
Genotype-Based Ancestral Background Consistently
Predicts Efficacy and Side Effects across Treatments in
CATIE and STAR*D
Daniel E. Adkins1., Renan P. Souza1., Karolina Åberg1, Shaunna L. Clark1, Joseph L. McClay1,
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Abstract

Only a subset of patients will typically respond to any given prescribed drug. The time it takes clinicians to declare a
treatment ineffective leaves the patient in an impaired state and at unnecessary risk for adverse drug effects. Thus,
diagnostic tests robustly predicting the most effective and safe medication for each patient prior to starting
pharmacotherapy would have tremendous clinical value. In this article, we evaluated the use of genetic markers to
estimate ancestry as a predictive component of such diagnostic tests. We first estimated each patient’s unique mosaic of
ancestral backgrounds using genome-wide SNP data collected in the Clinical Antipsychotic Trials of Intervention
Effectiveness (CATIE) (n = 765) and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) (n = 1892). Next,
we performed multiple regression analyses to estimate the predictive power of these ancestral dimensions. For 136/89
treatment-outcome combinations tested in CATIE/STAR*D, results indicated 1.67/1.84 times higher median test statistics
than expected under the null hypothesis assuming no predictive power (p,0.01, both samples). Thus, ancestry showed
robust and pervasive correlations with drug efficacy and side effects in both CATIE and STAR*D. Comparison of the marginal
predictive power of MDS ancestral dimensions and self-reported race indicated significant improvements to model fit with
the inclusion of MDS dimensions, but mixed evidence for self-reported race. Knowledge of each patient’s unique mosaic of
ancestral backgrounds provides a potent immediate starting point for developing algorithms identifying the most effective
and safe medication for a wide variety of drug-treatment response combinations. As relatively few new psychiatric drugs are
currently under development, such personalized medicine offers a promising approach toward optimizing pharmacother-
apy for psychiatric conditions.
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Introduction

It is well-known that only a subset of patients will respond to any

given prescribed drug [1]. The time it takes a clinician to declare a

treatment ineffective leaves the patient in an impaired state and at

unnecessary risk for adverse drug effects. Furthermore, drug

nonresponse reduces the likelihood of compliance and adherence

to future treatments [2]. Therefore, diagnostic tests capable of

identifying the most effective and safe medication for each patient

prior to initiating pharmacotherapy would have tremendous

clinical value [3,4]. Predicting drug nonresponse has, however,

proven to be difficult. These challenges have led to a proliferation

of pharmacogenetics research in the last decade. This research has

traditionally focused on pharmacodynamic and pharmacokinetic

candidate genes that encode drug targets or are involved in the

metabolism of the drug itself. More recently, genome-wide

association studies (GWAS) systematically screening markers

across the whole genome for association with drug response have

been added as a tool to identify relevant genetic variants [5].

However, before these genetic markers can be used in the clinic,

they will need to be evaluated more extensively through replicated

association and functional studies.

In the absence of firmly established panels of genetic markers

predicting the effects of specific drugs, it is sensible to search for

proxy variables robustly capturing relevant genetic differences

between individual patients. These proxies could serve as interim

components in the development of predictive algorithms for

individualizing pharmacotherapy. Based on observations of
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variability in drug-response between populations [6,7,8], we

hypothesize that ancestry information could be one such proxy.

To evaluate this hypothesis we used clinical and genetic

information from the two largest psychiatric clinical trials to test

therapy efficacy conducted in the United States: the Clinical

Antipsychotic Trials of Intervention Effectiveness (CATIE) [9]

(ClinicalTrials.gov Identifier: NCT00014001) and the Sequenced

Treatment Alternatives to Relieve Depression (STAR*D) [10]

(ClinicalTrials.gov Identifier: NCT00369746). Ancestral dimen-

sions were derived from genome-wide arrays including differences

across hundreds of thousands of single-nucleotide polymorphisms

(SNPs).

Methods

For both the CATIE and STAR*D studies, Supporting

Information S1 provides detailed information about the subjects

and study design, assessment instruments, estimation of treatment

effects, genotyping and estimation of ancestral dimensions. We

restrict ourselves to a short description here.

The CATIE study participants were recruited from 57 clinical

settings around the United States [9,11]. The Structured Clinical

Interview for DSM-IV was used to establish schizophrenia

diagnosis. The study consisted of a baseline, three phases and a

follow up. Patients were typically switched to another drug because

of a lack of efficacy or adverse effects. The STAR*D study is a

prospective, randomized clinical trial of outpatients with non-

psychotic major depressive disorder [10,12]. The Structured

Clinical Interview for DSM-IV was used to establish non-psychotic

major depressive disorder diagnosis. Sample collection involved 41

clinical sites across the United States. The full clinical trial study

sample includes 4,000 adults from both primary and specialty care

practices who had shown neither inadequate response nor

intolerance to any of the protocol treatments. The study consisted

of four phases. In the first phase all patients started with

citalopram. Different medications or medication combinations

for treatment resistant subjects were administered in each

subsequent phase.

Table 1 shows, for the main drug and outcome measures in

CATIE and STAR*D, the number of subjects assessed and the

mean number of observations across the entire trial. For clozapine

in CATIE, the sample sizes (,50) were much more modest than

the other drugs, for which there were on average 218 subjects per

drug-outcome combination with 3.6 assessments for each subject.

Citalopram in STAR*D had much higher sample sizes (1870) and

number of assessments (4.6) than the other antidepressants, which

had an average of 127 subjects per drug-outcome combination

with 3.8 assessments per subject.

In CATIE, 665,439 SNPs were genotyped using the Affymetrix

500 K chipset (Santa Clara, CA, USA) and a custom 164 K chip

created by Perlegen (Mountain View, CA, USA). After quality

control, genotypes for 492,900 SNPs from 738 individuals

remained for investigating ancestral background dimensions

[13]. In STAR*D a total of 969 subjects were genotyped at

Affymetrix, Inc. (South San Francisco) on the Human Mapping

500 K Array Set and another 979 samples were genotyped using

the Affymetrix Genome-Wide Human SNP Array 5.0. The two

groups were balanced by ethnic grouping, gender and proportions

of responders and non-responders. Twelve samples were geno-

typed on both the 500 K and 5.0 Arrays, with a .99%

concordance across these platforms [14]. After QC, 430,198

SNPs remained for use in the current analysis of ancestral

background dimensions.

To estimate ancestral background dimensions, we used the

multi-dimensional scaling (MDS) approach implemented in

PLINK [15], which has been demonstrated to be essentially

equivalent to the principal component method implemented in

EigenSoft [16]. Input data for the MDS approach were the

genome-wide average proportion of alleles shared identical by

state between any two individuals. The first ancestral dimension

captures the maximal variance in the genetic similarity; the second

dimension must be orthogonal to the first and captures the

maximum amount of residual genetic similarity; and so on. The

first five dimensions appeared to capture the vast majority of

ancestral variation in the CATIE and STAR*D samples and they

were used in the current analysis. The same number of dimensions

used here have been used in previous analyses of CATIE and

STAR*D [17,18,19,20,21,22,23,24].

One important, often neglected, issue in genomic studies using

genotype array-based estimates of ancestral background dimen-

sions (i.e., population structure) is the fact that various technical

genotyping artifacts can give rise to artifactual variance in array

data, which may in turn be captured as spurious ancestral

dimensions. These technical genotyping artifacts have the

potential to cause false positive associations if they are correlated

with the phenotypic outcome. Thus, for instance, in a case-control

study where cases and controls were genotyped in separate runs,

without rigorous QC for potential batch and plate effects, there

would be a serious risk that observed association between case-

control status and ‘‘ancestral dimensions’’ would actually be driven

by genotyping artifacts.

However, in the current study there are multiple sources of

evidence precluding the possibility of false positives due to

genotyping artifacts. The strongest evidence comes from the fact

that correlations between any genotyping artifacts and treatment

response are virtually impossible here. This is because in STAR*D

each array was, ‘‘balanced by ethnic grouping, sex, and

proportions of responders and nonresponders’’ [25]. For CATIE,

among the schizophrenia cases examined here, batch and plating

was randomized with no knowledge of treatment response status

[13]. Thus, correlations between batch (or plate) effects and

treatment response are explicitly impossible due to careful design

in STAR*D, and highly unlikely CATIE, as they would entail a

significant association between treatment response and a random

variable with no correlated signal (randomized plating and batch

assignment). These array randomization/balancing procedures

also essentially eliminate the possibility of correlation between

treatment response and other array-based artifacts, including

systematic subject differences in call rate and proportion of allelic

heterozygosity.

As an added precaution, however, both studies were QC’ed for

heterozygosity and call rate per subject (along with numerous

other rigorous QC procedures described in the original studies and

their supplemental materials [13,25]). Thus, in the post-QC data

analyzed here, call rates for all subjects were stringently high

(,.99.2) and all heterozygosity rates fell within 63 SD of the

mean, the threshold proposed in standard GWAS QC guidelines

[26]. Thus, due to balanced/randomized batch and plating and

rigorous QC, the risk of systematic genotype errors causing false

positives is effectively eliminated. However, it remains possible that

nonsystematic (i.e., uncorrelated with treatment response) geno-

typing errors may have eluded QC procedures and, thus,

contribute to the variance of the ancestral dimensions. However,

in this worst case scenario, artifactual variance would produce

noise in the ancestral dimensions, increasing the risk of false

negative associations. Thus, results of the current analysis may be

considered conservative.
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We previously developed a systematic method to estimate

treatment effects [27]. Our method uses mixed models to first

estimate the optimal functional form of over-time drug response,

then screens many possible covariates to select those that improve

the precision of the treatment effect estimates, and finally

generates individual treatment effect estimates based on the best

fitting model using best linear unbiased predictors (BLUPs) [28].

As our approach condenses all information collected during the

trials in an optimal, empirical fashion, it results in more precise

estimates than traditional approaches (e.g., subtracting pre- from

post-treatment observations) that estimate treatment effects using

only two assessments. We have successfully applied this method in

several genome-wide association studies performed on CATIE and

STAR*D samples [17,18,19,20,21,22,23,29].

After estimating MDS dimensions and treatment effects, we

performed multiple regressions to evaluate the association of MDS

dimensions and/or self-reported ethnicity with each drug-outcome

treatment response combination. These analyses were conducted

to investigate two specific issues. First, we considered whether

genotype-based ancestry has consistent, significant prognostic

power in predicting psychiatric drug response, and if so, how

strong is this predictive power. Second, we examined whether

genotype-based ancestry significantly improved prediction of

psychiatric drug response over and above the predictive power of

self-reported ethnicity.

In investigating the first issue, we analyzed the distribution of F-

tests of model fit for the 5 MDS prediction models, as well as

summarizing the individual drug coefficients, multiple correlations

and number of significant models adjusting for multiple testing

[30,31]. To address the second issue, we compared differences in

multiple correlations and number of significant models between

full models (containing both self-reported ethnicity and MDS

dimensions) and nested reduced models excluding either self-

reported-ethnicity or MDS dimensions. These comparisons

describe the marginal contribution of the MDS variables and

self-reported ethnicity, respectively. To formally test the statistical

significance of these marginal effects, we conducted F-tests of

model fit between the full and reduced models. In addition to

summarizing the number and proportion of models in which the

MDS dimension had significant explanatory power over and

above self-reported ethnicity, we also performed Chi-squared tests

of proportions to determine if the number of significant marginal

effects for the MDS variables was more than expected by chance.

For comparison, the statistical significance of self-reported

ethnicity marginal effects was likewise analyzed.

Finally, after establishing the value of GWAS-based ancestral

dimensions as predictors of psychiatric drug response, we then

empirically demonstrate that much smaller sets of markers can be

used to capture this ancestral information. This exercise serves as

proof of concept that such an approach could be applied in clinical

settings using small, inexpensive genotype arrays. Further, we

provide our empirically determined SNP lists and the weights used

to calculate these proxy MDS dimensions in Supporting Infor-

mation S2, as a resource for researchers interested in replicating

these findings or extending efforts to develop predictive algorithms

of psychiatric drug response.

Results

Predictive Power of Genotype-based Ancestry
Figure 1 summarizes results of the regression analyses to test the

null hypothesis that the five ancestral dimensions do not predict

drug response (i.e., observed association is due to statistical noise

and not true signal) using a Quantile-Quantile (QQ) plot for each

of the drug-outcome combinations. The ordered, observed model

fit F-test p-values are plotted against those expected under the null

hypothesis of no true associations among the 136 (CATIE) or 89

(STAR*D) tests, represented by the straight line. The QQ plots

show that the observed p-values deviated systematically from this

straight line and were well outside the 95% confidence intervals.

This provides strong evidence that the five ancestral dimensions

systematically and significantly predicted efficacy and adverse

reaction across these psychiatric pharmacotherapies.

To more exactly quantify the degree to which the ancestral

dimensions predicted drug response, we calculated the ratio of the

median observed test statistic to the expected test statistic under

the null hypothesis. This ratio is commonly used in GWAS as a

measure of the degree to which associations are due to population

differences, and is denoted as lambda (l) [16,32]. In the current

context, l .1 suggests that the ancestral differences captured by

the MDS dimensions do, in fact, influence psychiatric treatment

response. Lambda values were calculated as 1.67 and 1.84 for

CATIE and STAR*D, respectively. Thus, the median of model fit

test statistics was 1.67 and 1.84 times higher than expected under

the null hypothesis for CATIE and STAR*D, respectively. One-

sample Wilcoxon signed rank tests of the median (CATIE: V-

statistic = 3323, p-value ,0.01; STAR*D: V-statistic = 1097, p-

value ,0.001) confirmed that these test statistics were systemat-

ically larger, and p-values smaller, than expected by chance.

A summary of the predictive power of the ancestral dimensions

on individual drug-outcome combinations shows that ancestry

explained a nontrivial portion of variance in both drug efficacy

and side effect outcomes across all treatment regimens (Table 2).

The mean (multiple regression) correlation coefficient was 0.19 in

CATIE and 0.20 in STAR*D, suggesting the 5 dimensions

explained on average about 3.7% and 4.0% of the variation in

antipsychotic and antidepressant response, respectively.

Genotype-based Ancestry and Self-reported Ethnicity
To further study the derived MDS dimensions, we present the

correlations of the five MDS dimensions with self-reported

ethnicity (European American, African American and Hispanic)

in Supporting Information S1. Results showed that MDS 1

generally captured ancestral differences related to European and

African American ancestry, while MDS 2 and 3 seemed to capture

differences between Hispanic v. non-Hispanics groups in CATIE

and STAR*D. The interpretation of the other MDS dimensions

was more ambiguous–they not strongly related to self-reported

ethnicity, suggesting that they capture more subtle (cryptic)

dimensions of population structure [33].

In Table 3 we show results from multiple regression analyses

comparing the predictive power of our ancestral dimensions versus

self-reported ethnicity. In order to compare models, we start with a

full model #1 that includes all 5 MDS dimensions plus the 3 ethnicity

variables. Model #2 includes the 5 MDS dimensions only.

Compared to the full model #1, dropping the 3 Ethnicity variables

decreased the correlations on average by 0.046. Even when

controlling the FDR [30] at the 0.95 level, meaning that 95% of the

significant results are expected to be false discoveries, this decrease

was not significant for any of the 137 tested drug-outcome

combinations. Conversely, dropping the 5 MDS dimensions reduced

the correlations on average by 0.085 where for a number of tested

drug outcome combinations revealed the decrease was significant at

FDR levels of 0.5 and 0.95. Thus, these results suggest that the

marginal explanatory power of the MDS dimensions was generally

greater than self-reported ancestry. The final model # 4, including

the 3 MDS and 3 ethnicity variables, was used to test whether the 2

MDS dimensions that did not correlated strongly with self-reported

Pharmacogenomics and Ancestral Background

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e55239



ethnicity (Supporting Information S1) did contribute to the

predicting of drug response. Dropping these 2 MDS dimensions

resulted in an average decrease in correlations of 0.030, with 3, 7, and

25 tests being significant at FDR levels of 0.1, 0.5, and 0.95. Thus,

rather than being technical artifacts, these 2 MDS dimensions

appeared to capture meaningful ancestral differences that did

contribute to the prediction of drug response.

While the results presented in Table 3 describe a systematic

trend of substantial marginal effects for the MDS dimensions, over

and above the effects of self-reported ethnicity, they do not provide

formal statistical tests of these marginal effects. Thus, in table 4 we

present results from F-tests of model fit quantifying the statistical

significance of the marginal effects of the unique MDS dimensions,

over and above the effects of self-report ethnicity. These results

show that for CATIE, 8.1% of models showed a significant

(p,0.05) improvement to model fit with the inclusion of these

MDS variables. A Chi-squared test of proportions indicated that

this 0.081 proportion was significantly greater than the 0.05

proportion expected under the null (x2 statistic = 2.731; x2 p-

value = 0.049). For STAR*D, results for the MDS dimensions

were even stronger with 10.2% of models showing significant

improvement to model fit with the inclusion of the MDS variables.

A Chi-squared test of proportions indicated that this 0.102

proportion was significantly greater than the 0.05 expected under

the null (x2 statistic = 5.062; x2 p-value = 0.012).

For comparison purposes, we applied the same approach to test

the marginal effects of self-reported ethnicity, over and above the

effects of the MDS ancestral dimensions. The proportions of

significant marginal effects for self-reported ethnicity were smaller

than those for the MDS dimensions in both samples. Chi-squared

test of proportions for the self-reported ethnicity marginal effects

showed mixed evidence, with no significant difference from the

null expectation in CATIE (x2 statistic = 1.214; x2 p-value = 0.865)

and a modestly significant result in STAR*D (x2 statistic = 3.100;

x2 p-value = 0.039). In sum, these results demonstrate that the

MDS dimensions explained significant amounts of outcome

variance, over and above that explained by self-reported ethnicity,

in both samples. Further, there is some modest evidence that self-

reported ethnicity may also provide some unique predictive power,

beyond that capture by genotype-based ancestry, for antidepres-

sant drug response.

Finally, as proof of concept that genotype-based ancestry

could potentially be applied in clinical settings, for each of the 5

ancestry dimension, we identified 700 SNPs jointly capturing

approximately the same information as the genome-wide MDS

measures. To do this we proceeded via the following steps.

First, we pruned the genotype data to include only markers in

linkage equilibrium (pairwise R2,0.1) using PLINK’s ‘‘indep’’

function [15]. Next, for each dimension, we sorted the absolute

MDS loadings for the pruned genotype data and selected 700

SNPs with the strongest loadings. Finally, while the loadings

themselves could be used as weights to calculate proxy MDS

scores, to optimize performance of the scores we regressed each

MDS dimension on its 700 top SNPs (using a single multiple

regression model) and used the resulting coefficients as weights

in calculating proxy MDS scores. For all samples and MDS

dimensions, the 700 SNP proxy model explained .99% of

variance in the MDS dimension. Thus, the proxy dimensions

were virtually identical to genome-wide MDS dimensions, and

accordingly, provided equivalent results when substituted in the

primary analysis. In Supporting Information S2, we provide

these empirically determined SNP lists and the weights used to

calculate proxy dimensions as a resource for researchers

interested in replicating these findings or extending efforts

toward developing predictive algorithms of psychiatric drug

response.

Figure 1. Quantile-quantile (Q-Q) plots for the joint effects of MDS dimensions on various drug response measures. Points represent
ordered model fit F-test -log10(p-values), each of which quantifies the explanatory power of a model of 5 MDS ancestral dimensions predicting a
measure of treatment response. The straight, dark grey lines represent the expected p-value distribution under the null hypothesis of no true
associations. Light grey lines represent 95% confidence intervals for rejecting the null hypothesis at each p-value rank. The inflation parameter,
lambda, is defined as the ratio of the median observed test statistic to the expected median under the null distribution; thus, lambda quantifies the
degree to which the test statistic distribution systematically diverges from the null expectation of no significant effects.
doi:10.1371/journal.pone.0055239.g001
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Discussion

Genome-wide estimates of each patient’s unique mosaic of

ancestral backgrounds mediated the effects of all studied antipsy-

chotic and antidepressant drugs on a wide range of efficacy and

toxicity outcomes. This evidence is convincing not only as a result

of the remarkably pervasive associations seen in Figure 1, but also

because of the quality and size of the psychiatric clinical trial

samples analyzed.

One potential explanation of why these effects are so pervasive

is that ancestral differences typically involve a large number of

genetic variants. For instance, over 400,000 markers were

significantly associated with the first MDS dimension in the

CATIE sample. Because the allele frequencies of so many variants

contribute to each ancestral dimension, there are likely to be

Table 2. Summary of the average multiple regression correlation coefficients for the treatment-outcome combinations.

Study/Treatment Phenotype

CATIE
PANSS
total

PANSS
positive

PANSS
negative

Neuro-
cognitive

Body mass
index

Total
cholesterol QTc prolongation Heart rate

Perphenazine 0.174 0.172 0.193 0.283 0.093 0.073 0.094 0.145

Clozapine 0.206 0.174 0.236 0.229 0.429 0.352 0.422 0.346

Olanzapine 0.102 0.131 0.116 0.127 0.202 0.147 0.142 0.134

Quetiapine 0.161 0.168 0.107 0.238 0.293 0.151 0.159 0.207

Risperidone 0.136 0.081 0.101 0.242 0.114 – 0.078 0.031

Ziprasidone 0.180 0.197 0.142 0.213 0.131 0.141 0.100 0.068

STAR*D QIDS Self-
report

QIDS
Clinician

Depressed
affect

Insomnia Appetite/
Weight

Dizziness Sex Eyes/Ears

Citalopram 0.126 0.119 0.120 0.062 0.052 0.099 0.031 0.036

Bupropion 0.205 0.158 0.192 0.221 0.180 0.163 0.121 0.164

Citalopram+Bupropion 0.290 0.304 0.302 0.210 0.138 0.194 0.175 0.210

Citalopram+Buspirone 0.156 0.231 0.200 0.191 0.186 0.173 0.072 0.206

Mirtazapine 0.306 0.233 0.334 0.353 0.364 0.334 0.206 0.274

Nortriptyline 0.280 0.337 0.280 0.229 0.417 0.321 0.141 0.305

Sertraline 0.274 0.240 0.272 0.074 0.131 0.173 0.144 0.200

Venlafaxine 0.176 0.125 0.157 0.228 0.227 0.141 0.145 0.185

PANSS – Positive and Negative Syndrome Scale. QTc - QT interval corrected for heart rate. QIDS – Quick Inventory of Depressive Symptomatology.
doi:10.1371/journal.pone.0055239.t002

Table 3. Multiple regressions analyses predicting antipsychotic and antidepressant treatment response and side-effects using
ancestral background.

Model CATIE STAR*D

Multiple correlation # significant results Multiple correlation # significant results

Mean 1st Qu 3rd Qu q,0.10 q,0.50 q,0.95 Mean 1st Qu 3rd Qu q,0.10 q,0.50 q,0.95

1 5 MDS +3 Ethnicity 0.239 0.174 0.291 1 11 114 0.248 0.186 0.305 4 16 85

2 5 MDS 0.193 0.131 0.246 6 44 116 0.201 0.143 0.243 4 13 86

3 3 Ethnicity 0.154 0.091 0.187 2 40 120 0.158 0.101 0.203 10 26 81

4 3 MDS +3 Ethnicity 0.209 0.136 0.254 2 24 112 0.212 0.152 0.271 7 17 82

Model comparison D multiple correlations D # significant results D multiple correlations D # significant results

Mean 1st Qu 3rd Qu q,0.10 q,0.50 q,0.95 Mean 1st Qu 3rd Qu q,0.10 q,0.50 q,0.95

2 vs. 1 Drop 3 Ethnicity 20.046 20.061 20.016 0 0 0 20.047 20.067 20.017 0 8 13

3 vs. 1 Drop 5 MDS 20.085 20.114 20.046 0 2 40 20.089 20.123 20.046 0 0 72

4 vs. 1 Drop 2 MDS 20.030 20.043 20.007 3 7 25 20.036 20.047 20.009 0 0 87

MDS – multidimensional scaling. Qu – quartile.
In the model comparison section, reductions in the multiple correlations or number of significant results indicate that the compared model had less predictive power
than model #1.
doi:10.1371/journal.pone.0055239.t003
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different subsets of variants that are relevant to response for any

given drug. According to this logic, even though the specific

variants comprising the relevant subset for any given drug-

outcome combination may be unknown, the pervasive genetic

differences captured by the ancestral dimensions are still likely to

have general prognostic value in predicting treatment response.

Consequently, it can be expected that the proposed method will

generalize to a wide variety of other drug-treatment response

combinations.

Our results provide compelling evidence that ancestral infor-

mation powerfully predicts a range of antidepressant and

antipsychotic treatment outcomes. However, establishing that

ancestry influences drug response gives rise to the question: Is

there added value in genotype-based ancestral dimensions over

and above that provided by self-reported ethnicity, which is less

expensive and easier to measure. The results of the current study

suggest that, yes–there is indeed additional value in genotype-

based ancestry. As shown in Table 4, the marginal effects of

unique genotype-based ancestral dimensions provide significant

predictive power over and above self-report ancestry in both the

CATIE and STAR*D studies.

There are several likely reasons for this phenomenon. First,

genetic ancestry is a mosaic of many dimensions that cannot be

captured with a discrete variable comprising few categories.

Indeed, our analyses indicated that while some MDS dimen-

sions corresponded to self-reported ethnicity, others appeared to

capture population differences not measured in conventional

race/ethnicity questionnaires. In addition to being more

nuanced and exhaustive measures of ancestral background,

there are statistical advantages of using quantitative ancestral

dimensions. First, the reduction of statistical power when using

categorical versus quantitative variables is a well-established

phenomenon [34,35]. For example, dichotomizing a predictor at

its median reduces variance explained in a normally distributed

outcome by 38%, with further reductions as the dichotomiza-

tion point moves away from the median [34]. Another

advantage of using a quantitative measure of ancestry in the

prediction algorithm is the possibility to study the full ancestry

spectrum leading to an extension of personalized medicine to

groups that are less represented or have been historically

understudied. For example, due to low sample sizes, minority

racial/ethnic groups are often dropped from analyses to avoid

estimation problems. However, by assessing their unique

ancestral make-up using quantitative dimensions, they can more

readily be included in analyses. None of this is to say, however,

that self-reported ethnicity is without value in the study of drug

response. While the predictive power of self-reported ethnicity

did not match that of genotype-based ancestral dimensions; as

shown in row 3 of Table 3, self-reported ethnicity-only models

did show nontrivial prognostic power in predicting psychiatric

drug response. Further, we observed some tentative evidence (in

STAR*D, but not CATIE) that self-reported ethnicity has

predictive power over and above genotype-based ancestry.

While the tentative nature of this evidence suggests the need

for further study before drawing strong conclusions, if replicat-

ed, this result would be consistent with social constructionist

theories of race arguing that the social categorization of race/

ethnicity has a medical significance independent of genetic

differences [36,37,38]. Such a conclusion would be unsurprising

in light of existing research suggesting ethnically-mediated social

effects on psychiatric treatment response, such as variation in

adherence to antidepressant treatment by English proficiency

between and within ethnic groups [39]. In sum, social categories

measured by self-reported ethnicity may yield additional

information to genetic ancestry, due to capturing social

constructed influences that do not correspond precisely to

genetic ancestry.

While predictive algorithms to personalize psychiatric treat-

ment are still relatively early in development, this research

provides proof of principle that genotype-based ancestry could

easily be incorporated into such future clinical applications. In

this scenario, after collecting genotype data, a pre-existing

algorithm could be used to estimate the ancestral mosaic of new

patients. Ideally, this pre-existing algorithm would be derived

from a large, geographically diverse sample of subjects. Such a

sample would avoid the issue of certain ancestral dimensions

remaining undetected, which would result in reduced predictive

power. Cost of genotyping should not present an obstacle.

Although we had access to over 400,000 polymorphisms, as we

empirically demonstrate above, proxy ancestral dimensions can

be calculated using far fewer genetic markers. Thus, ancestral

dimension scores could be generated using low-end genotyping

arrays currently available for tens of dollars for use in clinical

settings. Clearly, the current effort is only an initial step towards

individualizing treatment and we envision various ways in which

this method may be modified to further increase predictive

power. One shortcoming of the method used here to select and

combine markers into proxy ancestral dimensions is its

susceptibility to overfitting. Thus, future efforts may consider

machine learning methods that explicitly account for overfitting

[40,41]. Further, instead of basing SNP selection on agnostic

genome-wide analyses, the choice of markers could be tailored

to the specific population being studied to obtain more refined

ancestral measures. Such an extension could draw on existing

knowledge of ancestry informative markers (AIMs)

[33,42,43,44], which are specific panels of markers selected to

optimally assess ancestral differences.

The proposed method relies on the premise that a variable need

only be robustly associated with drug response to constitute an

effective predictor. This is clearly inferior to the use of causal

genetic markers that would provide a biological rationale and

facilitate further insight into the pathological process. However,

finding, replicating and validating causal markers predicting

response to a wide variety of drug-indication combinations is apt

to remain a challenging and slow-progressing process for the

Table 4. F-tests of the marginal effects of unique MDS
dimensions and self-reported ethnicity.

CATIE

Model # significant # significant/all x2 statistic x2 p-value

MDS 11 0.081 2.731 0.049

Ethnicity 4 0.029 1.214 0.865

STAR*D

Model # significant # significant/all x2 statistic x2 p-value

MDS 9 0.102 5.062 0.012

Ethnicity 8 0.091 3.100 0.039

MDS – multidimensional scaling.
For both samples, in more models than expected by chance the marginal effect
of the MDS dimensions significantly improved model fit, over and above self-
reported ethnicity. Self-reported ethnicity showed mixed statistical evidence of
improving model fit conditional on the MDS dimensions.
doi:10.1371/journal.pone.0055239.t004
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foreseeable future. Reasons for this include, for instance, the fact

that clinical trials are often unique, with modest sample sizes due

to the enormous cost of conducting these studies. This makes it

difficult to replicate findings in independent samples or to detect

markers with small effects due to insufficient statistical power. In

the meantime, the proposed method may serve as a potent,

immediate starting point for developing algorithms predicting the

most effective and least toxic medication for a wide variety of drug-

indication combinations. As relatively few new psychiatric drugs

are currently under development, such personalized medicine

offers a promising, currently feasible approach toward optimizing

pharmacotherapy for psychiatric conditions.
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