability/skill parameters, 2
for IQ parameters, and 2 for EQS parameters). The average
number of edges of the 128 networks was 15.01 (mean) ±

4.72 (standard deviation). The set of all functional networks
is shown in Figure S1 and Table S1. Each network identified
through these processes can be considered to be involved in a
brain function responsible for the corresponding psychometric
parameter. Ultimately, we identified 128 functional networks
representing 116 psychometric parameters, from which we can
evaluate a wide variety of human characteristics that the 116
psychometric parameters reflect.

As an example network, we show the network corresponding
to the psychometric parameter “verbal intelligence quotient
(VIQ)” (Figure 3) (Barona et al., 1984), as IQs are important
in understanding human behavior and reflect diverse brain
neurological differences (Deary et al., 2010). Among IQs,
the VIQ reflects language ability, which is tightly associated

with social function and is a basis of diverse human
activities.

The ROIs constituting the functional network are shown in
Table 4. The ROIs included in the brain areas of Brodmann area
(BA) 47 and BA 22 are known to be associated with language-
related function (Shaywitz et al., 1998).

SVM
To verify that the functional networks identified from the rs-
fMRI signals and psychometric parameters can significantly
represent cognition/behavior, we derived a multiclass SVM
classifier for each functional network. A binary classifier was
considered to be sufficient for verification, but we attempted
to derive multiclass SVM classifiers because our future aim is
to estimate scores of psychometric parameters using only rs-
fMRI data. To determine if this was possible, an eight-class
SVM classifier was chosen, although a multiclass SVM with
more classes would have been ideal for estimating the scores.
A multiclass (eight-class) SVM classifier for each psychometric
parameter could be derived by using the edges of each network
as the input (P8 of Figure 1A). All the classifiers were revealed
to have significant accuracy upon cross-validation (one-sample
t-test, p = 0.05) above the chance level, although the accuracy is
low, except for five classifiers corresponding to five psychometric
parameters (P9). That is, significant classifiers were derived for
123 of the 128 functional networks (78 for social ability/skill
parameters, 17 for IQ parameters and 28 for EQS parameters).
These 123 SVM classifiers were related to 111 psychometric
parameters (70 for social ability/skill parameters, 15 for IQ
parameters, and 26 for EQS parameters), as 12 psychometric
parameters corresponded to more than one classifier (Figure S2,
Table S1).

FIGURE 3 | Brain map of the functional network for the psychometric parameter “verbal intelligence quotient (VIQ).” The width represents the strength of the

correlation. The network was identified by NBS analysis (P5 of Figure 1A). This network reflects brain function related to “VIQ” and can be used to estimate VIQ.

Similar assessments are possible for the other functional networks, and thus, comprehensive human characteristics can be evaluated. (A) Two-dimensional view of

the network. (B) Three-dimensional view of the network.
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TABLE 4 | List of the ROIs included in the functional network corresponding to “Verbal IQ.”

# Region MNI coordinates Brodmann area Psychometric parameters

x y z

7 PoCG_R 44 −16 56 BA 4 Social competence with friends of the same sex

38 FG_R 39 −40 −16 BA 37 BAS/fun seeking

50 PoCG_L −39 −30 58 BA 40 Planning skills

52 Hipp_R 33 −16 −8 BA 28 Planning skills

68 IFG_orb_R 28 22 −26 BA 47 Impulsivity/Carelessness Style

(ICS)

95 Cerebellum_L −44 −75 −31 Pyramis_L The Satisfaction with Life Scale

(SWLS)

102 IFG_Med_R 3 56 −11 BA 10 Disorganization

107 TP_Inf_R 43 6 −35 BA 38 Attention switching

113 PrCG_R 49 3 26 BA 6 Communication

126 PCC_L −6 −38 23 BA 23 Crystallized intelligence

132 PrCG_R 60 12 30 BA 9 Arithmetic

139 PoCG_R 55 −21 52 BA 2 Digit symbol

147 SMG_R 47 −40 24 BA 13 Perseverance

150 PCC_M_R 3 −23 42 BA 31 Impulse control

153 PrCG_L −59 0 28 BA 6 Patience

154 PrCG_L −46 −5 28 BA 6 Sharing positive emotion

155 ITG_R 56 −34 −16 BA 20 Sharing negative emotion

163 MTG_L −52 −16 −5 BA 22 Situational awareness

Testing the SVM Classifiers in Different
Populations
To test the performances of the SVM classifiers, we estimated the
scores of the psychometric parameters from level 1 to 8 (related
to social ability/skill) fromMRI data using the 70 SVM classifiers
(only one classifier was chosen for each psychometric parameter
that corresponded to multiple classifiers) that corresponded to
the 70 psychometric parameters related to social ability/skill. We
compared the estimated scores with psychologically measured
scores of the 70 psychometric parameters for 57 participants in
the supplementary experiment. All 70 SVM classifiers exhibited
an accuracy above chance level with low sensitivity of 14.1± 3.7%
but high specificity of 87.8 ± 0.8% (Table 5), and the accuracy
results found for this supplementary experiment were similar to
those observed in the primary experiment (Figure 4).

DISCUSSION

The primary aims of this study were to prove that functional
networks identified by rs-fMRI signals and psychometric
parameters represent brain functions to which corresponding
cognition/behavior are related and to determine whether
the functional networks can be interpreted in a similar
way to functional areas identified by tb-fMRI signals upon
task stimulation. Another aim was to identify a set of
functional networks for comprehensively evaluating human
characteristics.

We found functional networks corresponding to 111 out of
130 psychometric parameters and derived a multiclass SVM

classifier for each psychological parameter. These findings
demonstrate that each rs-fMRI functional network can represent
a corresponding cognition/behavior and that the set of functional
networks reported here, which correspond to 111 psychometric
parameters, can be used to comprehensively evaluate human
characteristics.

Previous studies have attempted to identify functional
networks from rs-fMRI signals. Some have identified functional
networks by correlation between rs-fMRI signals and known
ROIs (Wang et al., 2009; Tian et al., 2011), and others have
derived functional networks by correlation between a known seed
area or image voxel of the brain and other brain areas/voxels
(Greicius et al., 2003; Fox et al., 2009) or by independent
component analysis (ICA) in which a group of brain areas
sharing a common component of an independent signal are
identified to constitute a functional network (Damoiseaux
et al., 2006; De Luca et al., 2006). However, the functional
roles of the networks were interpreted based on various
cognition/behavior related to the tasks in tb-fMRI (van den
Heuvel and Hulshoff Pol, 2010), as a combination of functional
areas previously identified by tb-fMRI and the tasks performed
during tb-fMRI were used in the identification procedure
of the functional networks. Therefore, it remains unclear
whether functional networks can be identified by psychological
indices (psychometric parameters consisting of self-reported
questionnaire scores) and whether rs-fMRI signals can represent
the corresponding cognition/behavior. By identifying brain
networks related to psychometric parameters and the deriving
multiclass SVM classifiers corresponding to those psychological
parameters, our results demonstrate that rs-fMRI functional
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TABLE 5 | Sensitivity and specificity of classifiers.

Sensitivity Specificity

Net_001 0.30 0.71

Net_002 0.25 0.62

Net_003 0.33 0.67

Net_004 0.27 0.62

Net_005 0.33 0.67

Net_006 0.32 0.64

Net_007 0.25 0.61

Net_008 0.29 0.65

Net_009 0.42 0.73

Net_010 0.33 0.67

Net_011 0.33 0.67

Net_012 0.33 0.68

Net_013 0.38 0.67

Net_014 0.33 0.67

Net_015 0.33 0.69

Net_016 0.30 0.64

Net_017 0.36 0.69

Net_019 0.29 0.66

Net_021 0.33 0.67

Net_022 0.32 0.66

Net_024 0.28 0.63

Net_025 0.24 0.63

Net_026 0.29 0.65

Net_027 0.29 0.67

Net_028 0.33 0.67

Net_029 0.38 0.72

Net_031 0.33 0.67

Net_034 0.33 0.67

Net_035 0.32 0.66

Net_037 0.28 0.62

Net_038 0.30 0.65

Net_039 0.33 0.67

Net_040 0.34 0.67

Net_041 0.30 0.65

Net_042 0.34 0.67

Net_043 0.34 0.68

Net_045 0.32 0.66

Net_046 0.39 0.71

Net_047 0.35 0.66

Net_048 0.33 0.67

Net_050 0.39 0.69

Net_051 0.32 0.67

Net_052 0.32 0.66

Net_053 0.28 0.62

Net_054 0.28 0.64

Net_056 0.33 0.67

Net_057 0.33 0.62

Net_058 0.35 0.68

Net_059 0.30 0.67

Net_061 0.31 0.65

Net_062 0.39 0.72

(Continued)

TABLE 5 | Continued

Sensitivity Specificity

Net_063 0.39 0.70

Net_064 0.31 0.69

Net_065 0.45 0.66

Net_066 0.33 0.67

Net_067 0.31 0.65

Net_068 0.33 0.67

Net_069 0.28 0.64

Net_070 0.31 0.64

Net_071 0.33 0.66

Net_072 0.35 0.69

Net_073 0.40 0.69

Net_075 0.33 0.67

Net_076 0.31 0.64

Net_077 0.33 0.70

Net_078 0.33 0.67

Net_079 0.28 0.66

Net_080 0.32 0.66

Net_081 0.44 0.75

Net_082 0.33 0.65

networks can represent cognition/behavior. In tb-fMRI, SVM
classifiers have been used to prove functional specificity of a
brain area by testing whether the brain area can discriminate
the related stimulus exemplar from other stimuli (MacEvoy
and Epstein, 2009). Similarly, each of our identified classifiers
could significantly discriminate the scores of the corresponding
psychological parameter, showing that each functional network
represented the corresponding cognition/behavior. The results
indicate that the identified functional networks can be used
in a similar way to the functional areas identified by tb-fMRI
for brain imaging. Recent studies on rs-fMRI support our
results that the functional brain networks identified by rs-fMRI
signals contain intrinsic information of the brain system and
have shown that similar brain maps obtained by tb-fMRI can
also be acquired by rs-fMRI (Finn et al., 2015; Tavor et al.,
2016).

The identification of 111 functional networks and the
derivation of SVM classifiers for each of the 111 functional
networks suggest that the variance of rs-fMRI signals between
subjects reflects differences in cognition/behavior, which
also indicates that variations in neural systems develop
differently in each individual. Therefore, it is inferred that brain
plasticity with different genetic and environmental conditions
(Bouchard, 2004) varies among participants and that such
variation in plasticity could appear in the functional network
representation.

Several studies of brain plasticity at the systems level have
been performed. Long-term plasticity has been shown in primary
sensory areas, such as in visual areas of blind subjects and
auditory areas of deaf subjects (Karni and Sagi, 1991; Gaser
and Schlaug, 2003), which could be considered as modifications
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FIGURE 4 | (A) Accuracies of 70 SVM classifiers corresponding to the psychometric parameters related to social ability/skill in 153 participants. The error bar denotes

the standard deviation. All classifiers are significant at p = 0.05. (B) Accuracies of same 70 SVM classifiers in another 57 participants. The accuracy results of test are

similar to those observed during the training. This shows that the derived classifiers work properly. The redlines on the figures indicate the chance level 12.5%.

to brain “hardware.” Mid-term plasticity was also shown in
high-level areas like the hippocampus among people who have
extensively trained for many years, such as in taxi drivers
(Maguire et al., 2000). In addition, short-term plasticity was
shown in high-level areas such as the hippocampus in those
undergoing intense cognitive function training, such as in those
studying for a difficult medical exam for a few months or
during physical juggling training for a few weeks (Draganski
et al., 2006). Such plastic changes have been observed by rs-
fMRI and VBM. Considering the brain plasticity observed
by rs-fMRI or VBM, we can infer that the 163 functional
areas and 111 functional networks identified by the same
modalities used in the previous studies also reflect brain
plasticity.

We performed the leave-one-out cross validation in this
study because we thought it gives less biased predictions.
Recently a study has suggested conservative evaluation for
reliability of cross-validation methods in applying machine
learning algorithms for small sample sizes (Varoquaux, 2017). In
this study, we completely separated data sets for the training and

the test and could acquire similar results for the training and the
test. In addition, the average accuracy 23.6% of the test data is
still above a corrected chance level (about 17% for 150 samples),
corrected by the number of samples, which was proposed by a
previous study (Combrisson and Jerbi, 2015). These support that
our classifiers are reliable.

In terms of the general use of classifiers, accuracy is an
important factor. The accuracy of the SVM classifiers is low,
although it is above the chance level. One reason is that the
number of classes - 8 - could be too high. For 3-class SVM
classifiers we could get about 53% accuracy; similarly, we can
expect about 80% accuracy for a binary classifier. In this study,
we used the same number of classes for all psychometric
parameters when designing SVM classifiers, although there was
an optimal number of clusters. We used the same algorithm
and kernel for all psychometric parameters. However, other
classification algorithms or kernels may be better for some
psychometric parameters depending on their features and data
structures. In future studies, it will be necessary to optimize the
classification algorithm to each parameter and to optimize the
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number of classes to suit the evaluation of human characteristics,
especially transient changes in characteristics by brain plasticity
resulting from education, training, or diseases. However, even
with the 8-class SVM classifier we derived, we can significantly
evaluate human characteristics. For example, in a supplementary
experiment (not published), we obtained rs-fMRI data from one
participant 8 times across 2 weeks. We found that 66 out of
70 SVM classifiers gave the same score (level) more than 4
times, which means that repeated measurements enable our 8-
class SVM classifiers to be applied to estimate a wide variety
of human characteristics with high specificity (more than 87%;
Table 5).

For training, the SVM classifier that we used here only has
information regarding the edges of the functional networks
with which the correlations of the psychometric scores were
comparatively low, 0.51 ± 0.07 (mean ± SD), as shown in
Figure S2, which might be a limitation of the performance of
the SVM classifiers. But other factors related to the topology of
a functional network as a graph, such as centrality and mean
path, can be used to improve the accuracy. Additional data from
othermodalities, such as fractional anisotropy ormean diffusivity
from diffusion-weighted imaging, may also be useful for further
improving the accuracy. In the future, we plan to use these types
of data to further improve the accuracy for generalizing our
classifiers.

The tb-fMRI signal is known to be induced by stimulation
through neuro-vascular coupling, and the site at which an
fMRI signal is measured is known to contain neurons that
are processing the information related to a given stimulus.
Therefore, tb-fMRI is known to be a direct method to identify
functional areas. However, resting-state fMRI is considered
to be indirect because additional supporting information is
needed to characterize the connectivity, such as psychological
parameters or behavioral information, and it remains unclear
whether neurons in brain areas of a rs-fMRI functional network
are directly related to the processing of the information
required for the expected cognitive or behavioral brain
function. Therefore, even in the case in which the data
acquired by the two modalities can yield the same results
in evaluating cognition/behavior, the functional mechanism
represented by brain areas or networks may be different. This
may explain why ROIs for a psychometric parameter were
not identified but a functional network was identified. This
type of problem related to intrinsic functional characteristics
should be further examined to elucidate the mechanism of brain
function.

To understand the details of the functional role of the
functional network of each psychological parameter, tb-fMRI
may be needed. However, in this study, the aim was to
prove that functional networks can be identified from rs-fMRI
signals and psychometric parameters and to identify biomarkers
of cognition/behavior to evaluate a wide variety of human
characteristics that can be used to describe individuals. Therefore,
although the details of identified functional networks should
be investigated further, we believe that our aim of identifying
functional networks/classifiers that characterize most of the
intended psychometric parameters has been achieved.

Regarding the size of the subject population for significantly
obtaining brain information from rs-fMRI and psychological
parameters, the population size of 153 subjects for this study is
considered to be appropriate because a previous study suggested
that more than 100 subjects can provide reliable variation for
estimating brain plasticity (Termenon et al., 2016).

To the best of our knowledge, this study derived the
largest number of functional networks/classifiers (or identified
functional brain networks) reflecting cognition/behavior among
fMRI studies performed to date. Although there are several large
databases around the world that are represented by the “human
connectome project” (www.humanconnectome.org), none of the
databases include as many psychometric parameters as included
in this study. This is the first study of its kind in the field of
brain imaging that reveals the possibility to describe an individual
based on a comprehensive set of diverse human characteristics.
However, other psychometric parameters may need to be added
to obtain more classifiers so that an individual can be described
as completely as possible. In the present study, 19 psychological
parameters were not significantly associated with a functional
network, for which we may need to devise new tasks and use
tb-fMRI to elucidate the corresponding functional networks. In
addition, it may be possible that abilities or emotions related to
the psychometric parameters are not reflected in resting state
fMRI signals, which may be an interesting topic to investigate in
a future study.

Taken together, our results demonstrate that; (i) rs-fMRI
signals include intrinsic information of brain function
related to cognition/behavior, (ii) functional networks
identified by psychometric parameters can represent
corresponding cognition/behavior, and (iii) the set of
functional networks/classifiers identified here can be used
to comprehensively evaluate human characteristics.

CONCLUSION

We identified a set of 128 functional networks of
cognition/behavior by rs-fMRI that span a variety of human
characteristics and psychometric parameters, and we derived
123 multiple-class SVM classifiers corresponding to 111
psychometric parameters. This demonstrates that we can
identify functional areas or networks of the brain not only
by tb-fMRI but also by rs-fMRI. It also demonstrates that we
can evaluate cognition/behavior and develop biomarkers for a
wide variety of human characteristics using the 111 dimensions
of the data obtained from a single rs-fMRI scan. The data
and classifiers may also be applied to longitudinal studies or
studies evaluating educational, training, or career development
programs.

AUTHOR CONTRIBUTIONS

Y-WS, YK, and SO designed this study. The psychological data
for this study were acquired by YK, CA, and YO. The anatomical
and functional magnetic resonance images (MRI) data were
acquired by Y-WS and DK. The VBM analysis of anatomical data

Frontiers in Neuroscience | www.frontiersin.org 15 March 2018 | Volume 12 | Article 149

www.humanconnectome.org
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Sung et al. Functional Brain Networks and Human Characteristics

was conducted by Y-WS and DK. Brain network analysis and
SVM analysis of functional data was conducted by U-SC. Y-WS
wrote the first draft of the manuscript with SO, YK, and U-SC
contributed to revise this manuscript. All authors reviewed this
manuscript.

ACKNOWLEDGMENTS

This study was supported by the MEXT-Supported program
for the Strategic Research Foundation at Private Universities,
2014–2018.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2018.00149/full#supplementary-material

Figure S1 | Set of all functional networks.

Figure S2 | Correlation between each functional network and its psychometric

score for 70 functional networks with 153 subject data by a linear multiple

regression based on the least square analysis. The average correlation value R is

0.51 (S.D 0.07) and R2 is 0.27 (S.D 0.07), p < 0.0001.

Table S1 | Description of all functional networks.

Supplementary Datasheet 1 | Supplementary references.

REFERENCES

Altmann, A., Schröter, M. S., Spoormaker, V. I., Kiem, S. A., Jordan, D., Ilg,

R., et al. (2016). Validation of non-REM sleep stage decoding from resting

state fMRI using linear support vector machines. NeuroImage 125, 544–555.

doi: 10.1016/j.neuroimage.2015.09.072

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm.

NeuroImage 38, 95–113. doi: 10.1016/j.neuroimage.2007.07.007

Barona, A., Reynolds, C. R., and Chastain, R. (1984). A demographically based

index of premorbid intelligence for the WAIS—R. J. Consult. Clin. Psychol. 52,

885–887. doi: 10.1037/0022-006X.52.5.885

Bishop, C. (2007). Pattern Recognition and Machine Learning (Information Science

and Statistics), 1st Edn. 2006. Corr. 2nd Printing Edn. New York, NY: Springer.

Bouchard, T. J. (2004). Genetic influence on human psychological traits a survey.

Curr. Dir. Psychol. Sci. 13, 148–151. doi: 10.1111/j.0963-7214.2004.00295.x

Carver, C. S., and White, T. L. (1994). Behavioral inhibition, behavioral

activation, and affective responses to impending reward and punishment: the

BIS/BAS Scales. J. Pers. Soc. Psychol. 67, 319–333. doi: 10.1037/0022-3514.

67.2.319

Chang, C.-C., and Lin, C.-J. (2011). LIBSVM: a library for support vectormachines.

ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27. doi: 10.1145/1961189.1961199

Chao-Gan, Y., and Yu-Feng, Z. (2010). DPARSF: a MATLAB toolbox for

“Pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4:13.

doi: 10.3389/fnsys.2010.00013

Combrisson, E., and Jerbi, K. (2015). Exceeding chance level by chance:

the caveat of theoretical chance levels in brain signal classification and

statistical assessment of decoding accuracy. J. Neurosci. Methods 250, 126–136.

doi: 10.1016/j.jneumeth.2015.01.010

Craig, M. M., Manktelow, A. E., Sahakian, B. J., Menon, D. K., and Stamatakis,

E. A. (2017). Spectral diversity in default mode network connectivity reflects

behavioral state. J. Cogn. Neurosci. 30, 526–539. doi: 10.1162/jocn_a_01213

Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith,

S. M., et al. (2006). Consistent resting-state networks across healthy subjects.

Proc. Natl. Acad. Sci. U.S.A. 103, 13848–13853. doi: 10.1073/pnas.0601417103

Deary, I. J., Penke, L., and Johnson, W. (2010). The neuroscience of human

intelligence differences. Nat. Rev. Neurosci. 11, 201–211. doi: 10.1038/nr

n2793

De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., and Smith,

S. M. (2006). fMRI resting state networks define distinct modes of long-

distance interactions in the human brain. NeuroImage 29, 1359–1367.

doi: 10.1016/j.neuroimage.2005.08.035

Diener, E., Emmons, R. A., Larsen, R. J., and Griffin, S. (1985). The satisfaction with

life scale. J. Pers. Assess. 49, 71–75. doi: 10.1207/s15327752jpa4901_13

Draganski, B., Gaser, C., Kempermann, G., Kuhn, H. G., Winkler, J., Büchel,

C., et al. (2006). Temporal and spatial dynamics of brain structure changes

during extensive learning. J. Neurosci. Off. J. Soc. Neurosci. 26, 6314–6317.

doi: 10.1523/JNEUROSCI.4628-05.2006

Fernández-Alcántara, M., Cruz-Quintana, F., Pérez-Marfil, M. N., Catena-

Martínez, A., Pérez-García, M., and Turnbull, O. H. (2016). Assessment of

emotional experience and emotional recognition in complicated grief. Front.

Psychol. 7:126. doi: 10.3389/fpsyg.2016.00126

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun,

M. M., et al. (2015). Functional connectome fingerprinting: identifying

individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671.

doi: 10.1038/nn.4135

Fox, M. D., and Raichle, M. E. (2007). Spontaneous fluctuations in brain activity

observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8,

700–711. doi: 10.1038/nrn2201

Fox, M. D., Zhang, D., Snyder, A. Z., and Raichle, M. E. (2009). The global signal

and observed anticorrelated resting state brain networks. J. Neurophysiol. 101,

3270–3283. doi: 10.1152/jn.90777.2008

Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations:

an fMRI investigation of the resting-state default mode of brain function

hypothesis. Hum. Brain Mapp. 26, 15–29. doi: 10.1002/hbm.20113

Gaser, C., and Schlaug, G. (2003). Brain structures differ between musicians and

non-musicians. J. Neurosci. 23, 9240–9245.

Gauthier, I., Skudlarski, P., Gore, J. C., and Anderson, A. W. (2000). Expertise for

cars and birds recruits brain areas involved in face recognition. Nat. Neurosci.

3, 191–197. doi: 10.1038/72140

Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V. (2003).

Functional connectivity in the resting brain: a network analysis of the

default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100, 253–258.

doi: 10.1073/pnas.0135058100

Greicius, M. D., Srivastava, G., Reiss, A. L., and Menon, V. (2004). Default-

mode network activity distinguishes Alzheimer’s disease from healthy aging:

evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 101, 4637–4642.

doi: 10.1073/pnas.0308627101

Grill-Spector, K., Knouf, N., and Kanwisher, N. (2004). The fusiform face area

subserves face perception, not generic within-category identification. Nat.

Neurosci. 7, 555–562. doi: 10.1038/nn1224

Guo, B., Zheng, X., Lu, Z. G., Wang, X., Yin, Z., Hou, W. S., et al. (2015).

Decoding brain responses to pixelized images in the primary visual cortex:

implications for visual cortical prostheses. Neural Regen. Res. 10, 1622–1627.

doi: 10.4103/1673-5374.167761

Gur, R. C., Alsop, D., Glahn, D., Petty, R., Swanson, C. L., Maldjian, J. A., et al.

(2000). An fMRI study of sex differences in regional activation to a verbal and

a spatial task. Brain Lang. 74, 157–170. doi: 10.1006/brln.2000.2325

Hu, X., Guo, L., Han, J., and Liu, T. (2017). Decoding power-spectral profiles from

FMRI brain activities during naturalistic auditory experience. Brain Imaging

Behav. 11, 253–263. doi: 10.1007/s11682-016-9515-8

Karni, A., and Sagi, D. (1991). Where practice makes perfect in texture

discrimination: evidence for primary visual cortex plasticity. Proc. Natl. Acad.

Sci. U.S.A. 88, 4966–4970. doi: 10.1073/pnas.88.11.4966

Kim, S. G., and Ugurbil, K. (1997). Functional magnetic resonance

imaging of the human brain. J. Neurosci. Methods 74, 229–243.

doi: 10.1016/S0165-0270(97)02252-8

Kogler, L., Seidel, E. M., Metzler, H., Thaler, H., Boubela, R. N., Pruessner, J. C.,

et al. (2017). Impact of self-esteem and sex on stress reactions. Sci. Rep. 7:17210.

doi: 10.1038/s41598-017-17485-w

Krendl, A. C., and Kensinger, E. A. (2016). Does older adults’ cognitive function

disrupt the malleability of their attitudes toward outgroup members? an fMRI

investigation. PLoS ONE 11:e0152698. doi: 10.1371/journal.pone.0152698

Frontiers in Neuroscience | www.frontiersin.org 16 March 2018 | Volume 12 | Article 149

https://www.frontiersin.org/articles/10.3389/fnins.2018.00149/full#supplementary-material
https://doi.org/10.1016/j.neuroimage.2015.09.072
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1037/0022-006X.52.5.885
https://doi.org/10.1111/j.0963-7214.2004.00295.x
https://doi.org/10.1037/0022-3514.67.2.319
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.1016/j.jneumeth.2015.01.010
https://doi.org/10.1162/jocn_a_01213
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1038/nrn2793
https://doi.org/10.1016/j.neuroimage.2005.08.035
https://doi.org/10.1207/s15327752jpa4901_13
https://doi.org/10.1523/JNEUROSCI.4628-05.2006
https://doi.org/10.3389/fpsyg.2016.00126
https://doi.org/10.1038/nn.4135
https://doi.org/10.1038/nrn2201
https://doi.org/10.1152/jn.90777.2008
https://doi.org/10.1002/hbm.20113
https://doi.org/10.1038/72140
https://doi.org/10.1073/pnas.0135058100
https://doi.org/10.1073/pnas.0308627101
https://doi.org/10.1038/nn1224
https://doi.org/10.4103/1673-5374.167761
https://doi.org/10.1006/brln.2000.2325
https://doi.org/10.1007/s11682-016-9515-8
https://doi.org/10.1073/pnas.88.11.4966
https://doi.org/10.1016/S0165-0270(97)02252-8
https://doi.org/10.1038/s41598-017-17485-w
https://doi.org/10.1371/journal.pone.0152698
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Sung et al. Functional Brain Networks and Human Characteristics

Lei, X., Zhong, M., Liu, Y., Jin, X., Zhou, Q., Xi, C., et al. (2017). A resting-

state fMRI study in borderline personality disorder combining amplitude of

low frequency fluctuation, regional homogeneity and seed based functional

connectivity. J. Affect. Disord. 218, 299–305. doi: 10.1016/j.jad.2017.04.067

MacEvoy, S. P., and Epstein, R. A. (2009). Decoding the representation of

multiple simultaneous objects in human occipitotemporal cortex. Curr. Biol.

19, 943–947. doi: 10.1016/j.cub.2009.04.020

Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J.,

Frackowiak, R. S., et al. (2000). Navigation-related structural change in the

hippocampi of taxi drivers. Proc. Natl. Acad. Sci. U.S.A. 97, 4398–4403.

doi: 10.1073/pnas.070039597

Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., and

Macrae, C. N. (2007). Wandering minds: the default network and stimulus-

independent thought. Science 315, 393–395. doi: 10.1126/science.1131295

Meskaldji, D. E., Preti, M. G., Bolton, T. A., Montandon, M. L., Rodriguez,

C., Morgenthaler, S., et al. (2016). Prediction of long-term memory scores

in MCI based on resting-state fMRI. NeuroImage Clin. 12, 785–795.

doi: 10.1016/j.nicl.2016.10.004

Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., et al.

(1992). Intrinsic signal changes accompanying sensory stimulation: functional

brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A.

89, 5951–5955. doi: 10.1073/pnas.89.13.5951

Poldrack, R. A., Barch, D. M., Mitchell, J. P., Wager, T. D., Wagner, A. D., Devlin, J.

T., et al. (2013). Toward open sharing of task-based fMRI data: the OpenfMRI

project. Front. Neuroinformatics 7:12. doi: 10.3389/fninf.2013.00012

Raine, A. (1991). The SPQ: a scale for the assessment of schizotypal

personality based on DSM-III-R criteria. Schizophr. Bull. 17, 555–564.

doi: 10.1093/schbul/17.4.555

Rupp, A. A., and Zumbo, B. D. (2006). Understanding parameter invariance

in unidimensional IRT models. Educ. Psychol. Meas. 66, 63–84.

doi: 10.1177/0013164404273942

Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., Fulbright, R. K., Constable, R. T.,

Mencl, W. E., et al. (1998). Functional disruption in the organization of the

brain for reading in dyslexia. Proc. Natl. Acad. Sci. U.S.A. 95, 2636–2641.

doi: 10.1073/pnas.95.5.2636

Singh, M. K., Chang, K. D., Kelley, R. G., Saggar, M., Reiss, A. L., and Gotlib,

I. H. (2014). Early signs of anomalous neural functional connectivity in

healthy offspring of parents with bipolar disorder. Bipolar Disord. 16, 678–689.

doi: 10.1111/bdi.12221

Song, X., Qian, S., Liu, K., Zhou, S., Zhu, H., Zou, Q., et al. (2017). Resting-state

BOLD oscillation frequency predicts vigilance task performance at both normal

and high environmental temperatures. Brain Struct. Funct. 222, 4065–4077.

doi: 10.1007/s00429-017-1449-4

Tavor, I., Parker Jones, O., Mars, R. B., Smith, S. M., Behrens, T. E., and Jbabdi, S.

(2016). Task-free MRI predicts individual differences in brain activity during

task performance. Science 352, 216–220. doi: 10.1126/science.aad8127

Termenon, M., Jaillard, A., Delon-Martin, C., and Achard, S. (2016).

Reliability of graph analysis of resting state fMRI using test-retest

dataset from the Human Connectome Project. NeuroImage 142, 172–187.

doi: 10.1016/j.neuroimage.2016.05.062

Tian, L., Wang, J., Yan, C., and He, Y. (2011). Hemisphere- and gender-related

differences in small-world brain networks: a resting-state functionalMRI study.

NeuroImage 54, 191–202. doi: 10.1016/j.neuroimage.2010.07.066

Uchiyama, K., Shimai, T., Utsuki, N., and Otake, K. (2001). EQS Manual. Tokyo:

Jitsumukyoiku Syuppan, Practical Education Press.

van den Heuvel, M. P., and Hulshoff Pol, H. E. (2010). Exploring the

brain network: a review on resting-state fMRI functional connectivity. Eur.

Neuropsychopharmacol. 20, 519–534. doi: 10.1016/j.euroneuro.2010.03.008

Varoquaux, G. (2017). Cross-validation failure: small sample sizes lead to large

error bars. Neuroimage. doi: 10.1016/j.neuroimage.2017.06.061. [Epub ahead

of print].

Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., et al. (2009).

Parcellation-dependent small-world brain functional networks: a resting-state

fMRI study. Hum. Brain Mapp. 30, 1511–1523. doi: 10.1002/hbm.20623

Yahata, N., Morimoto, J., Hashimoto, R., Lisi, G., Shibata, K., Kawakubo, Y., et al.

(2016). A small number of abnormal brain connections predicts adult autism

spectrum disorder. Nat. Commun. 7:11254. doi: 10.1038/ncomms11254

Yamauchi, T., Sudo, A., Tanno, Y. (2009). [Reliability and validity of the Japanese

version of the brief core schema scales]. Shinrigaku Kenkyu 79, 498–505.

doi: 10.4992/jjpsy.79.498

Yan, C. G.,Wang, X. D., Zuo, X. N., and Zang, Y. F. (2016). DPABI: data processing

& analysis for (resting-state) brain imaging. Neuroinformatics 14, 339–351.

doi: 10.1007/s12021-016-9299-4

Yang, X., Liu, J., Meng, Y., Xia, M., Cui, Z., Wu, X., et al. (2017). Network

analysis reveals disrupted functional brain circuitry in drug-naive social anxiety

disorder. Neuroimage. doi: 10.1016/j.neuroimage.2017.12.011. [Epub ahead of

print].

Zafar, R., Kamel, N., Naufal, M., Malik, A. S., Dass, S. C., Ahmad, R. F., et al. (2017).

Decoding of visual activity patterns from fMRI responses using multivariate

pattern analyses and convolutional neural network. J. Integr. Neurosci. 16,

275–289. doi: 10.3233/JIN-170016

Zalesky, A., Fornito, A., and Bullmore, E. T. (2010). Network-based statistic:

identifying differences in brain networks. Neuroimage 53, 1197–1207.

doi: 10.1016/j.neuroimage.2010.06.041

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Sung, Kawachi, Choi, Kang, Abe, Otomo and Ogawa. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 March 2018 | Volume 12 | Article 149

https://doi.org/10.1016/j.jad.2017.04.067
https://doi.org/10.1016/j.cub.2009.04.020
https://doi.org/10.1073/pnas.070039597
https://doi.org/10.1126/science.1131295
https://doi.org/10.1016/j.nicl.2016.10.004
https://doi.org/10.1073/pnas.89.13.5951
https://doi.org/10.3389/fninf.2013.00012
https://doi.org/10.1093/schbul/17.4.555
https://doi.org/10.1177/0013164404273942
https://doi.org/10.1073/pnas.95.5.2636
https://doi.org/10.1111/bdi.12221
https://doi.org/10.1007/s00429-017-1449-4
https://doi.org/10.1126/science.aad8127
https://doi.org/10.1016/j.neuroimage.2016.05.062
https://doi.org/10.1016/j.neuroimage.2010.07.066
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1002/hbm.20623
https://doi.org/10.1038/ncomms11254
https://doi.org/10.4992/jjpsy.79.498
https://doi.org/10.1007/s12021-016-9299-4
https://doi.org/10.1016/j.neuroimage.2017.12.011
https://doi.org/10.3233/JIN-170016
https://doi.org/10.1016/j.neuroimage.2010.06.041
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	A Set of Functional Brain Networks for the Comprehensive Evaluation of Human Characteristics
	Introduction
	Materials and Methods
	Measurements of Psychometric Parameters
	MRI Measurements
	Participants
	Primary Experiment
	Supplementary Experiment

	MRI Data Analysis: Primary Experiment
	VBM Analysis
	rs-fMRI Analysis
	SVM Analysis
	Classifier Design
	Data Preparation for Training—Classification
	Training of Classifiers

	Procedure for MRI Data: Supplementary Experiment
	Test of Classifiers

	Summary of the Data Processing Procedures
	Training Procedure Figure 1A
	Test Procedure Figure 1B


	Results
	Psychological Data
	Voxel-Based Morphometry
	rs-fMRI
	SVM
	Testing the SVM Classifiers in Different Populations

	Discussion
	Conclusion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


