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Abstract: Liver steatosis is a common characteristic of obesity and type 2 diabetes, and fatty 

liver disease is increasingly recognized as a major health burden. Accumulating evidence 

suggests that β-glycosphingolipids play an important role in insulin sensitivity and thus could 

affect hepatic steatosis. To determine the effect associated with β-glycosphingolipid-mediated 

amelioration of liver injury, seven groups of Psammomys obesus on a high-energy diet were 

studied. Animals were treated with daily injections of β-glucosylceramide, β-lactosylceramide, 

or a combination of both. β-glycosphingolipids ameliorated the hepatic injury manifested 

by decreased liver enzymes, liver weight, and hepatic fat, and improved liver histology. 

Administration of both β-glucosylceramide and β-lactosylceramide also decreased interferon 

(IFN)-γ serum levels. These effects were associated with improved serum cholesterol and 

triglyceride levels. These data suggest that β-glycosphingolipids ameliorate liver injury in an 

animal model of nonalcoholic steatohepatitis.
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Introduction
Nonalcoholic fatty liver disease (NAFLD) is an increasingly recognized condition 

that includes a spectrum of clinical and pathological conditions ranging from steato-

sis to cirrhosis and liver failure. NAFLD is associated with obesity and especially 

central adiposity, insulin resistance, metabolic syndrome, and type 2 diabetes.1 The 

interplay between these factors is not well understood, making it difficult to establish 

therapeutic strategies.2

NAFLD has been studied in several animal models. Some of these involve nutri-

tional manipulation, including high-fat, high-fructose/sucrose, and methionine–choline-

deficient (MCD) diets.3 These diets result in several of the features of nonalcoholic 

steatohepatitis (NASH), including fatty liver, inflammation, mitochondrial dysfunction, 

evidence of insulin resistance, increased cytochrome P4502E1, and oxidative stress.4 

The Zucker diabetic fatty (ZDF) fa/fa rat, a model of congenital leptin resistance,4,5 

and the ob/ob leptin-deficient mouse6 share some features with the disease in humans. 

Studies in these models have uncovered several basic mechanisms that explain the 

dysfunction occurring in different types of liver cells during the metabolic syndrome, 

some of which have important therapeutic implications for treating human NASH.6 

However, none of these models resemble NASH disease development in humans.3

The sand rat Psammomys obesus, a member of the gerbil subfamily, serves as 

a model for nutritionally induced type 2 diabetes characterized by primary insulin 

resistance.7–9 P. obesus is adapted to life on a low-energy (LE) diet, characterized 
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by a thrifty metabolism. When transferred to a high-energy 

(HE) diet, these animals develop obesity, hyperinsulinemia, 

hyperglycemia, and hypertriglyceridemia.10,11 Increased 

hepatic triglyceride production and apolipoprotein B 

induction have been demonstrated in hyperinsulinemic 

P. obesus.12,13 Recent reports have also suggested the presence 

of hepatic steatosis in P. obesus fed an HE diet.11

Despite the recognition of an immune component 

in NASH pathogenesis, few studies have examined the 

therapeutic potential of administering immunomodulatory 

agents to treat this disorder. β-glucosylceramide (GC) and 

β-lactosylceramide (LC) are intermediates in the metabolic 

pathways of complex glycosphingolipids.14 These molecules 

and other glycosphingolipids were shown by others and by 

us to affect the relationship between hepatic steatosis and 

insulin resistance.15–19

The aims of the present study were to characterize 

hepatic steatosis in P. obesus and to determine the effect of 

β-glycosphingolipids on hepatic steatosis and the metabolic 

syndrome in this model. P. obesus fed the HE diet were found 

to have a high hepatic fat content, significant zone 3 steatosis, 

mild inflammation, and mild fibrosis on liver biopsies, 

as well as elevated serum transaminases. Administering 

β-glycosphingolipids induced a profound decrease in liver 

enzymes and in liver mass. These effects were accompanied 

by amelioration of hepatic steatosis and decreased serum 

cholesterol, triglycerides, and interferon (IFN)-γ.

Methods
Animals
Five-month-old male P. obesus were purchased from Harlan 

laboratories (Jerusalem, Israel). Animals were housed in 

solid-bottomed polypropylene cages equipped with water 

bottles and Aspen woodchip bedding, and were fed standard 

LE (2.38 kcal/g) or HE (2.93 kcal/g) artificial diets. Animal 

experiments were carried out in accordance with the 

guidelines of the Hebrew University–Hadassah Institutional 

Committee for Care and Use of Laboratory Animals and with 

the committee’s approval.

Preparation of glycolipids
β-GC and β-LC were purchased from Avanti Polar Lipids 

(Alabaster, AL, USA) and dissolved in ethanol. They were 

then emulsified in phosphate buffered saline (PBS).

Study groups
We studied seven groups of five-month-old P. obesus on an 

HE diet (n=8, Table 1). Animals were treated for 25 days with 

daily intraperitoneal injections of β-glycolipids: GC, LC, or 

1:1 β-GC and β-LC (IGL) at doses of 2.5 mg/kg (groups A–C), 

5.0 mg/kg (groups D–E), or PBS (group G). Group H was 

treated with PBS and fed an LE diet.

Follow-up parameters
Body and liver weight were evaluated at the end of study. 

Hepatic steatosis/steatohepatitis was evaluated by deter-

mining hepatic fat content via magnetic resonance imaging 

(MRI); examining liver biopsies; and measuring serum 

cholesterol, triglycerides, alanine aminotransferase (ALT), 

and aspartate aminotransferase (AST) levels.

Serum levels of IFN-γ and IL-10
Serum levels of IFN-γ and interleukin (IL)-10 were 

determined by ‘sandwich’ enzyme-linked immunosorbent 

assay (ELISA) using commercial kits according to the 

manufacturer’s instructions (Quantikine; R&D Systems, 

Minneapolis, MN, USA).

Hepatic fat content measurement by MRI
P. obesus underwent MRI on day 21. Hepatic fat content was 

measured with a double-echo chemical shift gradient-echo 

sequence technique, which provides in-phase and out-of-phase 

images in a single acquisition for the assessment and quan-

tification of fat. T1-weighted out-of-phase MRI is sensitive 

for detection of relatively small proportions of tissue fat.16,20 

MR images were acquired with a 1.5-T system (Sigma LX; 

General Electric, Milwaukee, WI, USA). Double-echo MRI 

was performed with a repetition time of 125 msec, double 

echo times of 4 and 6.5 msec, and a flip angle of 80°. Imaging 

parameters included a section thickness of 3 mm, a 13 cm field 

of view, and a 256×160 matrix. Axial and coronal images were 

obtained. Signal intensity (SI) changes between in-phase and 

out-of-phase images were computed. The SI index was calcu-

lated as follows: SI index = (SIip − SIop)/SIip (SIip = in-phase 

SI; SIop = out-of-phase SI). Low SI index values indicate 

a smaller amount of tissue fat.

Table 1 Experimental and control groups

Group Treatment Dose (mg/kg) Diet

A GC 2.5 HE
B LC 2.5 HE
C IGL 2.5 HE
D GC 5.0 HE
E LC 5.0 HE
F IGL 5.0 HE
G PBS - HE
H PBS - LE

Abbreviations: GC, β-glucosylceramide; HE, high energy; IGL, 1:1 
β-glucosylceramide and β-lactosylceramide; LC, β-lactosylceramide; LE, low energy; 
PBS, phosphate buffered saline.
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Measurement of serum AST, ALT, 
cholesterol, and triglyceride levels
Serum fasting AST, ALT, glucose, insulin, cholesterol, and 

triglyceride levels were measured from cardiac blood at the 

end of the study period using standard techniques.

Liver histology
Liver segments from each sand rat were fixed in 10% neutral 

buffered formalin and then embedded in paraffin. Five sections 

(5 µm thickness) were then stained with hematoxylin and eosin 

(H&E). To visualize neutral lipids, livers were frozen in Tissue-

Tek OCT compound (Sakura Finetek USA Inc., Torrance, CA, 

USA), and sections were stained with Oil Red O.

Statistical analysis
Data were analyzed by one-way analysis of variance 

(ANOVA) using the Prism 4 software program (Graph-Pad 

Software Inc., San Diego, CA, USA). Data were considered 

significant if P,0.05.

Results
β-glycosphingolipids decreased liver  
enzymes in P. obesus fed an HE diet
Serum ALT levels were significantly increased in P. obesus 

fed an HE diet and treated with PBS (group G) compared 

with those fed an LE diet (group H) (P,0.01). There was 

no statistically significant difference in serum AST levels 

between these groups. Significant decreases in serum AST 

and ALT levels were observed in GC-, LC-, and IGL-treated 

P. obesus fed an HE diet in groups A–F compared with 

PBS-treated animals (group G). Following treatment with 

β-glycosphingolipids, values were even lower than those 

observed in animals fed the LE diet (Figure 1A). Figure 1B 

shows photographs of H&E and Oil Red O-stained liver 

biopsies from P. obesus fed an HE diet and treated with 

PBS (group G), manifesting increased hepatic steatosis, mild 

hepatic inflammation, and fibrosis, which were not present in 

littermates fed an LE diet (group H). Liver biopsies of GC-

treated P. obesus (groups A and D) showed only minimal 

evidence of steatosis and no inflammation (Figure 1B).

β-glycosphingolipids decreased hepatic  
fat content in P. obesus fed an HE diet
As liver histology of GC-treated animals demonstrated a clear 

decrease in hepatic fat, we used MRI to quantify the total 

amount of intrahepatic fat in vivo. In PBS-treated P. obesus 

fed an HE diet (group G), hepatic fat content was increased 

when compared with animals fed an LE diet (group H) 

(MRI SI index 19.3 vs 14.8, P-value not significant [NS]; 

Figure 2). A reduction in the hepatic SI index in P. obesus 

compared with PBS-treated animals was observed only in 

animals treated with GC (groups A and D, 14.4 and 14.1, 

respectively); GC administration reduced the hepatic SI 

index of the P. obesus fed an HE diet to the levels of the 

those fed the LE diet (group H). No additional decrease in 

SI index was obtained when the animals were treated with a 

double dose of GC (5 mg/kg). The reduction in fat content 

is represented in the MR image from P. obesus fed an HE 

diet and treated with PBS (group G) and those treated with 

GC (group A) in Figure 2.

β-glycosphingolipids decreased liver  
weight in P. obesus fed an HE diet
Administration of β-glycosphingolipid to P. obesus fed an 

HE diet halted the increase in hepatic weight observed in the 

P. obesus fed an HE diet and treated with PBS (Figure 3). 

Mean liver weights and percentages of liver weight out of 

body weight of the β-glycosphingolipid-treated animals 

(groups A–D) were significantly lower than in group G 

(PBS-treated animals). However, when higher dosages of 

LC and IGL were administered, no statistically significant 

difference was observed when compared with controls 

(group G).

β-glycosphingolipid decreased fasting  
serum cholesterol and triglyceride  
levels in P. obesus fed an HE diet
Serum triglycerides and cholesterol were higher for P. obesus 

fed an HE diet and treated with PBS (group G) when com-

pared with animals fed an LE diet (group H) (Figure 4). 

Administering LC or high doses of IGL decreased serum 

triglyceride levels in groups B, E, and F. Treatment with 

β-glycosphingolipid (except for low-dose GC) reduced 

cholesterol levels (Figure 4).

Effect of β-glycosphingolipids  
on serum IFN-γ and IL-10 levels
We studied the effect of β-glycosphingolipids on pro- and 

anti-inflammatory cytokines: IFN-γ and IL-10. Figure 5 

shows that administration of GC, LC, and IGL was associ-

ated with a decrease in IFN-γ serum levels. Low-dose LC and 

high-dose IGL administration were associated with increased 

levels of IFN-γ. However, these changes were not statisti-

cally significant. For serum IL-10 levels, an HE diet induced 

an increase, but various treatments of β-glycosphingolipids 

did not significantly affect the IL-10 levels in P. obesus fed 

an HE diet.
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Discussion
Hyperinsulinemic, hyperglycemic, and hypertriglyceridemic 

P. obesus manifested significant hepatic steatosis, elevated 

serum aminotransferase levels, mild hepatic inflammation, 

and fibrosis, all features found in NASH. Administration of 

β-glycosphingolipids significantly decreased hepatic injury, 

manifested by decreases in steatosis and inflammation. These 

effects were accompanied by a reduction in central body fat 

and were associated with a tendency for a decline in serum 

IFN-γ levels.

The P. obesus is a useful model for NAFLD. It possesses 

a number of features that are reminiscent of the disease in 

human subjects, including the hepatic steatosis distribution 

pattern, the presence of hepatic inflammation and fibrosis, 

and an association with insulin resistance and hyperlipidemia. 

The ease of inducing NAFLD in this model, in which ani-

mals become diabetic after 2 weeks on an HE diet, further 

establishes the advantages of P. obesus in comparison with 

other experimental models for NAFLD less physiologically 

similar to human NAFLD pathogenesis.4

In our study we focus on hepatic steatosis, a feature that is 

not well studied in P. obesus. We found that administration of 

β-glycosphingolipids resulted in reduced hepatic steatosis and 

inflammation, which was associated with a decrease in IFN-γ 

levels, suggesting an immune-mediated anti-inflammatory 

effect. These results are in line with our previous studies in 
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several animal models that demonstrated the beneficial effect 

of β-glycosphingolipids.19,21 Administering β-GC to leptin-

deficient ob/ob mice ameliorated hepatic steatosis, lowered 

serum triglyceride levels, and normalized glucose tolerance 

curves.21 This effect was associated with an immune effect 

on T-lymphocyte subsets, manifested by a decrease in hepatic 

natural killer T-cells and an increase in hepatic cluster of 

differentiation (CD)-8+ T-lymphocytes.21

The contribution of immune-mediated mechanisms to 

the pathogenesis of NASH has been increasingly recognized. 

Adipose tissue secretes a number of adipocytokines that act 

locally or distally as inflammatory, immune, or hormonal 

signalers.22 The pro-inflammatory state in adipose tissue 

leads to local insulin resistance, including an impaired free 

fatty acid (FFA) release inhibition by insulin.

The association between hepatic steatosis and inflam-

mation and features of the metabolic syndrome in P. obesus 
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Figure 2 Effect of β-glycosphingolipids on liver fat content in Psammomys obesus fed a high-energy diet.
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reinforces the concept of interactions among these 

conditions.5,23 Indeed, insulin resistance was shown to play a 

key role, in both the development of hepatic steatosis and in 

its progression to steatohepatitis.24 The mechanism involved 

increased release of FFAs from adipose tissue, which sug-

gested a possible link between obesity, insulin resistance, 

and NASH.1,16,25–27 Following these assumptions, enhanced 

delivery of FFAs from visceral adipocytes into the portal 

system may contribute to reduced hepatic insulin clearance, 

increased hepatic gluconeogenesis, and triglyceride syn-

thesis, as well as impaired insulin-mediated suppression of 

hepatic glucose output and induction of peripheral insulin 

resistance.25 As a result of these abnormal fatty acid metabo-

lisms, fat accumulates in parenchymal liver cells in excess of 

the hepatic capacity for FFA metabolism. This may increase 

the mitochondrial synthesis of fatty acids and impaired secre-

tion of triglycerides. Support for the assumption relating 

lipotoxicity and liver injury may be exhibited by the MCD 

high-fat diet model in which FFA accumulate despite substan-

tial suppression of lipogenesis and induction of triglyceride 

synthesis genes.26

The  d i spar i t i e s  no ted  among  the  d i ffe ren t 

β-glycosphingolipids and the relative advantage of GC over 

the other tested ligands can be explained by its higher affin-

ity to the CD1d receptor on natural killer T-cells or dendritic 

cells.28 Alternatively, β-glycosphingolipids may exert an effect 

on hepatic steatosis that is independent of insulin resistance. 

More studies to investigate these hypotheses are warranted. 

In the Zucker diabetic fatty rat model, blood glucose level 

reduction was achieved by lowering glycosphingolipid levels 

using a GC synthase inhibitor, which affected peripheral 

insulin sensitivity without increasing insulin levels.29–31 In 

the present study, β-glycosphingolipid level elevation may 

have affected β-cell function, with only a minor influence on 
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peripheral insulin resistance. GC and related glycosphingo-

lipids have been implicated as causal elements in cell growth 

and regulation of hormonal signaling.32 In a diabetes model, 

increases in renal size and concentration of glucocerebroside 

and ganglioside GM3 were noted in parallel with an increase 

in ganglioside concentration.32 Glycosphingolipid formation 

was suggested to represent an important pathway for glucose 

utilization in early diabetic nephropathy.32 Administering 

β-glycosphingolipids may alter the levels of as-yet undefined 

gangliosides, thus altering these pathways.

In summary, we have shown that β-glycosphingolipids exert 

a remarkable beneficial effect on fatty liver in P. obesus, with 

alteration of body fat distribution that was associated with a 

decrease in fat accumulation and the associated liver inflamma-

tory response. GC was recently found to be safe in a preliminary 

study in healthy human subjects33 and may prove to be a novel 

therapeutic modality for NAFLD and the metabolic syndrome.
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