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The Tibetan population has lived and successfully reproduced at high altitude for many
generations. Studies have shown that Tibetans have various mechanisms for protection
against high-altitude hypoxia, which are probably due, at least in part, to placental
adaptation. However, comprehensive in silico analyses of placentas in Tibetans are
lacking. We performed a microarray-based comparative transcriptome analysis of 10
Tibetan women from Yushu, Qinghai, CHN (∼3,780 m) and 10 European women
living in Leadville, CO, United States (∼3,100 m) for less than three generations.
Expression of HIF-1α, STAT3, EGFR, HSP5A, XBP1, and ATF6A mRNA was less in
the Tibetan placentas as compared with European placentas. A total of 38 miRNAs
were involved in regulating these genes. Differentially expressed genes were enriched
for HIF1α signaling pathways, protein processing in the endoplasmic reticulum, PI3K-
AKT signaling pathways, and MAPK signaling pathways. Based on the transcriptome
profiles, the Tibetan population was distinct from the European population; placental
tissues from the Tibetan population are lacking hypoxic responses, and “passivation”
occurs in response to hypoxic stress. These results provide insights into the molecular
signature of adaptation to high altitudes in these two populations.

Keywords: Tibetan, hypoxia, high altitude, placenta, ER stress

INTRODUCTION

Mountain areas account for approximately 24% of the Earth’s surface. More than 140 million
humans live at high altitude, defined as areas above 2,500 m (8,000 ft) (Yi et al., 2010; Friedrich
and Wiener, 2020). The characteristic environmental features of high-altitude regions include
low oxygen pressure, low temperature, significant diurnal temperature variation, low humidity,
and strong UV radiation (Peacock, 1998; Butaric and Klocke, 2018). Survival at high altitudes is
extremely challenging, especially due to the hypoxic conditions.

Oxygen is essential for maintenance of normal physiological functions in cells. Therefore,
hypoxia is a major stressor that severely impacts health and creates conditions of physiological
hypoxia. Many pathological processes are associated with hypoxia, including bacterial infection,
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cancer, inflammation, and cardiovascular diseases (Schaffer and
Taylor, 2015; Thompson et al., 2017; Aldossary et al., 2020; Feng
et al., 2020; Fico and Santamaria-Martinez, 2020). Understanding
cellular responses to changes in oxygen levels and the molecular
mechanisms underlying these responses are important for
understanding and ultimately treating these conditions. The
hypoxia-inducible factor (HIF) family of proteins targets oxygen-
sensitive genes, promoting angiogenesis, energy metabolism, and
cell survival (Semenza, 2012; Bigham and Lee, 2014). Hypoxia is
detected by other stress pathways as well. Although activation
of stress signaling pathways may be beneficial under hypoxic
conditions, excessive stress results in apoptosis. Hypoxia can
cause oxidative stress, nutrient deficiencies, and suppression
of signaling pathways, which interferes with protein folding,
and leads to the amassing of misfolded and unfolded proteins,
resulting in endoplasmic reticulum (ER) stress (Feldman et al.,
2005; Lee et al., 2020).

Acclimatization and adaptation contribute to the response
to high-altitude environments over short and long periods of
time, respectively (Luo et al., 2014). The Tibetan Plateau has
an average altitude of about 4,300 m and the partial pressure
of oxygen is 40% less than that at sea level (Song et al.,
2020). Tibetans have lived and successfully reproduced at high
altitudes for 40,000 years via many evolutionary strategies
(Zhang et al., 2018b). Extensive research has demonstrated that
Tibetans have a range of mechanisms for protection against
high-altitude hypoxia. When compared with a low-altitude
populations and high-altitude Andean populations, Tibetans
display an augmented hypoxic ventilatory response, higher
blood flow, greater resistance to pulmonary hypertension, lower
hemoglobin concentrations, higher levels of the vasodilator nitric
oxide, better reproductive outcomes, and normal intrauterine
growth at altitude (Moore et al., 2001; Havryk et al., 2002; Droma
et al., 2006; Beall, 2007; Patitucci et al., 2009; Wu et al., 2013;
Gilbert-Kawai et al., 2014; Jeong et al., 2014; Burton et al.,
2016; Peng et al., 2017; Busch et al., 2018). These traits are
considered to be adaptive, and confer a blunted physiological
response to hypoxia.

The placenta alters its transport capacity in response to
nutritional cues. However, there has been little research into
placental adaptation to high altitudes. Studying the genetic
background of high-altitude adaptation in placentas of the
Tibetan population can provide insights into the physiological
basis of adaptation. In this study, to further understand the
mechanism underlying high-altitude adaptation, we screened
differentially expressed miRNAs and mRNAs in placentas from
Tibetan and European high altitude (>3,100 m) pregnancies.
The candidate genes were further analyzed for Gene Ontology
(GO) (Ashburner et al., 2000) functional annotation and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and
Goto, 2000) pathway enrichment analyses. Protein–protein
interaction (PPI) network construction and modular analyses
were performed, and hub genes were identified. Finally,
the miRNA–mRNA regulatory networks of the hub genes
were constructed and analyzed. Our results provide evidence
for the involvement of novel candidate genes in adaptation
to high altitude.

MATERIALS AND METHODS

Sampling
Tissue collection was approved by the ethics committee of
Qinghai University Medical College and the Colorado Multiple
Institutional Review Board (Aurora, CO, United States). Human
term placentas (38–40 weeks) were obtained from women
of Tibetan descent who gave birth via vaginal delivery at
Yushu Prefecture Hospital (3,780 m) in Qinghai Provence. All
patients gave informed consent in standard Tibetan language,
with interpretation by local Tibetan doctors. Placentas obtained
during vaginal delivery from women of European ancestry who
lived in Leadville, CO, United States (3,100 m) for fewer than
three generations were donated by the Centre for Trophoblast
Research at the University of Cambridge, United Kingdom.
Maternal age, birthweight, blood pressure and Apgar scores (>7)
were similar between groups (Table 1).

Tissue collection methods in Qinghai province were identical
to those used in Colorado. An investigator from the Colorado
project trained investigators in China. Each placenta was weighed
immediately after delivery and divided into six sections. Samples
were collected from each area within 5 min of delivery, washed
in phosphate-buffered saline (PBS), and rapidly frozen in liquid
nitrogen. Samples were later removed from liquid nitrogen and
stored at−80◦C.

Isolating RNA and Quality Control
Total RNA from Tibetan (n = 10) and European (n = 10)
placentas was isolated using RNeasy Mini Kits (Qiagen, Inc.,
Valencia, CA, United States) according to the manufacturer’s
instructions and incubation with RNase-Free DNase Set (Qiagen,
Inc., Valencia, CA, United States). RNA quantity was determined
using an Agilent Bioanalyzer (Santa Clara, CA, United States).
RNA completeness was measured using denaturing agarose gel
electrophoresis.

Microarray Analysis of miRNA
Total RNA from European (n = 10) and Tibetan (n = 10)
placentas was purified using mirVanaTM miRNA Isolation
Kits (AM1561; Thermo Fisher, Waltham, MA, United States)
and quantified. Hybridization and scanning of the Affymetrix
GeneChip miRNA Array v.4.0 (Affymetrix, Santa Clara, CA,
United States) was performed in the CapitalBio Corporation
microarray service department (Beijing, China1). FlashTagTM

Biotin RNA Labeling Kits (FT30AFYB; Genisphere, PA,

1www.capitalbio.com

TABLE 1 | General characteristics.

Tibetan European

Maternal age (years) 24.6 ± 0.8 25.9 ± 1.1

Birth weight (grams) 3160 ± 101.3 2670 ± 55.9

Systolic (mmHg) 114 ± 3.1 117 ± 1.9

Diastolic (mmHg) 68 ± 2.9 73 ± 1.9
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United States) were used to label 1 µg of RNA per sample, which
was then hybridized overnight, according to the manufacturer’s
protocol. The miRNA chips were scanned using the Affymetrix
GeneChip Scanner 3000 after washing and staining using
Affymetrix GeneChip Hybridization Wash and Stain Kits.

Microarray Analysis of mRNA
Expression analyses were performed in total RNA extracted
from Tibetan (n = 9, one out of ten samples failed to pass the
quality control analysis of Affymetrix GeneChip) and European
(n = 10) placentas. Preparation of cDNA, hybridization, and
scanning of the PrimeViewTM Human Gene Expression Array
(Affymetrix) were performed in the CapitalBio Corporation
microarray service department (Beijing, China, see Text Footnote
1). Message AmpTM Premier RNA Amplification Kit (Ambion,
Austin, TX, United States) was used to label RNA with biotin.
GeneChip Hybridization (Affymetrix) was used for hybridization
overnight. The hybridized chips were scanned using the
Affymetrix GeneChip Scanner 3000 after washing and staining
with Affymetrix GeneChip Hybridization Wash and Stain Kits.

Microarray Data Analysis
Affymetrix GeneChip Command Console software (Affymetrix)
was used to obtain raw data, and Expression Console software
was used to integrate single probe signals into probe set signals.
R packages (R Foundation for Statistical Computing, Vienna,
Austria2) were used to analyze the significance analysis of
microarray (SAM) to confirm differentially expressed miRNA
and mRNA probe sets between the two groups. When the
fold change (FC) was greater than 2 or less than 0.5
and q-value ≤ 0.05, the probe sets were considered to be
biologically significant.

Prediction of miRNA Target Genes
Several bioinformatics prediction tools were used to predict the
target genes of miRNAs, including miRWalk, miRanda, miRD,
TargetScan, Microt4, mirbridge, RNA22, miRMap, miRNAMap,
Pictar2, PITA, and RNAhybrid. Predicted target genes were
accepted when the gene was predicted by six or more prediction
software systems.

GO Functional Annotation and KEGG
Pathway Enrichment Analyses
The Database for Annotation, Visualization, and Integrated
Discovery [DAVID3 (Dennis et al., 2003)] was used for analyses
and p < 0.05 was considered significant.

PPI Network Construction, Modular
Analysis, and Hub Gene Analysis
The Search Tool for the Retrieval of Interacting Genes (STRING4)
was used to construct the PPI network, and Cytoscape V_3.7.1
(San Diego, CA, United States) (Shannon et al., 2003) was used

2http://www.R-project.org/
3https://david.ncifcrf.gov/
4http://www.string-db.org/

to visualized the results of PPI. Hub genes in the network were
selected using the Cytoscape app CytoHubba.

Building a miRNA–mRNA Regulatory
Network
A regulatory network of miRNA–mRNA interactions related to
hypoxia and endoplasmic reticulum (ER) was constructed with
Cytoscape to display the interaction between miRNA and mRNA.

Statistical Analysis
GraphPad Prism version 8 software (GraphPad Software, San
Diego, CA, United States5) was used for statistical analyses.
Values are expressed as means ± SEM. Student’s t-tests were
used to evaluate the differences between two groups. Statistically
significant was accepted at p < 0.05.

RESULTS

Differentially Expressed miRNAs in the
High Altitude European and Tibetan
Placentas
MiRNA expression profiles were compared between the
Tibetan and European placentas. In total, 68 miRNAs were
upregulated and 106 were downregulated in Tibetan compared
with European placentas (Figure 1). The result indicates
transcriptome differences between Tibetan and European
populations at high altitudes.

Differentially Expressed mRNAs in the
High Altitude European and Tibetan
Placentas
Affymetrix microarrays were used to investigate the mRNA
expression profiles of the same placentas as used in Section
“Differentially Expressed miRNAs in the High Altitude European
and Tibetan Placentas,” to identify feasible targets of the
differentially expressed miRNAs. Levels of 253 mRNAs were
significantly higher and levels of 925 mRNAs were significantly
lower in the Tibetan compared with the European placentas
(Figure 2). The hypoxic environment results in more extensive
downregulation of mRNAs in Tibetan placentas at high altitudes
than in placentas from European women living in high-
altitude conditions. Overall, there were large differences in the
transcriptome signature between the two groups.

Prediction of Target Genes of
Differentially Expressed miRNAs
miRNAs mainly exert their biological effects by directly targeting
the 3′ untranslated region of mRNA. A total of 23,521
target genes—12,457 targets of upregulated miRNAs and 11064
targets of downregulated miRNAs—were identified. Among
predicted target genes, there were overlaps with the actual
measured mRNAs, which further increases the evidence for the
participating genes.

5www.graphpad.com
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FIGURE 1 | Hierarchical clustering (A) and scatter plot (B) of all included mature miRNAs from Tibetan and European women’s placentas. (A) The Y-axis represents
specific miRNAs and the X-axis represents individual samples, with the blue on the top representing Tibetan and the red representing European. The color frame
represents the log2 intensities of the miRNAs; purple = low expression and red = high expression. (B) Green dot is the down regulated miRNA and red dot is the up
regulated miRNA.

FIGURE 2 | Heat map (A) and scatter plot (B) of mRNA expression levels in Tibetan and European placenta samples. (A) Hierarchical clustering analysis of all
covered human mRNAs. The Y-axis represents specific mRNAs and the X-axis represents individual samples, with the red on the top representing Tibetan and the
blue representing European. The color frame represents the log2 intensities of the miRNAs; purple = low expression and red = high expression. (B) Green dot is the
down regulated gene and red dot is the up regulated gene.

Identification of Candidate Target Genes
There is an inverse correlation between the expression levels of
miRNAs and those of target genes (Ventura and Jacks, 2009).
We performed a combined analysis of differentially expressed
mRNAs and putative target genes of the differentially expressed
miRNAs. There were 139 genes that overlapped in upregulated
mRNAs and target genes of downregulated miRNAs, and 689 in
downregulated mRNA and target genes of upregulated miRNAs.
A total of 828 candidate target genes were identified (Figure 3),
among which HIF-1α, STAT3, EGFR, HSP5A, XBP1, and ATF6A
were included. As before, an overall downregulation trend was

shown in placentas from Tibetan women compared with those
from European women.

Functional Annotation and Pathway
Enrichment Analysis
Gene Ontology and KEGG pathway analyses of 828 candidate
target genes were performed to explore the relationships
between candidate genes and functions related to placental
adaptation. GO functional annotations included biological
process (BP), cellular component (CC), and molecular function
(MF). The top 15 enriched GO terms are listed in Figure 4.
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FIGURE 3 | Screening of candidate genes. (A) Intersection of target genes of upregulated mRNAs (blue) and downregulated miRNAs (pink). (B) Intersection of
downregulated mRNA (blue) and target genes of upregulated miRNAs (pink).

Significantly enriched BPs included IRE1-mediated unfolded
protein response, response to hypoxia, and response to ER stress.
The second most significantly enriched CC was ER. The main
MF terms were protein related. KEGG pathway analyses of the
candidate genes were performed (Figure 5). The HIF-1 signaling
pathway and protein processing in the ER were identified. Based
on functional enrichment and pathway analyses, we found that
the candidate genes were mainly related to hypoxia and the ER,
so we focused on these two aspects for further analyses.

Construction of a PPI Network and
Identification of Hub Genes
Protein–protein interaction networks of hypoxia and ER-related
genes were constructed based on STRING analysis results
(Figure 6). The PPI network of hypoxia related genes contained
25 nodes and 94 edges. The top 10 hub genes were EGFR,
STAT3, CASP3, HIF1A, TGFB1, THBS1, SMAD4, IGF1R, FLT1,
and LEP. The PPI network of ER-related genes contained 28
nodes and 124 edges, and the top 10 hub genes were HSPA5,
CANX, EDEM1, P4HB, DNAJB9, PDIA3, PDIA6, XBP1, ATF6,
and HYOU1. These genes are likely responsible for Tibetan
adaptation to high altitudes.

Establishment of a miRNA–mRNA
Regulatory Network
Based on the genes overlapping between the miRNA targets
and the differentially expressed genes, we found 38 miRNAs
that targeted the top 10 hub genes related to hypoxia, and 25
miRNAs that target the top 10 hub genes related to ER. These data
were used to construct two miRNA–mRNA interaction networks
(Figure 7). miRNAs that target the hub genes related to hypoxia
and ER are summarized in Tables 2, 3. These results reveal
possible regulatory relationships in hypoxia adaptation.

DISCUSSION

Tibetans have lived in an extreme environment at high altitudes
for 40,000 years compared to European highlanders who have
lived at high altitudes for 7,000 years in the Andes and
less than 200 years in the Rocky Mountains (Lindo et al.,
2018). We identified 174 miRNAs and 1,178 genes that were
differentially expressed between these populations. A total of
23,521 differentially expressed genes were identified using target
gene prediction analysis. 828 candidate genes were identified
at the intersection of these datasets. Of the 828 candidate
genes, the number of downregulated genes was much greater in
the placentas of Tibetan women (689) than European women
(139). This observation suggests that a hypoxic environment
results in more extensive down regulation of the transcriptional
machinery in the placentas of Tibetan women as compared
with European women living above 3,100 m. The results of the
differential expression analyses revealed substantial differences in
placental transcriptome profiles between Tibetan and European
populations at high altitudes.

The differentially expressed genes identified in our
analysis are likely to be responsible for adaptation to high
altitudes. Some important hypoxia-related genes, such as
HIF-1α, signal transducer and activator of transcription 3
(STAT3) and epidermal growth factor receptor (EGFR) were
differentially expressed.

HIF-1α is a key regulator of oxygen homeostasis. To date,
approximately 100 target genes regulated by HIF-1α have been
identified (Lee et al., 2004). These target genes may mediate
changes in oxygen delivery by maintaining vascular tone under
oxygen-limited conditions (Dewi and Fatchiyah, 2013; Lappin
and Lee, 2019), and regulate the utilization of oxygen by
promoting glucose transport and iron uptake (Semenza et al.,
1994; Kim et al., 2006; Papandreou et al., 2006; Nagy et al., 2008;
Keith et al., 2011). HIF-1α reduces the production of cellular
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FIGURE 4 | Gene Ontology (GO) analysis of candidate genes. –Log10(p-value) of the corresponding biological process (BP), molecular function (MF), and cellular
component (CC) (the top 15 GO annotations for each section). A larger –Log10 (p-value) indicates a smaller p-value.

FIGURE 5 | Pathway analysis of candidate genes. A higher –Log10(p-value) indicates a smaller p-value.

reactive oxygen species by switching energy production from
oxidative phosphorylation to anaerobic metabolism via multiple
pathways, and suppressing STAT3/HIF-1α signaling pathway.
These differences predict less apoptosis and oxidative stress
(Semenza, 2011; Li et al., 2019). miR-526b-3p has previously been
reported to regulate both HIF-1α and STAT3 which is consistent
with our results (Zhang et al., 2016, 2020). In the present
study, there was less HIF-1α and STAT3 and greater miR-526b-
3p in Tibetan compared with European placentas, suggesting

blunted responses to hypoxia and stress through miR-526b-
3p. Further, miR-526b-3, miR29b-3p and miR93-3p elevated in
Tibetan placentas could target STAT3, as reported in lung cancer,
liver fibrosis, and renal cell carcinoma (Liu et al., 2019; Du and
Kong, 2020; Gong et al., 2020).

EGFR can regulate HIF-1α, and plays a role in pulmonary
vascular remodeling during chronic hypoxia. Inhibition of EGFR
moderates hypoxia-induced pulmonary vascular remodeling
(Sheng et al., 2009). EGFR was considered to be a target of
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FIGURE 6 | Protein–protein interaction network for the candidate genes. Significant modules related to (A) hypoxia and (B) endoplasmic reticulum.

FIGURE 7 | Regulatory network of miRNAs and mRNAs for candidate genes related to (A) hypoxia and (B) endoplasmic reticulum. The color frame represents the
attribute. Pink = mRNA. Yellow = miRNA.

miR-331-3p, miR-486-3p and miRNA-1231 (Epis et al., 2009;
Meng et al., 2018; Zhang et al., 2018a; Ji et al., 2020). Together
with our results, these data suggest that miR-331-3p, miR-486-
3p, and miRNA-1231 act to protect placentas from hypoxia in
Tibetan populations. In general, the downregulation of these
genes support the hypothesis that Tibetan placentas are not
hypoxic and exhibit passivation.

Differentially expressed genes were also enriched in the ER.
In eukaryotes, the ER orchestrates protein synthesis, folding,
and maturation. Functional defects in the ER result in the
amassing of misfolded and unfolded proteins, which cause the
activation of the unfolded protein response (UPR). Activation
of ER pressure sensors is usually inhibited by an ER-resident
chaperone protein, heat shock protein A5 [heat shock protein
family (Hsp70) member 5, HSPA5], also called glucose-regulated
protein 78 (GRP78), or immunoglobulin heavy chain binding
protein (BiP) (Ibrahim et al., 2019). BiP activation can be

induced by the accumulation of misfolded proteins in the
ER lumen, releasing the three sensors of UPR. Hypoxia is a
major trigger of ER/oxidative stress, which in turn modulates
protein synthesis and slows proliferation (Miyata et al., 2011;
Schonenberger and Kovacs, 2015; Jain et al., 2016). HSPA5
was downregulated in Tibetan placentas, a target of miR-29b-
3p, miR-423-5p, miR-1301-3p and miR-4534, which regulate
transcription of comprehensive targets to relieve ER stress and
restore homeostasis (Travers et al., 2000; Iwakoshi et al., 2003a,b).
XBP1 regulates transcription of targets to relieve ER stress and
restore homeostasis (Travers et al., 2000; Iwakoshi et al., 2003a,b),
and is a target of miR-138-1-3p, miR-423-5p, and miR-4443.
It was downregulated in Tibetan placentas accompanied by an
increase of its associated miRNAs.

UPR signaling pathways are mediated by PERK, IRE1α, and
ATF6 (Almanza et al., 2019). ATF6 was also downregulated in
Tibetan placentas along with an upregulation of its associated
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TABLE 2 | miRNAs target top 10 hub genes related to hypoxia.

Gene miRNA

EGFR hsa-miR-92a-1-5p, hsa-miR-93-3p, hsa-miR-365a-5p, hsa-miR-331-3p, hsa-miR-345-5p, hsa-miR-423-5p, hsa-miR-484,
hsa-miR-486-3p, hsa-miR-526b-3p, hsa-miR-92b-3p, hsa-miR-1231, hsa-miR-3136-5p, hsa-miR-3185

STAT3 hsa-miR-27a-5p, hsa-miR-93-3p, hsa-miR-29b-3p, hsa-miR-423-5p, hsa-miR-526b-3p, hsa-miR-1301-3p, hsa-miR-1275,
hsa-miR-4459, hsa-miR-4492

CASP3 hsa-miR-29b-3p, hsa-miR-484

HIF1A hsa-miR-526b-3p

TGFB1 hsa-miR-19a-3p, hsa-miR-365a-5p, hsa-miR-766-3p, hsa-miR-675-5p, hsa-miR-3909

SMAD4 hsa-miR-19a-3p, hsa-miR-27a-5p, hsa-miR-365a-5p, hsa-miR-486-5p, hsa-miR-486-3p, hsa-miR-526b-3p, hsa-miR-92b-3p,
hsa-miR-1301-3p, hsa-miR-766-3p, hsa-miR-1231, hsa-miR-3185, hsa-miR-4298, hsa-miR-4459

THBS1 hsa-miR-19a-3p, hsa-miR-4443

IGF1R hsa-miR-19a-3p, hsa-miR-27a-5p, hsa-miR-92a-1-5p, hsa-miR-93-3p, hsa-miR-29b-3p, hsa-miR-138-1-3p, hsa-miR-328-3p,
hsa-miR-331-3p, hsa-miR-423-5p, hsa-miR-484, hsa-miR-486-3p, hsa-miR-671-3p, hsa-miR-550a-3-5p, hsa-miR-1301-3p,
hsa-miR-766-3p, hsa-miR-1275, hsa-miR-1307-3p, hsa-miR-3185, hsa-miR-4298, hsa-miR-3911, hsa-miR-4459, hsa-miR-4492,
hsa-miR-4534

FLT1 hsa-miR-19a-3p, hsa-miR-526b-3p, hsa-miR-504-5p, hsa-miR-1301-3p, hsa-miR-766-3p, hsa-miR-675-5p, hsa-miR-1231,
hsa-miR-1247-5p, hsa-miR-3136-5p, hsa-miR-3909, hsa-miR-4492, hsa-miR-4674

LEP hsa-miR-23a-5p, hsa-miR-29b-3p, hsa-miR-328-3p, hsa-miR-331-3p, hsa-miR-423-5p, hsa-miR-526b-3p, hsa-miR-518b,
hsa-miR-766-3p, hsa-miR-3911

Hub genes in the PPI networks of hypoxia were selected using the Cytoscape app CytoHubba. Combined with the prediction of miRNA target genes results, the
corresponding relationships between hub genes and miRNAs was obtained.

TABLE 3 | miRNAs target top 10 hub genes related to ER stress.

Gene miRNA

HSPA5 hsa-miR-29b-3p, hsa-miR-423-5p, hsa-miR-1301-3p, hsa-miR-4534

CANX hsa-miR-27a-5p, hsa-miR-29b-3p, hsa-miR-526b-3p, hsa-miR-504-5p, hsa-miR-1231, hsa-miR-3185, hsa-miR-4534

EDEM1 hsa-miR-19a-3p, hsa-miR-331-3p, hsa-miR-484, hsa-miR-486-3p, hsa-miR-526b-3p, hsa-miR-504-5p, hsa-miR-92b-3p,
hsa-miR-1301-3p, hsa-miR-1247-5p, hsa-miR-4298

P4HB hsa-miR-766-3p, hsa-miR-1275, hsa-miR-4492

DNAJB9 hsa-miR-526b-3p, hsa-miR-92b-3p

PDIA3 hsa-miR-486-5p, hsa-miR-1301-3p, hsa-miR-766-3p, hsa-miR-3909

PDIA6 hsa-miR-138-1-3p

XBP1 hsa-miR-138-1-3p, hsa-miR-423-5p, hsa-miR-4443

ATF6 hsa-miR-328-3p, hsa-miR-484, hsa-miR-486-5p, hsa-miR-486-3p, hsa-miR-526b-3p, hsa-miR-1231, hsa-miR-3185, hsa-miR-3911

HYOU1 hsa-miR-423-5p, hsa-miR-486-3p, hsa-miR-766-3p, hsa-miR-1231, hsa-miR-1275, hsa-miR-4492

Hub genes in the PPI networks of ER were selected using the Cytoscape app CytoHubba. Combined with the prediction of miRNA target genes results, the corresponding
relationships between hub genes and miRNAs was obtained.

miRNAs (Table 2). The UPR signaling pathways may preserve
cells against stress and reestablish cellular homeostasis. However,
continued stimulation of these pathways promotes apoptosis (Xu
et al., 2005). Other UPR related genes, including CANX, EDEM1,
P4HB, DNAJB9, PDIA3, PDIA6, and HYOU1 were decreased in
Tibetan placentas along with an upregulation in their associated
miRNAs (Table 3). The downregulation of UPR genes suggests
that the Tibetan placenta is not under ER stress. Overall, the
relatively low expression of these genes suggests that Tibetan
placentas are not stressed by the hypoxia of high altitude.

CONCLUSION

We established a miRNA–mRNA network using a bioinformatic
approach. To our knowledge, this the first miRNA–mRNA
network reported for placental adaptation to high altitudes.

Thus far, there are no in vivo animal models or in vitro
cell lines that can model placental adaptation as occurs in
Tibetan pregnancies. These results are unique and valuable
for our understanding human adaptation to high altitude
environments. A limitation of this work is that the candidate
differentially expressed genes were not experimentally validated.
Also, the Tibetan samples are from 4,300 m while the European
samples are from 3,100 m. However, it would be expected that
placentas from the higher elevations would have greater not less
hypoxic activation.

In summary, we used in silico analyses to identify the distinct
transcriptome signatures of two populations living at high
altitudes and identified potential mechanisms that underlie high-
altitude adaptation. Data generated in this study indicate that
placentas from Tibetan women are genetically distinct from
European women at high altitudes, and appear to be protected
from hypoxia and stress.
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