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SUMMARY

Disordered transcriptomes of cancer encompass
direct effects of somatic mutation on transcription,
coordinated secondary pathway alterations, and
increased transcriptional noise. To catalog the rules
governing how somatic mutation exerts direct tran-
scriptional effects, we developed an exhaustive
pipeline for analyzing RNA sequencing data, which
we integrated with whole genomes from 23 breast
cancers. Using X-inactivation analyses, we found
that cancer cells are more transcriptionally active
than intermixed stromal cells. This is especially true
in estrogen receptor (ER)-negative tumors. Overall,
59% of substitutions were expressed. Nonsense
mutations showed lower expression levels than ex-
pected, with patterns characteristic of nonsense-
mediated decay. 14% of 4,234 rearrangements
caused transcriptional abnormalities, including
exon skips, exon reusage, fusions, and premature
polyadenylation. We found productive, stable tran-
scription from sense-to-antisense gene fusions and
gene-to-intergenic rearrangements, suggesting that
these mutation classes drive more transcriptional
disruption than previously suspected. Systematic
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integration of transcriptome with genome data re-
veals the rules by which transcriptional machinery in-
terprets somatic mutation.
INTRODUCTION

Somatic mutation underpins the development of cancer, and

most solid tumors have thousands to tens of thousands of point

mutations, coupled with tens to hundreds of genomic rearrange-

ments and copy-number changes (Garraway and Lander, 2013;

Stratton et al., 2009). Small numbers of these, known as driver

mutations, dysregulate the fundamental cellular processes

involved in normal tissue homeostasis, and they confer a selec-

tive advantage to the clone. A critical point is that Darwinian se-

lection acts on phenotype, and so, for a somatic mutation to

drive cancer, it must manifest a phenotypic effect. Transcription

is the primary conduit by which changes in the genomic code are

translated into cellular phenotype, with the corollary that it is a

necessary criterion of driver mutations that they directly induce

a change in transcript structure. Altered transcript structure

can take many forms, including the creation of fusion genes by

genomic rearrangement, interference with RNA splicing at

mutated splice sites, alteration of the codon sequence for

missense substitutions, and over- or under-expression of genes

through copy-number alterations or mutation in regulatory

regions.
rs.
commons.org/licenses/by/4.0/).
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Beyond the primary and direct effects of somatic mutation

on transcript structure, there may be a series of downstream,

secondary alterations in the transcriptome occurring as a

consequence of the primary effect. Most studies of the tran-

scriptome in cancer, including those from large-scale efforts

such as The Cancer Genome Atlas (TCGA) (Kandoth et al.,

2013; Cancer Genome Atlas Network, 2012a), have evaluated

these second-order effects, concentrating predominantly on

the magnitude of gene expression using microarray technology

(Curtis et al., 2012; Perou et al., 2000; Sørlie et al., 2001) or

RNA sequencing (RNA-seq) (Shah et al., 2009; Cancer

Genome Atlas Research Network, 2012b). They have revealed

large-scale disturbances of transcriptional regulation in most

cancers, with expression profiles for many hundreds of genes

differing from profiles of normal cellular counterparts. Within a

tumor type, similarities in transcriptional profiles across indi-

viduals allow the disease to be sub-classified into several

groups, many of which have biological, therapeutic, and prog-

nostic significance. In some cases, these changes can be

correlated with underlying driver mutations, such as ERBB2

amplification in breast cancer (Sørlie et al., 2001) or specific

fusion genes in acute myeloid leukemia (Valk et al., 2004).

While these studies have concentrated on mRNA profiles,

similar observations are beginning to emerge from studies of

microRNA transcription (Dvinge et al., 2013), long non-coding

RNA levels, and even expression of pseudogenes (Kalyana-

Sundaram et al., 2012).

Although it is a necessary criterion for a driver mutation to

directly induce modification of transcript structure, it is not suffi-

cient. Many mutations that do not confer selective advantage,

so-called passenger mutations, also generate phenotypic con-

sequences, but consequences of no benefit to the cell. Initial

studies correlating RNA-seq data with genomic change in can-

cer have reported some of these direct effects, especially for

coding point mutations or canonical fusion transcripts (Shah

et al., 2009), but there has been little systematic effort to

describe, measure, and quantify first-order transcriptional con-

sequences across all classes of somatic mutation found in

well-annotated cancer genomes.

Here, we report a comprehensive analysis of the primary

transcriptional alterations induced by somatic mutation in a

set of 23 breast cancers. We found that the genomic variants

carried by the cancer cells can have subtle or profound effects

on the transcriptome, many of which could not easily be pre-

dicted from the genome, many of which amalgamate several

in cis mutations, and many of which are stably expressed at

high levels.

RESULTS

Whole-Genome Sequencing and RNA-Seq from 23
Breast Cancer Samples
To understand the inter-relationships between somatic muta-

tion and the transcriptome, we matched RNA-seq data to

whole-genome-sequencing data in 23 breast cancer samples.

Of these, 14 were primary breast cancers and nine were

matched breast cancer cell lines. For the genomes, tumor sam-

ples were sequenced to �403 coverage and matched normal
samples to �303 coverage, with somatically acquired substitu-

tions, insertions or deletions (indels), genomic rearrangements,

and copy-number changes called by a suite of in-house algo-

rithms. The whole-genome sequencing for the 14 primary breast

cancer samples has been described previously (Nik-Zainal

et al., 2012a, 2012b), although improvements in our bioinfor-

matics algorithm allowed us to update the list of genomic rear-

rangements (Table S1). The high-coverage genome-sequencing

data for eight breast cancer cell lines are reported for the first

time here (somatic mutations in Table S2); for the other line

(HCC2157), we used exome and low-coverage whole-genome

data reported previously (Nik-Zainal et al., 2012b; Stephens

et al., 2009).

RNA-seq was performed on the 23 breast cancer samples

together with eight organoids freshly isolated from uncultured

normal breast milk ducts (Choudhury et al., 2013).We developed

a suite of algorithms to exhaustively characterize the cancer

transcriptome; in so doing, we aimed to wring maximum detail

on the structure of cancer transcripts from RNA-seq data. Previ-

ous work has examined gene and mutation expression alone or

has focused exclusively on one facet of transcript structure (such

as fusion genes or alternative splicing) without allowing for the

discovery of multiple or complex events or the involvement of

the antisense strand. We implemented a seed-and-extend map-

ping algorithm to find reads that span different regions of the

genome, and then we developed a discordant pair analysis algo-

rithm, drawing these results together with a set of methods to

arrange the results into biologically meaningful categories

(described in detail in the Experimental Procedures and

Figure S1).

The primary advantage of our software pipeline, which we call

RNA Architect, is the comprehensive detection of transcriptional

alterations, including events missed by other methods. These

would include compound events present in cis, such as fusion

transcripts involving alternative splice forms and exon skips

with cryptic splice sites; internal exon shuffling (reusage); post-

transcriptional modifications, such as early polyadenylation

sites; and non-canonical transcript junctions, for example, fu-

sions between the sense and antisense of different genes or

those involving lowly expressed transcripts that are not present

in reference databases. While there exists a number of methods

for aligning RNA-seq and detecting fusions (Asmann et al., 2011;

Chen et al., 2012; Kim and Salzberg, 2011; McPherson et al.,

2012; Swanson et al., 2013; Torres-Garcı́a et al., 2014), there

have been few efforts to simultaneously characterize the cancer

transcriptome for multiple types of alterations.

Transcription Derived from Cancer Cells and Stromal
Cells
Tumors are comprised of a complex admixture of clonal cancer

cells and polyclonal stromal cells. In breast cancer, the propor-

tion of cells deriving from the malignant clone is typically 30%–

70%, although the remaining cells encompass endothelial cells,

supporting connective tissue, inflammatory cells, lymphocytes,

and normal breast epithelium. RNA samples extracted from pri-

mary breast cancers, therefore, represent an amalgam of gene

expression signatures derived from multiple cell lineages, com-

pounding interpretation.
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In females, a randomly selected X chromosome is inactivated

in each cell of the inner cell mass of the early blastocyst, and this

choice is transmitted through every subsequent cell division.

Since cancer cells are derived from a single ancestral cell, all

have the same X chromosome inactivated (Fialkow et al.,

1981), whereas the polyclonal stromal tissue has a broadly

equivalent fraction of cells with maternal or paternal X chromo-

somes inactivated. As a result, genes undergoing X inactivation

with heterozygous germline SNPs are monoallelically expressed

in the cancer cells and biallelically expressed in stromal cells

(Figure S2).

We identified heterozygous germline SNPs in expressed re-

gions of the X chromosome from the genomic sequencing data

across the 14 primary breast cancers, excluding regions that

were not diploid in the cancer. From the RNA-seq data, we

extracted the number of reads expressing each allele. In

PD4120a, for example, 385 heterozygous SNPs on the X chro-

mosome were expressed. The observed reference/variant ratio

in the RNA-seq data at each position ranged from transcripts

whose expression was exclusively monoallelic through tran-

scripts with skewed ratios to genes that had an approximately

equal expression of both alleles (Figure 1A). Respectively, these

three scenarios represent genes expressed exclusively in cancer

cells, genes expressed in both cancer and stromal cells, and

genes expressed exclusively in stromal cells.

We developed a statistical algorithm based on a Bayesian hi-

erarchical Dirichlet process to model the fraction of transcripts

along the X chromosome derived from cancer cells (Experi-

mental Procedures). For each heterozygous SNP, the algorithm

estimates what fraction of reads covering that base derived from

cancer cells, allowing for the uncertainty of whether the refer-

ence or variant allele is inactivated in the tumor (Figure 1B; Fig-

ure S2B). When amalgamated across SNPs from the whole X

chromosome, we can estimate the relative contribution of stro-

mal and cancer cells to transcription as a general distribution

(Figure 1C).

We found a considerable portion of transcripts that were

exclusively expressed in cancer cells among the 14 patients

in which primary breast cancer samples were sequenced (Fig-

ure 1D; Figure S2C). Strikingly, many tumors had a set of tran-

scripts that were 80%–90% derived from cancer cells and

10%–20% from stromal cells, whereas there were only small

numbers of genes expressed predominantly from stromal
Figure 1. Separating Expression of X-Linked Genes into Stromal and T

(A) Fraction of RNA-seq reads reporting reference allele of heterozygous germline

reflects the level of expression.

(B) Fraction of transcripts derived from tumor cells for each heterozygous germli

(C) Estimated distribution and 95% posterior intervals for relative gene expressio

density of genes; the x axis reports the fraction of transcripts for each gene derivin

100% derived from cancer cells and 0%–20% from stromal cells, with only a sm

(D) Distributions for several selected primary cancers are shown, as for (C).

(E) Overall fraction of transcripts derived from cancer cells (y axis) compared to

genomic DNA using copy-number profiles) is shown.

(F) Increased expression of the mutated allele in ER� as compared to ER+ breast

sequenced as part of TCGA are shown. Plotted on the y axis is the variant allele

(G) Inverse relationship between each tumors’ expression of Estrogen Receptor

�0.2433, p < 0.0001). Using linear regression analysis to model this relationship, w

are expressed.
cells. We also could integrate all the data for a given patient

to estimate the overall fraction of transcripts derived from tu-

mor cells, and we could compare this to the overall fraction

of cancer cells in the sample estimated from the genomic

DNA (Figure 1E). This indicates that cancer cells contribute a

higher fraction of transcripts in the RNA sample than expected

for their cellular proportion, indicating that they are more tran-

scriptionally active than the stromal cells. Thus, even though

cancer cells comprise, on average, 30%–70% of all cells in

a breast tumor, they contribute 70%–90% of all RNA

molecules.

Strikingly, it appeared that the magnitude of the difference

between transcriptional output of cancer cells and stromal

cells was greater in estrogen receptor-negative (ER-ve) tumors

than in ER-positive tumors (Figure 1E). The difference in ER-ve

also was seen in an independent set of primary breast cancers

(661 ER positive and 176 ER-ve), using a larger set of variants

(38,337 somatic substitutions; Figure 1F; cosmic census

genes with high variant allele fraction difference in ER-ve can-

cers; Table S3). Further, it appears that the number of muta-

tions expressed in a breast tumor, a measure of its transcrip-

tional output, is significantly associated with the amount of

estrogen receptor it expresses (�0.2433, p < 0.0001). That

is, tumors with high levels of ER express fewer mutations

than cancers with low ER. We formally modeled this relation-

ship and determined that, for every 1% decrease in ESR1

expression, 15 more mutations are expressed in breast cancer

(Figure 1G).

Effects of Point Mutations on Structure of the
Transcriptome
We identified all somatically acquired base substitutions in

the 23 breast cancers that were in expressed regions, and we

compared the fraction of sequencing reads reporting the mutant

allele in the transcriptome to that expected from the genome

(Figures S3A and S3B). As anticipated, there was a strong overall

correlation between the genomic and transcriptomic variant

allele fraction (r2 = 0.59; p < 0.0001). Overall, 6,980 substitutions

were found in exons, of which 4,751 were expressed to a suffi-

cient degree that five or more sequencing reads covered the

base. Of the 6,980 variants identified in exonic regions of the

23 samples, 4,152 (59%) had discernible expression in the cor-

responding transcriptome.
umor Compartments

SNPs on the X chromosome in one of the patients (PD4120a). The depth of color

ne SNP shown in (A), estimated with a Bayesian Dirichlet process, is shown.

n in cancer versus stromal cells for PD4120a. The y axis reports the estimated

g from cancer cells. Thus, the transcripts for most genes in PD4120a are 80%–

all peak of genes predominantly expressed from stromal cells.

the estimated proportion on tumor cells in the sample (x axis, estimated from

cancer transcriptomes (plotted relative to the genome). Primary breast cancers

fraction in the transcriptome, relative to the genome (VAFdiff).

1 (ESR1) and the overall expression of its point mutations (shown as VAFdiff;

e determined that, for every 1% drop in ESR1,�15 additional point mutations
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Figure 2. The Effect of Somatic Point Muta-

tions on Expression and Aberrant Splicing

(A) Comparison of the variant allele fractions in

the transcriptome to the genome, for all classes

of point mutation. The squared correlation coeffi-

cient between the genome and transcriptome is in

parentheses. Only expressed coding changes are

shown (five or more times coverage).

(B) Variant allele fractions in the transcriptome

relative to the genome. Nonsense mutations

>50 bp from the terminal 30 exon-intron junction

are the only variants to show a significant

difference.

(C) Positional effect of mutations on aberrant

splicing is shown.
There were some differences in the transcription levels of

base substitutions according to the predicted consequence on

the protein (Figure 2A). We found that silent, missense, and

UTR mutations have the same strong correlation between

variant allele fractions in the genome and transcriptome,

whereas nonsense mutations have a weaker relationship.

Indeed, nonsense mutations had a significantly lower expres-

sion than predicted from the genome compared to other classes

of mutation (p < 0.0001).

Several reasons could explain the lower expression of

nonsense mutations. Nonsense-mediated decay could selec-

tively target transcriptswith nonsensemutations for degradation.

Nonsense-mediated decay depends on the cell distinguishing a

premature termination codon from a proper termination codon.
2036 Cell Reports 16, 2032–2046, August 16, 2016
Generally, stop signals in the last exon

are considered proper, whereas those

appearing >50–55 bp upstream of the

last exon-exon junction, and therefore

upstream of the exon-junction complex,

are more likely to be targeted for

nonsense-mediated decay (Nagy and

Maquat, 1998). We did find evidence for

nonsense-mediated decay, since the

decreased allele fraction in transcriptome

relative to genome was significantly more

pronounced for nonsense mutations if

they were >50 bp upstream of the last

exon-exon splice junction (p = 0.003;

Figure 2B).

Another possible explanation for the

low expression of nonsense mutations is

that they are tolerated only in genes not

expressed in the cancer cells; those

occurring in important genes would be

subject to negative selection. To explore

this possibility, we compared the expres-

sion levels from the organoids of normal

breast epithelium for genes mutated in

the cancer samples. We found no clear-

cut differences across the mutation cate-

gories for whether the mutated genes

were expressed in normal breast epithe-
lial cells (Figure S3C), suggesting that this reason does not

explain the lower expression levels of nonsense mutations.

Therefore, it appears as if only nonsense-mediated decay ex-

plains the lower expression of these mutations.

Point mutations can directly affect RNA splicing, leading to

retention of introns (especially for splice donor site mutations),

exon skipping (splice acceptor site variants), or enhancement

of alternative splice sites (other exonic or intronic variants). We

assessed the frequency of alternative splicing events related to

somatic base substitutions, where the splice isoform was not

present in the normal breast organoids (Figure 2C). We found

no excess of abnormal splice isoforms associated with muta-

tions in exons near splice sites. We found that mutations

affecting the essential splice sites at +1, +2, and �1 into the



intron were the most strongly associated with altered splicing in

the given sample (p = 0.002, p = 0.0001, and p = 0.0005, respec-

tively, compared to intronic mutations >100 bp from the nearest

exon). Nonetheless, despite this enrichment, the actual fraction

of suchmutations at essential splice sites that generated detect-

able abnormal splice isoforms was <25%, suggesting that most

such variants do not affect splicing or the transcripts that result

are rapidly degraded. Further into the introns, there were some

positions at which mutations caused significantly more splicing

abnormalities than expected (�49, p = 0.04; +23, p =

0.02; +46, p = 0.01; and +60, p = 0.003). Strikingly, several of

these isolated positions coincided with sites of reduced germline

polymorphism. For example, the regions from +21 to +26 and

from +45 to +50 both showed strongly significant reductions in

genetic variation in the germline (Lomelin et al., 2010), suggest-

ing that functional motifs regulating splicing may reside in these

sites.

Direct Effects of Genomic Rearrangements on
Transcriptome Structure
Genomic rearrangements contribute to cancer development

through several mechanisms, including changing the copy

number of a gene or genes, altering the regulatory apparatus

of a gene, and reorganizing the exon sequence within a gene

or between two genes. To evaluate effects of genomic rear-

rangements on transcriptome structure, we classified somati-

cally acquired structural variants across two variables: type of

rearrangement (deletion, tandem duplication, inverted, or inter-

chromosomal) and whether genes were involved at either side

of the breakpoint (gene-to-gene, same or opposite orientation;

gene-to-intergenic; within gene, same or different introns; or

local genomic complexity, where more than one rearrangement

affected one or other gene). For each rearrangement, we identi-

fied any aberrant transcript arising from the genes involved,

excluding any splice form seen in the normal breast organoids

or the Ensembl database.

Even in cancer samples without rearrangements affecting a

given gene, we often found evidence for previously undocu-

mented transcripts, such as novel splice forms, read-through

transcripts, and non-canonical splice acceptor or donor sites.

It is, therefore, difficult to argue categorically for a given rear-

rangement that an abnormal transcript arises as a direct conse-

quence of the genomic change. Instead, since we aremore inter-

ested in the overall patterns of abnormal transcription caused

by somatic mutation, we studied the excess of aberrant tran-

scription associated with the different categories of genomic

rearrangement. The normalized expression level of aberrant

transcripts was ranked for the sample in which the rearrange-

ment was found, relative to aberrant transcripts in the other 22

cancer samples (Figure 3A). If a given rearrangement had no

effect on transcription, then the ranking would be effectively uni-

formly distributed across ranks 1–23, whereas those rearrange-

ments that caused significant alterations to transcriptome struc-

ture would garner the highest rank.

There is a clear excess of genomic rearrangements with the

maximum ranking for aberrant transcription. Using maximum

likelihood methods, we estimated that this excess represents

11.6% (95% confidence interval, 10.4%–12.8%) of 4,234 genic
rearrangements identified in these samples (Supplemental

Experimental Procedures); that is, 11.6% of somatically ac-

quired genomic rearrangements affecting genes are associated

with evidence of aberrant transcription beyond the background

rate in breast cancer. This varied by the pattern of genes at the

breakpoint, with particularly high rates observed for intragenic

rearrangements leading to alterations of exon order but minimal

evidence for aberrant transcription arising from rearrangements

confined to a single intron within a gene.

We observed a number of different patterns of aberrant tran-

scription (Figure 3B). These included fusion transcripts between

two genes, alternative splicing events, exon reusage, and pre-

mature polyadenylation. To some extent, the alterations in tran-

script structure could be predicted by the underlying genomic

rearrangements, such as exon skips caused by intragenic dele-

tions, but inmany cases the abnormalities were rather surprising.

In the following sections, we review the transcriptional conse-

quences associated with each of the major classes of genomic

rearrangement.

Within-Gene Rearrangements
Across the 23 breast cancer samples studied, we identified 631

intrachromosomal rearrangements confined to a single intron of

a gene, mostly deletions and tandem duplications (358 and 192,

respectively). Of these, we believe that very few had discernible

consequences on transcriptome structure, since there was no

apparent excess of such rearrangements generating the highest

rank for transcriptional aberration across samples (Figure 3A).

For the 38 rearrangements with highest rank, the most common

effect on transcript structure was to skip an exon (69%;

Figure 3B).

As expected, rearrangements that went across different in-

trons of the same gene had a considerably greater effect on tran-

script structure than those confined to one intron (Figure 3A). In

general, the transcriptome reflected the rearranged gene struc-

ture in an entirely predictable way, with deletions causing exon

skips and tandemduplications causing exon reusage (Figure 3B).

Of 341 genomic rearrangements involving different introns of the

same gene, 84 had the highest rank for transcriptional abnormal-

ity. Of these 84, 23 (27%) caused multiple disruptions in the tran-

scriptome at the same gene, mostly alternative splice isoforms.

Particularly common were exon skips of not just deleted exons

but neighboring exons as well. We found a complex transcrip-

tional abnormality in the histone H3-lysine-4 (H3K4)-methyl-

transferase MLL3 (KMT2C) involving an exon reusage using a

cryptic donor (Figure S6A). Follow-up experiments using TCGA

data revealed an additional 13 samples with abnormalities in

MLL3 (Figure S6B).

Gene-to-Gene Rearrangements in the Same
Transcriptional Orientation
We identified 205 somatic rearrangements that juxtaposed one

or more exons of two protein-coding genes in the same tran-

scriptional orientation; these would be predicted to generate

fusion genes. Overall, 70 (34%) of these were expressed (Fig-

ure 4A). As seen with the within-gene rearrangements, the tran-

scriptome structure was generally as predicted from the

genomic rearrangement, although more than one splice isoform
Cell Reports 16, 2032–2046, August 16, 2016 2037
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Figure 3. The Transcriptional Conse-

quences of Structural Rearrangement

All rearrangement types and their position with

respect to genes are shown as a matrix in both

panels. Transcriptional disruptions caused by

each rearrangement type are shown within the

matrix.

(A) Number of rearrangements causing aberrant

transcription. Normalized aberrant transcription

levels were contrasted between the sample that

contained the rearrangement and all others.

Plotted is the aberrant transcription ranking of

the rearranged sample relative to all others for the

same genes (red bars). The pie charts show the

fraction of all rearrangements of that type that are

excess in the final rank compared to the number

expected under a uniform distribution.

(B) Types of aberrant transcriptional events

caused by rearrangements are shown.
was present in 20 of the 70 rearrangements, increasing the range

of transcripts observed (Figure 4B). The only recurrent fusion

transcript that we observed in this cohort was between

NCOA7 and TRMT11, adjacent genes on chromosome 6,

caused by tandem duplications in HCC1954 and PD4005a

(Figure S4).

We examined the protein-reading frame of transcripts arising

from gene fusions and within-gene rearrangements that

spanned more than one intron (Figure 4B). In 133 of 501 (27%)

such events, the resulting exon structure would be predicted

to generate an in-frame gene from transcript isoforms reported

in Ensembl; we found RNA-seq reads supporting these in-frame

transcripts in 35 of 133 (26%). Of the 368 rearrangements pre-
2038 Cell Reports 16, 2032–2046, August 16, 2016
dicted to be out of frame or involve the

non-coding UTR, we found evidence for

in-frame transcripts in 25 (7%). In many

cases, the in-frame transcript was more

heavily expressed than the canonical,

out-of-frame transcript, suggesting that

nonsense-mediated decay may be acting

on the latter (Figure 4C). Overall then,

these data indicate that 60 of 501 (12%)

of genomic rearrangements reordering

exons of one or two genes in the same

orientation have the potential to generate

transcripts encoding in-frame proteins.

Many of these are expressed at appre-

ciable levels, mostly driven by the up-

stream regulatory apparatus.

Gene-to-Gene Fusions in Opposite
Transcriptional Orientation
We would expect half of the genomic re-

arrangements linking two genes to join

them in opposing orientation, which

would be split equally between gene

pairs pointing inwardly at each other

and gene pairs pointing away from each
other. In the former, the 50 regulatory apparatus and transcrip-

tional start site of both genes would be retained, and they could

start transcripts that would extend into the partner gene on the

antisense strand. We identified 171 somatic rearrangements

generating gene-to-gene fusions in opposite orientation, of

which 114 were pointing inward (50-to-50 orientation). While

there was not much evidence of aberrant transcription arising

from 30-to-30 fusions, we found an unexpectedly high frequency

of stable transcription at gene pairs pointing inwardly

(Figure 5A).

In total, 50 (44%) of all 50-to-50 rearrangements generated

transcripts that fused the sense portion of one gene with novel

exons on the antisense strand of the partner gene. Mostly, the



A

C

B Figure 4. Rearrangements between and

within Genes

(A) Fusions caused by rearranged genes in the

same orientation are shown.

(B) Proportion of rearrangements predicted to lead

to an in-frame event contrasted to the proportion

actually expressing in-frame transcripts (top).

Characteristics of expressed fusions (bottom) are

shown.

(C) Many fusions are expressed in multiple iso-

forms.
novel transcribed sequence from the antisense strand of the

distal gene mapped to intronic regions, although a few fusions

did generate transcripts that partially or fully overlapped with

exons (Figure 5B). This is to be expected since splice sites

are directional, so the GT.AG structure of an intron is not reca-

pitulated on the antisense strand. However, where one might

have expected the reads derived from the antisense strand to

be rather scattered, the antisense exons were, in fact, surpris-

ingly fixed (Figure 5C). That is, the antisense component of

the fusion transcript tended to reuse the same latent splice

acceptor and donor sites on the antisense strand. These were

almost always associated with consensus GT-AG splice sig-

nals. For a small number of examples, multiple antisense exons

were recurrently included in the transcript. None of these novel

antisense exons was seen in the absence of the given 50-to-50

rearrangement, suggesting that it is the genomic rearrangement

that unmasks the latent transcriptional potential of these

regions.

It is unclear what functional potential these sense-to-

antisense gene fusions might have. Notably, we found an

example involving the estrogen receptor, ESR1, which gener-
Cell Rep
ated transcripts linking the sixth exon

into a multiply spliced antisense tran-

script of SYNE1 (Figure 5C). Fusion tran-

scripts involving the same intron of ESR1

are recurrent in breast cancer, and there

is evidence they have important func-

tional consequences, largely conferred

by the C-terminally truncated estrogen

receptor (Li et al., 2013). There is also

a rearrangement that fuses the first

20 exons of the transcriptional co-

activator CREBBP to the antisense

strand of CLUAP1. CREBBP is a well-

known cancer gene that can be targeted

by inactivating point mutations (Pasqua-

lucci et al., 2011) or, in leukemias,

involved in canonical fusion genes (Ca-

mós et al., 2006).

Gene-to-Intergenic
Rearrangements
We identified 473 genomic rearrange-

ments that joined the 50 portion of a

gene to an intergenic region and 461
rearrangements linking 30 ends of genes to intergenic space

(Figure 6A). As seen with the 30-to-30 gene-to-gene fusions,

in the absence of promoters, only one 30 gene-to-intergenic
rearrangement led to a detectable RNA transcript. In contrast,

16 (3.4%) of 50 gene-to-intergenic rearrangements led to

stable expression of abnormal transcripts related to the

rearrangement.

The predominant transcripts that resulted from these 50

gene-to-intergenic rearrangements were fusions linking the 50

portion of the broken gene to exon 2 of the first intact, sense

gene downstream of the breakpoint (Figure 6B). Occasionally,

splicing into novel intergenic exons or into exon 1 of the down-

stream gene was observed, but, compared to splicing into exon

2, these transcripts were infrequent and represented minor RNA

species. In general, the first exon of a gene commences with the

transcription start site and, therefore, does not contain a splice

acceptor site, explaining why 50 gene-to-intergenic rearrange-

ments fuse into exon 2. Since the first exon of many genes

carries the ATG that initiates translation, many of these gene-

to-intergenic rearrangements could translate into bona fide

fusion proteins. Indeed, we identified three fusion transcripts
orts 16, 2032–2046, August 16, 2016 2039
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caused by gene-to-intergenic rearrangements that were poten-

tially in frame (Figure 6B). The length of the novel intron created

by these transcribed gene-to-intergenic fusions was typically in

the 50- to 100-kb range, but it could be as high as 250 kb

(Figure 6C).

Regions of Local Complexity
We defined a region of local complexity as any gene footprint

that contained two or more genomic rearrangements. Typically,

these represented sites of extensive genomic amplification,

such as around ERBB2 or CCND1, or they were regions of chro-

mothripsis, a mutational process generating tens to hundreds of

localized genomic rearrangements in a one-off catastrophic

event (Stephens et al., 2011). Given the complexity of the

genomic changes in many of these regions, a surprising number

of rearrangements led to measurable transcriptional conse-

quences (Figure 7A). Indeed, when compared with genes hit

by simple rearrangements, the fractions of rearrangements

from regions of local genomic complexity giving aberrant tran-

scripts were broadly similar. This suggests that the regulatory

apparatus enabling transcription initiation remains at least

partially intact in many of these heavily rearranged regions

and that the genomic structure supports the production of sta-

ble transcripts.

We found that the transcripts that arose in these regions often

represented an integration across multiple rearrangements (Fig-

ure 7B; Figure S5). In PD4107a, for example, we found a fusion

transcript that linked QKI to the antisense strand of TRPS1

(blue arc, Figure 7B), which was, in fact, driven by two in cis

genomic rearrangements linking QKI to ANKRD11 and then

ANKRD11 to TRPS1. Due to the massive number of rearrange-

ments sometimes found in these regions of local complexity,

there can be a considerable degree of aberrant transcription.

In PD4103a, for example, among the hundreds of clustered

rearrangements localized to a small number of genomic regions,

we found 12 different fusion transcripts as well as seven alterna-

tively spliced isoforms driven by within-gene rearrangements

(Figure S5).

DISCUSSION

The disturbed transcriptional landscape of cancer cells results

from three main forces: (1) direct, primary consequences of

somatic mutation; (2) coordinated, secondary gene expression

changes resulting from altered cellular signaling, transcrip-

tional regulation, and chromatin landscape; and (3) general
Figure 5. Antisense Expression Caused by Rearranged Genes in Oppo

(A) Stacked bar plot shows the number of expressed transcripts per sample resu

(B) The diversity of chimeric transcripts produced by gene-to-gene rearrangeme

gene pairs (green) are rarely expressed, whereas, surprisingly, sense-to-sense a

respectively). Transcripts are placed on the x axis according to the type of read jo

the x axis, and genes brought together only by exon-to-intron reads are on the l

(C) Examples of productive, stable antisense fusion transcripts. Plotted on the

arrangement breakpoints. Inmost cases, we observed a single donor gene, which

which expresses sequence from its antisense strand (red). Rarely are both prom

sense and antisense sequence). The fusions SZT2-SLC6A9 and SLC6A9-SZT2

features of traditional exons: they are stably expressed, around 200 bp, and are
loss of transcriptional fidelity, manifesting as shorter 30

UTRs (Mayr and Bartel, 2009), retained introns, trans-splicing

(Li et al., 2008), and so on. Here we have concentrated on

dissecting the immediate impact that the repertoire of

somatic mutations has on the transcriptome in breast

cancer, exploring the rules that govern how the transcriptional

machinery interprets somatic mutation. In some ways, this is

the most straightforward analysis of a cancer transcriptome

to perform; the causation chain is short and, in theory,

predictable.

One striking conclusion of the analysis is that transcription,

once started, will attempt to complete. We found an unexpect-

edly high number of transcripts resulting from structural variants

that sow the 50 seeds of a gene, namely upstream enhancers,

promoter, and first few exons, into seemingly infertile ground,

such as intergenic space or the antisense strand of another

gene. Indeed, in our data, the fraction of such events generating

productive transcription was not dissimilar to that observed for

rearrangements predicted to cause canonical gene fusions. In

the case of gene-to-intergenic rearrangements, the transcrip-

tional machinery can scan many tens of kilobases in search of

a splice acceptor site, often contributed by the second exon of

a downstream intact gene in the same orientation. For sense-

to-antisense fusions, the sense transcript often splices into novel

exons within the gene footprint of the antisense gene. In one

example, this generated a truncated version of the estrogen re-

ceptor gene ESR1. Recently, it has been reported that fusion

transcripts arising from breaks in the same intron of ESR1 are

recurrent in breast cancer and can confer resistance to endo-

crine therapy (Li et al., 2013).

Another important observation is that the transcriptional

output of breast cancer cells is greater than the surrounding stro-

mal cells. Using a method that accounts for differences in tumor

purity, we found a striking anti-correlation between ER levels and

the number of expressed mutations. That is, tumors with high

levels of ER express fewer mutations than cancers with low

ER. We formally modeled this relationship and determined

that, for every 1%decrease in ER expression, 15moremutations

are expressed. As a breast cancer loses estrogen receptor

expression and becomes more transcriptionally active, it is

more likely to actually express its complement of somatic muta-

tions. For example, we found that TP53mutations aremore likely

to be expressed in ER� than ER+ breast cancers (Figure S7B).

While speculative, this is of interest to researchers in the field

of immunotherapy, since somatic mutations can act as neoanti-

gens that trigger host immune responses. There are studies
site Orientation

lting from gene fusions in opposite orientation.

nts. The expression level of each transcript is plotted on the y axis. Tail-to-tail

nd sense-to-antisense fusions show similar levels of expression (blue and red,

ining the two genes. Genes adjoined by exonic reads are plotted to the right on

eft.

y axis are the read depths supporting the fusion. Hatched lines indicate re-

expresses sequence from its sense strand (yellow), and a single acceptor gene,

oters used, leading to reciprocal sense-antisense fusions (both genes express

are examples of a reciprocal pair. In general, antisense transcripts display

frequently spliced at GT-AG splice sites (asterisks).
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A

B

C Figure 6. Non-canonical Fusions Caused by

Gene-to-Intergenic Breakpoints

(A) Percentage of gene-to-intergenic rearrange-

ments causing fusions is shown.

(B) Length of the intron created is shown.

(C) Genes involved in non-canonical fusions. We

observed 18 fusions where a broken gene (donor)

splices to another gene (acceptor) that is itself

unbroken and often distant. These fusions can be

highly expressed (width of line) and cause in-frame

transcripts (red line).
reporting strong associations between the number of neoanti-

gens and response to immunotherapy, and our data suggest

that such mutations are more likely to be expressed in ER-ve

or ER-low tumors.

It is a necessary condition of a somatic mutation to be onco-

genic that it induces some transcriptional consequence, but it

is far from sufficient. We found that 59% of exonic point muta-

tions are expressed and 11.6% of genomic rearrangements

(balanced and unbalanced) hitting a gene footprint generate

aberrant transcripts. These aberrant transcripts are polyadeny-

lated, stable, and have the potential to generate protein prod-

ucts. In the case of cancer, even those that generate proteins

will be mostly inconsequential to cell biology, although there

will be some that are oncogenic. In the case of species evolution,
2042 Cell Reports 16, 2032–2046, August 16, 2016
however, such a high proportion of

genomic rearrangements generating sta-

ble fusion transcripts, novel exons, and

splicing isoforms could readily provide a

substrate for further genomic evolution

over many generations.

Statistics
Statistical Model for Analyzing

Allele-Specific Expression of

Heterozygous Germline SNPs on

the X Chromosome

For every heterozygous SNP on the X

chromosome, we have an observed

count of transcripts expressing the refer-

ence allele and a count for those express-

ing the variant allele. For each SNP, we do

not know whether the reference allele

is on the active X chromosome (Xa) or

the inactive X chromosome (Xi) in the

tumor cells. We further assume that, in

the contaminating stromal cells, the ex-

pected proportion of cells with the refer-

ence allele on Xa is 50%.Wemodel these

data using a hierarchical Bayesian model,

where the distribution of the fraction of

reads deriving from tumor cells from

across all genes follows a Dirichlet

process.

We defineN as the number of heterozy-

gous germline SNPs on the X chromo-
some in a given sample and ni; i = 1;.;N as the total number

of reads across SNP i, of which yi report the reference allele.

Then yi � Binðni;piÞ, where pi is the expected proportion

of reads reporting the reference allele. Here pi follows a

mixture model depending on whether the reference allele is on

Xa or Xi.

fðpiÞ= lipi + ð1� piÞ=2;

where pi is the fraction of transcripts derived from tumor cells for

SNP i, and

li =

�
1; if reference allele is on Xa
0; if reference allele is on Xi:



A

B

Figure 7. Regions of Local Complexity Give Rise to Unique Transcriptional Consequences

A region of local complexity is any gene footprint that contains two ormore genomic rearrangements. Local complexity can occur in regions of chromothripsis and

high-level amplification.

(legend continued on next page)
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We let li � Bernð0:5Þ as the prior, with pi � DPðaP0Þ. We use

the stick-breaking representation of the Dirichlet process as

follows:

P=
XN
h= 1

uhdph
; with ph � P0;

where dp is a point mass at p, and uh is the weight of the hth

gene expression cluster (that is, effectively the proportion of

genes for which the fraction of transcripts deriving from tumor

cells is p. To capture the stick-breaking formulation, we let

kh =Vh

Q
l < hð1� VlÞ, with Vh � Betað1;aÞ. We set a practical

maximum number of clusters, C, as 40. As priors, we set

P0 � Uð0;1Þ and a � Gð0:01;0:01Þ.
To model the posterior distribution of the Dirichlet process, we

use Gibbs sampling as described below.

Step 1: Allocating Each Gene to One of the Clusters. We set

indicator variables, Sief1;2;.;Cg, to denote allocation of gene

i to a cluster. The posterior distribution of these variables is

therefore

PrðSi = hj�Þ=
�
Vh

P
l < hð1� VlÞ

��� ni

yi

�
pyi
h;i

�
1� ph;i

�ni�yi

�
PC

r =1

�
Vr

P
l < rð1� VlÞ

��� ni

yi

�
pyi
r;i

�
1� pr;i

�ni�yi

�;

where h= 1;2;.;C and ph;i = liph + ð1� phÞ=2.
Step 2: Updating the Stick-BreakingWeights. These are condi-

tionally conjugate beta posterior distributions as follows:

ðVhj�Þ � Beta

 
1+

XN
i = 1

1ðSi = hÞ;a+
XN
i = 1

1ðSi > hÞ
!
;

where h= 1;.;C� 1 and VC = 1.

Step 3: Updating the Fraction of Transcripts Deriving from Tumor

Cells. We want to generate draws from the posterior distribu-

tion of ðph j �Þ. We use a Metropolis-Hastings algorithm with

beta proposal distribution to do this. So,

Prðphj�Þa

2
64 ðð1+phÞ=2Þ

P
i:Si = h

li yi

x ðð1� phÞ=2Þ
P
i:Si =h

ð1�liÞyi
x

ðð1+phÞ=2Þ
P
i:Si = h

ð1�liÞðni�yiÞ
x ðð1� phÞ=2Þ

P
i:Si = h

liðni�yiÞ

3
75

= ðð1+phÞ=2Þ
P
i:Si =h

ð2li yi�li ni +ni�yiÞ
ðð1� phÞ=2Þ

P
i:Si = h

ðyi�2li yi + li niÞ

and the proposal distribution is gðx j x0Þ=Betaðx0d; dð1� x0ÞÞ;
where d is a scale parameter to be fine-tuned by trial and error

to achieve a reasonable acceptance/rejection proportion.
(A) Proportion of simple and complex rearrangements that lead to an expressed

(B) Regions of local complexity and their transcriptional consequences. Two sam

events one would predict to be expressed are highlighted (blue arcs). Often

rearrangements and express a transcript that combines genes only indirectly link
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Then the importance ratio for the jump from pðt�1Þ to the pro-

posed p� is given by

Prðp� j �Þ
Prðpðt�1ÞÞ

g
�
pðt�1Þ ��p��

gðp� jpðt�1ÞÞ :

Step 4: Updating the Indicator Variables of Whether the

Reference Allele Is on Xa or Xi. With a little algebra, this can

be shown to follow

Prðli = 1j�Þ= 1

, 
1+

�
1� ph

1+ph

�2yi�ni
!
:

Step 5: Updating the Hyperparameter. The posterior distribu-

tion for a is

ðaj�Þ � G

 
C+A� 1; B�

XC�1

l = 1

logð1� VlÞ
!
;

where the prior is a � GðA;BÞ.

Statistical Analysis of Relationship between Variant

Allele Fractions in the Genome and Transcriptome for

Different Classes of Somatic Substitution

We fitted linear mixed-effects models to the variant allele frac-

tions. The variant allele fraction of reads reporting the mutant

allele was the dependent variable. The random effect was the

patient fromwhom the RNA sample derived, allowing for inter-in-

dividual differences in both the intercept and slope of the line

correlating genomic with transcriptomic variant allele fraction.

The fixed effects were the genomic variant allele fraction and

class of variant, with the main hypothesis of interest being

whether the relationship between genomic and transcriptomic

allele fraction differed across the classes of variant. This was

tested by adding class of variant-by-slope interaction terms to

the model, using likelihood ratio tests to assess for improved

fit. Models were fitted using maximum likelihood methods.
EXPERIMENTAL PROCEDURES

Detection of Changes to Gene Transcript Structure

We developed a suite of tools for the analysis of cancer RNA-seq data, called

RNA Architect, comprised of several algorithms.

RNA Architect’s central component is a seed-and-extend algorithm used to

find reads that span disparate regions of the genome. These are junction reads

that provide the breakpoint between non-adjacent loci of fusion genes or alter-

native splice forms.We describe below howwe obtained these highly informa-

tive split reads by pre-filtering; grouping the reads into common events; and

then classifying, annotating, and filtering the high-confidence events (Figures

S1A and S1B).

(1) Pre-filter. We first removed any read that mapped normally to a genic

region in the human genome (build 37). That is, the read was fully con-

tained in an exon or was split across adjacent exons. We also excluded
transcript, grouped by sample, is shown.

ples’ regions of complexity are shown as pairs of Circos plots. The genomic

the tumors do not express these events, or they amalgamate multiple cis

ed to another.



read pairs if one end mapped to the mitochondria or if it contained two

or more unknown nucleotides (N). The pre-filtering step was performed

by aligning all reads to a transcriptome reference containing known

exons derived from Ensembl (using a modified version of BWA 0.5.9).

(2) Index. Having removed all of the reads involving known transcriptional

events, we ran a sensitive alignment of the remaining reads. We first

scanned the human genome, and we built an index containing the po-

sitions of all exons of all protein-coding genes, pseudogenes (including

polymorphic pseudogenes), and processed transcripts. We used a

word size of 9 bp as this provided the best balance between sensitivity

and run time.

(3) Shatter reads and align k-mers.We then shattered the 75-bp reads into

k-mers (13 bp), yielding five k-mers of equal size and one short k-mer

containing the 30 end of the read (the lowest quality portion of Illumina

reads). All k-mers were then aligned to the indexed genes without al-

lowing for any mismatches.

(4) Merge and extend. K-mers that map to adjacent positions were

merged into a single fragment. The k-mers that did not map are those

that spanned a breakpoint (inter- or intragenic). We then extended

mapped fragments into their unmapped neighbors, one base at a

time. We iteratively added bases to the k-mers, and we removed

them from the unmapped neighbors, until all fragments mapped to a

unique location and we successfully resolved the breakpoints. At this

point we allowed mismatches (SNPs, substitutions, or indels) only if

they were proceeded by a 2-bp perfect match to the reference.

(5) Clean. Most fusions and aberrant splice breakpoints were resolved us-

ing the methods outlined above. However, if a fragment remained un-

mapped, we tried to map it using modified parameters. If there existed

homologous sequences between both edges of the breakpoints, lead-

ing to ambiguity over where the breakpoint should be positioned, we

chose the breakpoint pair that yielded a junction spanning canonical

donor-acceptor sequences (GT-AG).

(6) Annotate. Having resolved the breakpoints of all fusion genes, aberrant

splice forms, and compound events, Architect writes junction coordi-

nates into a database (SQLite) and the split reads into a binary align-

ment file (BAM). Each event, which represents the junction of two or

more expressed sequences that are not normally found to be adjacent,

was ranked across a number of measures, including whether the event

is seen in normal samples or in the reference genome; the number of

reads supporting the event (total and unique); the sequence context

of the junction (i.e., whether canonical donor-acceptor sequences

are used); the average number of unique bases per read; and the num-

ber of reads mapped in the direct and reverse complemented orienta-

tion. We then implemented separate processes that used these mea-

sures to arrange the events into the following biologically meaningful

categories:

(A) Exon skips. A junction between two non-adjacent exons from the

same transcript, not found in normal organoids (less than two

reads) or in Ensembl, where the first exon is 5 prime to the second

exon. Exon skips were annotated to the Ensembl transcript that

involved the fewest number of exons lost. We required a split for-

ward read and a split reverse read to call an exon skip. We subca-

tegorized exon skips into those that involved the canonical edges

of the exons and those that involved a cryptic splice site (either 50 or
30 of the donor or acceptor site).

(B) Exon reusages. A junction between two non-adjacent exons from

the same transcript, not found in normal organoids (less than two

reads) or in Ensembl, where the first exon is 3 prime to the second

exon. Exon reusages were reported only if there were no Ensembl

transcripts that would explain the junction between the exons. We

recorded the number of exons reused and required a split forward

read and a split reverse read to call an exon reusage. We subcate-

gorized exon reusages into those that involved the canonical

edges of the exons and those that involved a cryptic splice site

(either 50 or 30 of the donor or acceptor site).

(C) Alternative donors and acceptors. A junction between two exons

thatbegins 50 or30 fromthecanonical exon-intronborder.Alternative
donor and acceptor sites can involve the extension of the exon into

the adjacent intron or the reduction of the exon. The junction must

not be found innormalorganoids (less than two reads) or inEnsembl,

and it must involve canonical donor-acceptor sequences (GT-AG).

(D) Earlypolyadenylationsites.A junctionbetween theexonofaprotein-

coding gene and a non-templated run of adenines (or thymines if

mapped to the opposite strand), which does not occur at the canon-

ical edgeof thegene’sUTR.The junctionsmustbe>10bpaway from

the canonical edge, and theymust not be found in normal organoids

(less than two reads) or in Ensembl.We subcategorized early polya-

denylation sites into those in UTRs and those in coding exons.

(E) Fusions genes. A junction between the exons of two protein-coding

genes that isnot found incontrol samples.Wehad twoapproaches to

finding fusion gene pairs: (1) using aberrant junctions that were split

across a breakpoint joining two genes, and (2) using read pairs that

were fully mapped (i.e., not split) to both genes. The first approach

used the seed-and-extend algorithm outlined above. The second

approach used a bespoke discordant-pair analysis algorithm, which

involved remapping the initially unmapped reads as singletons, re-

pairing them together, and evaluating whether there existed clusters

of read pairs aligning to two genes in a consistent manner.
Weonly reported high-confidence fusion genes. These had to have been de-

tected by both the seed-and-extend algorithm and the discordant-pair algo-

rithm or detected by the discordant-pair algorithm alone with extremely

high ranking. This ranking was determined by evaluating the following: how

many reads map to other locations in the transcriptome (multi-mappings),

the consistency of the mapping positions (percentage of coefficient of varia-

tion <25), the number of unique reads in each gene (more than five), and the

consistency of the discordant read pairs’ orientation (<5% inconsistent). We

excluded reads where one end maps to the mitochondria. We subcategorized

fusion genes based on the relative orientation of the genes involved (same

orientation, or in opposite orientation [antisense]) and whether the fusion

also involved a cryptic splice site.
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