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Background and Hypothesis: Schizophrenia is increas-
ingly understood as a disorder of brain dysconnectivity. 
Recently, graph-based approaches such as graph convolu-
tional network (GCN) have been leveraged to explore com-
plex pairwise similarities in imaging features among brain 
regions, which can reveal abstract and complex relation-
ships within brain networks. Study Design: We used GCN 
to investigate topological abnormalities of functional brain 
networks in schizophrenia. Resting-state functional mag-
netic resonance imaging data were acquired from 505 indi-
viduals with schizophrenia and 907 controls across 6 sites. 
Whole-brain functional connectivity matrix was extracted 
for each individual. We examined the performance of GCN 
relative to support vector machine (SVM), extracted the 
most salient regions contributing to both classification 
models, investigated the topological profiles of identified 
salient regions, and explored correlation between nodal 
topological properties of each salient region and severity of 
symptom. Study Results: GCN enabled nominally higher 
classification accuracy (85.8%) compared with SVM 
(80.9%). Based on the saliency map, the most discrimina-
tive brain regions were located in a distributed network in-
cluding striatal areas (ie, putamen, pallidum, and caudate) 

and the amygdala. Significant differences in the nodal 
efficiency of bilateral putamen and pallidum between pa-
tients and controls and its correlations with negative symp-
toms were detected in post hoc analysis. Conclusions: The 
present study demonstrates that GCN allows classification 
of schizophrenia at the individual level with high accuracy, 
indicating a promising direction for detection of individual 
patients with schizophrenia. Functional topological deficits 
of striatal areas may represent a focal neural deficit of neg-
ative symptomatology in schizophrenia.

Key words:  neuroimaging/psychosis/machine learning/ 
connectome/graph analysis/magnetic resonance imaging

Introduction

Schizophrenia is a severe mental disorder characterized 
by delusions, hallucinations, and disorganized thinking, 
which affects approximately 0.3%–0.7% of the world’s 
population.1 Given the complex and heterogeneous clin-
ical presentation, diagnosis solely based on clinical ob-
servation may lack accuracy and objectivity.2–4 Therefore, 
there is an urgent need to establish reliable diagnostic 
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biomarkers in order to develop personalized treatments 
within the precision medicine framework.

Previous research on imaging biomarkers has largely 
focused on single brain regions and localized connec-
tivity.5,6 However, the human brain is a highly inter-
connected network, and the emergence of  psychiatric 
illness is thought to be underpinned by a disruption 
of  normal functional integration among cortical and 
subcortical regions.7–11 Over the past 2 decades, neuro-
imaging studies have identified widespread functional 
dysconnectivity in individuals with schizophrenia rela-
tive to controls.12–18 These findings have led to the con-
clusion that schizophrenia cannot be explained in terms 
of  localized dysfunction within specific brain areas and 
is better understood as a disruption of  network-level 
functional organization.19–22 The study of  functional 
brain organization has the potential to identify predic-
tive biomarkers for neurodevelopmental and neuropsy-
chiatric disorders and shed light on their underlying 
mechanisms.

Recently, neuroimaging studies have employed 
machine-learning techniques that enable statistical infer-
ences at the level of the individual patient.23 Notably, deep 
neural networks are capable of capturing subtle hidden 
representations in the data.24 However, while schizo-
phrenia is increasingly understood as a disorder of brain 
dysconnectivity, most machine-learning models adopted 
in previous studies typically worked based on independent 
functional connections instead of the connectome itself.25 
In contrast, the use of graphs provides an alternative 
approach to network-level analysis which does capture 
topological information within brain networks.26 In neu-
roscience, where such representations are commonly 
used to model structural or functional connectivity be-
tween a set of brain regions, graphs have proven to be 
of great importance. Thus, graph-based neural networks 
(GNNs) have recently gained significant attention,27 as 
this type of deep leaning techniques is able to directly 
deal with the non-Euclidean graph data structure (eg, 
social network, protein interaction network, and brain 
network), capturing and abstracting complex network-
level information via the local features and neighbor-
hood relationships. Recent studies applying GNN to 
brain networks in individuals with schizophrenia, have 
achieved promising results. For example, Chang et  al 
found that, compared to support vector machine (SVM), 
a GNN model of electroencephalography-based brain 
networks showed better performance in distinguishing 
among first-episode, chronic schizophrenia patients and 
controls.28 Likewise, by using GNN combined with func-
tional connectome data, Oh et  al achieved a classifica-
tion accuracy of 83.13%, which outperformed alternative 
machine-learning methods.29

One of the most widely used model in GNN family is 
the graph convolutional network (GCN). Motivated by 
convolutional neural network (CNN), GCN was designed 

to perform convolution operation on graph structure to 
aggregate local and neighboring information to generate 
new feature maps. The GCN has been successfully applied 
in previous publications to characterize autism spectrum 
disorder,30 Alzheimer’s disease,31 depression,32 and sex.33 
However, most current application of GCN is limited to 
small dataset, and the model performance could be po-
tentially unreliable. Moreover, in neuroimaging studies 
of brain disorders, the identification of the neural cor-
relates of the disease under investigation is critical. In 
particular, locating brain areas with a critical role in the 
disruption of specific connections is among the most im-
portant goals in the study of the human connectome.34 
By capturing brain development and disease patterns in 
the neuroimaging data, GCN may reveal clinically mean-
ingful network-level functional dysconnectivity, which 
would be difficult to detect using traditional machine-
learning methods. Therefore, the use of representative 
GCN classifiers on large-scale and multisite data can not 
only validate the feasibility of GNN methods for schizo-
phrenia classification but also reveal reliable neurobiolog-
ical underpinnings of schizophrenia at connectome level.

Here, we established a GCN model to compare patients 
with schizophrenia and controls using multisite neuroim-
aging data. We used 6 independent datasets resulting in a 
total sample of 505 patients with schizophrenia and 907 
controls. In order to assess the reliability of the findings, 
we performed a separate analysis on each single dataset 
in addition to pooling all datasets together. Our first hy-
pothesis was that using a GCN model would allow di-
agnostic classification with a higher level of accuracy 
than a widely used traditional machine-learning model 
(ie, SVM). In addition, previous studies have shown that 
spatially segregated salient regions can be identified in 
non-Euclidean space on GCN,35 making it possible to ef-
fectively map the most important brain regions for the 
task under consideration.33 Therefore, our second hy-
pothesis was that GCN would provide distinct saliency 
maps of brain regions and show significant topological 
deficits related to clinical measures, reflecting the ability 
of this technique to capture network-level topological in-
formation, compared to SVM, which cannot capture ab-
stract and complex relationships within networks.

Methods

Participants

A total of 1412 subjects comprising 505 patients with 
schizophrenia and 907 controls were included in our 
study (table  1). The diagnosis of schizophrenia was es-
tablished using the Structured Clinical Interview for 
DSM-IV (SCID).36 Written informed consent was pro-
vided for all participants, and data collection was ap-
proved by the local Institutional Review Board at each 
site. Detailed information about eligibility criteria is pre-
sented in Supplementary Information.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
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Image Acquisition and Processing

Resting-state functional magnetic resonance imaging 
(rs-fMRI) scans were acquired using different scanners 
and acquisition parameters for each dataset. Detailed in-
formation about scanner and acquisition parameters is 
presented in Supplementary Information. To mitigate 
methodological heterogeneity across datasets, a uni-
fied image preprocessing pipeline was performed using 
Statistical Parametric Mapping 12 (SPM12) and Data 
Processing Assistant for Resting-State fMRI (DPARSF) 
software.37 Preprocessing steps included slice timing cor-
rection, head motion correction, normalization, and re-
moval of nuisance confounds (for specific preprocessing 
procedures and parameters, see Supplementary 
Information). The preprocessed rs-fMRI scans were sub-
sequently used to estimate the whole-brain functional 
connectivity networks. First, the whole brain was divided 
into 90 anatomical regions according to the Automatic 
Anatomical Labeling (AAL) atlas. Next, the functional 
connectivity matrix was estimated as Pearson’s correla-
tion coefficients of the time series between all pairs of 
regions. Fisher r-to-z transformation was further ap-
plied to convert each correlation coefficient to z-score for 
normality.

ComBat Harmonization

In the context of machine learning based on multisite 
neuroimaging data, the site effects derived from scanners 
and sequence parameters may be equivalent to or even 
more prominent than the actual case-control effect, con-
siderably impairing the model performance. To remove 
this unwanted site effect and expose the actual functional 
abnormalities in patients, we used a known harmoniza-
tion method called ComBat.38 The effects of ComBat 
harmonization were quantified to see how it works 
on our dataset. Detailed information can be found in 
Supplementary Information.

Graph Convolutional Network

The GCN was used to perform single-subject classifi-
cation of patients with schizophrenia and controls. The 
overall pipeline of our GCN model is shown in figure 1. 
Assuming a feature matrix X ∈ Ra×b, where a is the 
number of nodes and b is the number of features per node, 
we typically encoded the feature matrix X into a weighted 
graph structure G = (V , E, W), where V and E were sets 
of nodes and edges, respectively, and W ∈ Ra×a was the 
weighted adjacency matrix. In our study, the whole-brain 
functional connectivity matrix was treated as individual 
feature and represented as a graph structure. Specifically, 
each brain region represented a node, and the corre-
sponding node feature represented the functional con-
nectivity between each region and all the other regions. 
The adjacency matrix was subsequently calculated via 

K-nearest neighbors (KNN) algorithm, which estimated 
the similarity determined by the Euclidean distance be-
tween pairs of nodes. This approach to graph modeling 
in GCN has achieved high levels of success in previous 
studies.39 We set the k value of the KNN algorithm as 
10 based on the sensitivity analysis of dynamic k values 
(see Supplementary Information). The mathematics and 
hyperparameters of our GCN model are presented in 
Supplementary Information in detail.

We separately used pooled stratified cross-validation 
and leave-one-site-out (LOSO) cross-validation to split 
the samples into training and testing sets for the eval-
uation of  GCN performance. For the LOSO cross-
validation, each dataset was consecutively left as testing 
set during each loop, and the remaining datasets were 
used to train the model. Since dataset 2 only includes 
controls, we failed to include this dataset to test the 
model performance. For the pooled stratified cross-
validation, the pooled samples were randomly divided 
into 10-folds, of  which 1-fold served as testing set, and 
the remaining 9-folds were used as the training set. This 
strategy guarantees that training and testing sets con-
tain the equivalent proportion of  each class. Because the 
ComBat harmonization was applied to remove site ef-
fect, we did not balance the proportion of  each site in the 
training and testing sets. The model performance based 
on the testing set was further assessed in terms of  bal-
anced accuracy, sensitivity, specificity, and area under 
the receiver operating characteristic curve (AUC). The 
GCN model was implemented on Pytorch Geometric 
Extension library of  Pytorch 1.7 in Python 3.7 environ-
ment (NVIDIA GeForce RTX 2060 with 8 GB GPU 
memory). The code in our study can be found at https://
github.com/alien18/GCN_SCZ_Classification.

Identifying the Most Salient Regions Contributing to 
Classification

We used class activation mapping (CAM) to identify the 
most salient regions contributing to GCN classification. 
CAM was originally developed for traditional CNNs to 
localize the discriminative image area by providing in-
formation about regional attention of the CNN model 
when predicting a particular class.35 The novel intro-
duction of CAM into graph-based models enables the 
localization of discriminative nodes in irregular graph 
structures beyond regular 2D/3D images.33 We esti-
mated the activation value of each node via CAM when 
predicting patients with schizophrenia (since our task is a 
binary classification, our findings would have been iden-
tical if  we had estimated the activation value of each node 
via CAM when predicting controls). Detailed estimation 
of CAM can be found in Supplementary Information. 
Average activation values across subjects were calculated, 
and the top 10 nodes exhibiting the highest activation 
values were reported.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
https://github.com/alien18/GCN_SCZ_Classification
https://github.com/alien18/GCN_SCZ_Classification
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
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Parcellation Validation

Since no consensus has been reached on the optimal 
brain parcellation for establishing brain networks, we 
chose another atlas to assess whether the classification 
performance of GCN was stable. Considering that the 
AAL atlas parcellates the brain anatomically, we addi-
tionally examined the GCN performance and salient 
regions using an alternative functional atlas containing 
160 regions of interests proposed by Dosenbach et al.40 
Moreover, the number of parcels in Dosenbach atlas 
is twice as much compared to AAL atlas, enabling us 
to validate the performance of GCN across different 
parcellation resolutions.

Support Vector Machine

To validate the superiority of the GCN model over brain 
connectivity, we compared the model performance, sa-
lient regions, and clinical correlation of GCN with that 
of SVM (linear kernel), a traditional machine-learning 
algorithm commonly used in neuroimaging studies of 

brain disorders.41,42 The upper triangle of the functional 
connectivity matrix was used as input features. During the 
training stage, alternative 10-fold nested cross-validation 
was performed to find the optimal hyperparameters C 
from [10−3, 10−2, 10−1, 1, 101, 102, 103] via grid search. 
Once the optimal hyperparameter for each fold was de-
termined, SVM was trained again with the whole training 
set and evaluated on the testing set. To identify regions 
contributing most to SVM classification, we collected 
the weights of each functional connectivity value from 
the trained model. The weight of each region was calcu-
lated as the mean value of the weights for its functional 
connectivity with the other 89 regions across cross-
validation. The top 10 regions with the highest weights 
were reported.

Compared to linear SVM, the nonlinearity in GCN 
may also account for the difference in model perfor-
mance. To exclude the influence of  nonlinearity in GCN, 
we further compared the performance of  nonlinear 
SVM with that of  GCN (for detail, see Supplementary 
Information).

Fig. 1. The overall pipeline of graph convolutional network model. (A) Graph construction for each individual using resting-state 
functional connectivity. (B) The architecture and implementation of graph convolutional network. Note: GAP, global average pooling; 
HC, healthy controls; ReLu, Rectified Linear Unit; SCZ, schizophrenia.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
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Network Topological Analysis of the Salient Regions

Three nodal topological centralities of the top 10 salient 
regions, including degree, efficiency, and betweenness, 
were estimated using the GRETNA toolbox (http://www.
nitrc.org/projects/gretna/).43 The definition and calcu-
lation of nodal topological centralities are described in 
Supplementary Information. Nonparametric permuta-
tion test was performed to examine the significant dif-
ferences in nodal centralities of salient regions between 
patients with schizophrenia and controls. The statistical 
tests were separately performed for top 10 salient regions 
identified via GCN and SVM. Nodal centralities with 
FDR corrected P value <.05 were reported.

To investigate the relationship between clinical meas-
ures and functional network topological profiles of the 
identified salient regions contributing to classification, we 
performed a Pearson correlation between positive/nega-
tive symptom severity and nodal network centralities of 
the top 10 salient regions. The correlation analysis was 
performed for both top 10 salient regions identified by 
GCN and SVM. As different clinical scales, including the 
Scale for the Assessment of Positive Symptoms (SAPS), 
Scale for the Assessment of Negative Symptoms (SANS), 
and Positive and Negative Syndrome Scale (PANSS), were 
used in multisite dataset, we converted the raw scores to 
the Percent of Maximum Possible scores for standardi-
zation.44,45 FDR correction was applied to address the 
multiple correlations. Significant correlations with P < 
.05 (corrected for the number of multiple comparisons) 
were reported.

Results

ComBat Harmonization Effects

Prior to ComBat harmonization, 3433 of 4005 functional 
connectivities (85.7%) exhibited significant cross-site dif-
ferences in the control group, and the schizophrenia group 
showed 2844 functional connectivities (71.0%) with sig-
nificant cross-site effects (FDR corrected P < .05). After 
applying ComBat harmonization, no functional con-
nectivity (0%) in the control group showed significant 
differences across datasets, and significant sites effects 
remained in only 111 of 4005 connectivities (2.8%) in the 
schizophrenia group. Regarding the classification under 
LOSO cross-validation which can maximize the bias of 
cross-site effects on model performance, GCN and SVM 
achieved balanced accuracies of 61.0% and 62.3% prior 
to ComBat harmonization, respectively. Following the 
ComBat harmonization, balanced accuracies of 79.1% 
and 73.4% were observed, with an increase of 18% and 
11% for GCN and SVM, respectively.

Classification Performance

Classification of samples in each single site ranged from 
65.7% to 79.2% for GCN and from 67.2% to 75.6% for 

SVM. Under the 10-fold stratified cross-validation, the 
performance of GCN achieved an average balanced ac-
curacy of 85.8% (95% CI: 84.9%–86.7%) and AUC value 
of 0.926 (95% CI: 0.919–0.933). Compared with GCN, a 
relatively poor performance of SVM was observed, with 
an average balanced accuracy of 80.9% (95% CI: 79.9%–
81.9%) and AUC value of 0.897 (95% CI: 0.889–0.905). 
When using the LOSO cross-validation scheme, we ob-
served that the balanced accuracy of GCN model was 
79.1% (95% CI: 78.0%–80.2%) and AUC value was 0.790 
(95% CI: 0.779–0.801), while the SVM classifier only had 
a balanced accuracy of 73.4% (95% CI: 72.2%–74.6%) 
and AUC value of 0.753 (95% CI: 0.742–0.764) (table 2 
and Supplementary figure S1).

When parcellating the brain according to another atlas 
with 160 regions of interests, the classification perfor-
mance for both GCN (balanced accuracy: 83.7%) and 
SVM (balanced accuracy: 75.3%) was stable. This result 
confirmed that our results are robust to other brain func-
tional parcellation strategies.

The Most Salient Regions Contributing to 
Classification

The 10 most salient regions contributing to GCN clas-
sification were mainly located in subcortical and frontal 
structures, including the striatum, amygdale, and medial 
superior frontal gyrus. Regarding the SVM model, the 
top 10 regions contributing to classification were exten-
sive cortical areas, including temporal gyrus, angular 
gyrus, dorsolateral prefrontal cortex, and orbitofrontal 
cortex (Supplementary table S1 and figure 2). When using 
Dosenbach atlas for brain parcellation, consistent pattern 
of top 10 salient regions was observed for both GCN and 
SVM (Supplementary table S2).

Topological Characteristics of the Most Salient Regions

Using GCN, we found that patients with schizophrenia 
exhibited significantly decreased nodal efficiency in the 
bilateral putamen and pallidum compared with controls. 
No significant between-group differences in the most sa-
lient regions were observed for degree and betweenness. 
Using SVM, the degree of the bilateral middle temporal 
pole was significantly higher in patients with schizo-
phrenia compared with controls. Differences in efficiency 
and betweenness of the other most salient regions failed to 
survive multiple comparison correction (Supplementary 
table S1 and figure 2).

Statistical Analysis

In the correlation analysis of the most salient regions de-
rived from GCN, we found that nodal efficiency of bilat-
eral putamen and pallidum were significantly associated 
with negative symptom scores (figure 3). No significant 
relationship that survived FDR correction was observed 

http://www.nitrc.org/projects/gretna/
http://www.nitrc.org/projects/gretna/
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
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Fig. 2. Top 10 salient regions contributing to GCN and SVM classification. The size of each region indicates the magnitude of 
contribution. Bar plots are used to illustrate statistically significant differences in topological characteristics between patients with 
schizophrenia and controls. Note: AMYG, amygdale; ANG, angular gyrus; CAU, caudate; GCN, graph convolutional network; MTG, 
middle temporal gyrus; ORBsup, orbitofrontal gyrus, superior part; ORBsupmed, orbitofrontal gyrus, superior medial part; PAL, 
pallidum; PUT, putamen; REC, rectus; SFGdor, superior frontal gyrus, dorsal part; SFGmed, superior frontal gyrus, medial part; SVM, 
support vector machine; TPOmid, temporal pole, middle part; TPOsup, temporal pole, superior part.

Table 2. Performance on classification between individuals with schizophrenia and controls

Model performance 

GCN SVM

BAC (%) SEN (%) SPE (%) BAC (%) SEN (%) SPE (%) 

Dataset 1 68.8 74.5 63.1 73.4 80.1 66.8
Dataset 2 - - - - - -
Dataset 3 79.2 78.2 80.2 67.2 63.0 71.4
Dataset 4 79.0 74.3 83.7 75.6 55.8 95.4
Dataset 5 72.3 73.7 71.0 73.8 70.0 77.7
Dataset 6 65.7 52.7 78.6 72.5 53.3 91.7
LOSO (Before ComBat) 61.0 60.4 61.6 62.3 56.4 68.2
LOSO (After ComBat) 79.1 85.0 73.2 73.4 60.6 86.2
10-fold 85.8 74.0 97.6 80.9 69.9 91.9

Abbreviations: GCN, graph convolutional network; SVM, support vector machine; BAC, balanced accuracy; SEN, sensitivity; SPE, spec-
ificity; LOSO, leave-one-site-out.
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between clinical scores and other nodal metrics of the top 
10 salient regions derived from GCN. Among the salient 
regions identified by SVM, no significant correlation be-
tween nodal centralities and positive/negative symptom 
scores were found (Supplementary table S1).

Discussion

In the current study, we classified individuals with schiz-
ophrenia from controls across multiple sites with an ac-
curacy of 85.8% using a GCN model. Compared with 
a widely used traditional machine-learning method (ie, 
linear SVM), GCN yielded an improved balanced accu-
racy of approximately 5%, suggesting the potential of 
graph-based deep learning approaches for discrimination 
based on functional connectivity features. This promising 
result may derive from the 2 distinct aspects of our inves-
tigation, which will be discussed in turn.

First, graph-based learning approaches may better fit 
the brain network topological structure by considering 
neighborhood relationships within a network beyond 
independent connectivities, ensuring the integrity of in-
formation during the extraction of hidden representa-
tions. Previous studies have indicated that connectomes, 
constructed from neuroimaging data, can be a powerful 

tool for characterizing brain disorders and drug treatment 
effects at the level of the individual patient.8,9,46 Networks 
may play an essential role in the “dysconnectivity” model 
underlying the pathophysiology of schizophrenia. Deep 
learning methods may be capable of learning reliable 
connectome patterns and help understand the patho-
physiology and achieve accurate identification of schiz-
ophrenia across multiple independent imaging sites. 
For example, Zeng et  al combined deep discriminant 
autoencoder network and brain connectome features, 
obtaining an accuracy within the range 81%–85% based 
on a multisite schizophrenia dataset that partial over-
laps with our dataset.47 Both their study and our study 
achieved a higher classification performance than other 
multisite classification efforts, suggesting that the appli-
cation of powerful deep learning methods to measure of 
brain connectivity is a promising approach for the diag-
nosis of schizophrenia.

Second, previous studies have suggested that the deep 
learning architectures require a bigger sample size than 
“shallow” machine-learning models such as SVM.23 
In our investigation of single-site datasets, we noted 
that GCN performed worse than SVM in some cases. 
This may be due to the sample size requirements re-
lated to model complexity in deep learning. Despite the 

Fig. 3. Correlation between nodal efficiency in the bilateral putamen and pallidum with severity of negative symptoms in individuals 
with schizophrenia.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac047#supplementary-data
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advantage of graph representation in GCN, higher risk 
of overfitting and insufficient generalizability can still 
cause a significant impairment on the performance of 
GCN in the context of small datasets. For this reason, 
we combined datasets from multiple sites to increase 
the training sample size. However, one of the key chal-
lenges in neuroimaging studies of brain disorders is the 
poor generalizability of the findings across independent 
datasets, possibly due to different recruitment criteria, 
scanners, and scanning parameters. For example, our pre-
vious investigation, using LOSO cross-validation without 
removing site-related differences, has indicated high 
within-site performance but poor generalizability across 
different sites.48 After using ComBat harmonization, 
our multiple site classification based on LOSO cross-
validation shows promising results. This performance 
confirms that multisite neuroimaging studies can benefit 
from the use of feature harmonization methods for re-
moving site-related differences, especially in the context 
of deep learning architectures that work better on large 
sample size.

Within the GCN model, we found that the striatal 
areas (ie, putamen, pallidum, and caudate) and amyg-
dala were among the areas providing the greatest con-
tribution. The mesolimbic hypothesis, positing that 
aberrant functioning of midbrain dopamine projections 
to limbic regions causes psychotic symptoms,49,50 has 
been an influential model of schizophrenia for several 
decades. Dysregulated dopaminergic modulation of stri-
atal function is still fundamental to many models that 
seek to explain the mechanisms underlying psychotic 
symptoms.51–53 Among the regions providing the greatest 
contribution, decreased nodal efficiency in the bilateral 
putamen and pallidum were found in patients relative to 
controls. This is consistent with our second hypothesis 
that GCN would provide distinct saliency maps of brain 
regions, reflecting the ability of this technique to capture 
network-level topological information. Moreover, the bi-
lateral putamen and pallidum’s nodal efficiency was sig-
nificantly correlated with negative symptoms, consistent 
with previous studies suggesting that the putamen may be 
a key structure for the neurobiological underpinning of 
delusions54 and is a possible predictor of clinical course 
and risk-stratifier in people at clinical high risk for psy-
chosis.55 Interestingly, increased volume of putamen 
has been found to be a transdiagnostic neuroanatom-
ical feature of psychiatric illness56,57 and to be positively 
correlated with severity of symptoms,56 while larger-than-
normal volumes in the pallidum has also been reported in 
patients with schizophrenia.58 The amygdala, part of the 
limbic system, provided the greatest contribution within 
both GCN and SVM models. This region is responsible 
for processing emotional aspects of face processing,59,60 
and its dysregulation has been widely implicated in the 
pathophysiology of schizophrenia, with several studies 
reporting abnormal functional connectivity in patients 

relative to healthy controls.61 Our investigation ex-
tends previous findings based on group-level statistics62 
by suggesting that striatal and amygdala functional 
dysconnectivity is key for differentiating patients and 
controls at individual level.

In contrast, within the SVM model, the brain regions 
providing the greatest contribution to single-subject clas-
sification were mainly located in the temporal cortex. 
Volumetric abnormalities in the temporal lobe have been 
reported to be related to clinical presentation, especially 
negative symptoms.63,64 However, no significant correla-
tion was found between SVM-derived salient regions and 
either positive or negative symptoms scores. Taken col-
lectively, these results are consistent with the notion that 
the GCN model can be used to detect spatially segregated 
salient regions in non-Euclidean space33,35 and that this 
approach can capture clinically relevant neuropatholog-
ical alterations with greater sensitivity than traditional 
machine-learning models.

The present study has several limitations. First, the re-
sults described in this article require replication before 
potential clinical translation can be considered, espe-
cially if  one was to generalize our GCN model to un-
seen sites with highly imbalanced class problems (such 
as 1:1000). Second, antipsychotic medication may lead 
to changes in brain function,65 which may have contrib-
uted to classification. However, our results were statisti-
cally consistent across the 5 datasets, including dataset 
1 in which all patients were medication-naive; this sug-
gests that our findings are unlikely to be explained by the 
effects of antipsychotic medication. Third, other GNN 
models may have the potential to outperform GCN. 
Future work should focus on the comparison among 
GNN models with the aim of determining the optimal 
GNN model for schizophrenia diagnosis. Fourth, sali-
ency maps can suffer from issues such as gradient satura-
tion which may affect robustness; the application of other 
post hoc explainability methods, like GNNexplainer66 or 
GraphLIME,67 may yield more robust explanations in fu-
ture studies. Fifth, since various graph modeling methods 
have been used in GCN applications and no consensus 
has been reached so far, alternative approaches for 
establishing the optimal graph structure should be inves-
tigated in the future. Finally, the application of GCN to 
neuroimaging data required specialized technical exper-
tise as well as high computational resources, which are 
not common across clinical sites. Therefore, to improve 
the likelihood of successful clinical translation in the fu-
ture, one would need to bridge the current gap between 
“models” and “tools.” 68

In conclusion, the present study demonstrates that 
GCN allows the classification of  schizophrenia at the 
individual level with significant accuracy, indicating a 
promising direction for detecting individual patients 
with schizophrenia. Moreover, striatal areas and 
amygdala were found among the most salient brain 
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regions in our GCN model, with a number of  signifi-
cant associations with negative symptoms. These find-
ings support the notion that the topology of  striatal 
areas including putamen and pallidum may represent 
a core neural deficit of  negative symptomatology in 
schizophrenia.

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin.
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