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GDF11 inhibits cardiomyocyte pyroptosis and
exerts cardioprotection in acute myocardial
infarction mice by upregulation of transcription
factor HOXA3
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Abstract

NLRP3 (Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3) inflammasome-
mediated cardiomyocytes pyroptosis plays a crucial part in progression of acute myocardial infarction (MI). GDF11
(Growth Differentiation Factor 11) has been reported to generate cytoprotective effects in phylogenesis and multiple
diseases, but the mechanism that GDF11 contributes to cardioprotection of Ml and cardiomyocytes pyroptosis
remains poorly understood. In our study, we first determined that GDF11 was abnormally downregulated in the heart
tissue of MI mice and hypoxic cardiomyocytes. Moreover, AAV9-GDF11 markedly alleviated heart function in MI mice.
Meanwhile, GDF11 overexpression also decreased the pyroptosis of hypoxic cardiomyocytes. PROMO and JASPAR
prediction software found that transcription factor HOXA3 was predicted as an important regulator of NLRP3, and was
confirmed by ChIP assay. Further analysis identifying GDF11 promoted the Smad2/3 pathway resulted in HOXA3
overexpression. Taken together, our study implies that GDF11 prevents cardiomyocytes pyroptosis via HOXA3/
NLRP3 signaling pathway in MI mice.

Introduction Although the inflammatory process is critical for tissue

Acute myocardial infarction (MI) can lead to sudden
cardiac death after prolonged ischemia, and can also dispose
to heart failure with damaged left ventricle pump function’?.
MI is a primary risk factor of human lives that affects an
increasing number of individuals worldwide®*, During MI, a
strong inflammatory response can bring adverse outcomes”.
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healing, can also generate excessive damage and mal-
adjustment of ventricular remodeling, bringing about heart
failure and impaired myocardial function®.

Pyroptosis is an inflammation-dependent type of pro-
grammed cell death, which is mediated by inflamma-
somes’. Inflammasomes are signaling transduction
protein complexes that are stimulated by endogenous and
exogenous stimuli®®. NLRP3 (nucleotide-binding oligo-
merization domain-like receptor pyrin domain-containing
3) inflammasome has been extensively studied'®. Once
activated, NLRP3 transduces the recognition signal to the
adaptor ASC (apoptosis-associated speck-like protein
containing a caspase recruitment domain) to facilitate
activation of caspase-1. The active caspase-1 cleaves IL-
1B/18 and GSDMD (gasdermin D) and subsequently
induces pyroptosis'’. Morphologically, pyroptotic cells
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undergo swelling and even rupturing to release cellular
contents including proinflammatory molecules, leading to
inflammatory response'>'®. Several studies have con-
firmed that pyroptosis has been identified as an indis-
pensable signaling pathway, which leads to the death of
cardiomyocytes'*'”. However, the roles of cardiomyo-
cytes pyroptosis and its potential relationship with MI as
well as the underlying mechanisms have not been fully
investigated.

GDF11 has been discovered for more than 20 years'®.
Recent studies showed that GDF11 induces Smad2/3 to
be phosphorylated through phosphorylating ActR IIA and
IIB receptors when forming a complex with type I
receptor''®. Notably, the occurrence of MI is often
accompanied by inflammation, it is thus possible that
GDF11 is involved in regulating inflammatory response in
the setting of MI. Moreover, overexpression of GDF11
represses the TLR4/NF-kB p65 pathway to inhibit NLRP3
inflammasome activation and ROS production in the
acute ulcerative colitis'®. However, the potential role of
GDF11 in regulating cardiomyocytes pyroptosis has not
been experimentally verified during acute MI. This article
is performed to verify if GDF11 protects cardiomyocytes
pyroptosis in MI mice and to explore the potential sig-
naling and molecular mechanism.

Materials and methods
Establishment of the myocardial infarction mouse model
In total, the left anterior descending coronary artery
(LAD) of 10-week-old male C57BL/6 mice (22-25 g) was
ligated to establish MI model as described previously*>*".
Briefly, mice were anesthetized with injected intraper-
itoneally with 2,2,2-tribromoethanol (200 mg/kg; Sigma,
St. Louis, MO, USA), and then intubated to rodent ven-
tilator (Shinano, Tokyo, Japan). Left thoracotomy was
performed with a small incision at the third and fourth
intercostal space, and 7-0 prolene suture (Ethicon, Inc.,
Somerville, NJ, USA) was applied to ligate LAD. The
sham-operated mice for control underwent similar pro-
cesses without tying the suture. The mice were sacrificed
by cervical dislocation at 12h after MI, randomization
and blinding were adopted in animal experiments. All
operations were performed under sterile conditions.

AAV9-GDF11 production and treatment

The GDF11 was inset into plasmid KS2 (the AAV9
vector) to construct KS2/GDF11 vector. Viral vector titers
of genome between 1 x 10" and 1 x 10"® GC were injec-
ted into mice (C57BL/6) through tail vein 4 weeks before
the surgery.

Echocardiography

Mice were anesthetized with injected intraperitoneally
with 2,2,2-tribromoethanol and subjected to echocardio-
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graphic examinations as described in detail®>. M-mode
and transthoracic echocardiograms were implemented by
a Vevo2100 ultrasound Visualsonics (Canada). Then, the
parameters of cardiac function including ejection fraction
(EF%), fractional shortening (FS%), left ventricular inter-
nal dimension at end-diastole (LVIDd), and left ven-
tricular internal dimension at end-systolic (LVIDs) were
collected.

Ejection fraction (EF%) refers to the percentage of blood
emptied from the ventricle during contraction, it reflects
both cardiac function and remodeling, widely recognized
as a valuable diagnostic and prognostic tool.

Fractional shortening (FS%) refers to the reduction of
the length of the end-diastolic diameter that occurs by the
end of systole. Like the ejection fraction, this is a measure
of the heart’s muscular contractility, and is calculated
according to the equation: ((LVIDd-LVIDs)/LVIDd) x
100%.

Left ventricular internal dimension at end-diastole
(LVIDd) refers to the distance between the upper and
lower surfaces of left ventricular in end-diastole, used to
calculate FS%.

Left ventricular internal dimension at end-systolic
(LVIDs) refers to the distance between the upper and
lower surfaces of left ventricular in end-systolic, used to
calculate FS%.

Histopathological and morphometric analyses

The hearts were fixed in 4% paraformaldehyde. Then,
tissue specimens were embedded in paraffin and each
sample was cut into 5-um thick. Haematoxylin and eosin
(HE) staining was performed to evaluate histopathological
alterations. The results were examined with a microscope
(Olympus Corporation, Tokyo, Japan).

Transmission electron microscopy (TEM)

Samples of heart tissue were fixed in 2.5% glutar-
aldehyde overnight and subsequently rinsed in buffer,
followed by post-fixation with 1% osmuim tetroxide for
2 h. The samples were stained with 1% uranyl acetate for
2h, and then dehydrated in graded ethanol solutions.
Finally, the selected samples were embedded in epoxy
resin by routine methods. The sections were electron-
stained, and surveyed with JEM-1200 electron microscope
(JEOL Ltd., Tokyo, Japan).

Isolation and culture of neonatal mouse cardiomyocytes
(NMCMs)

Neonatal cardiomyocytes were separated from the
hearts of 1- to 3-day-old mice as previously described®.
Briefly, neonatal mice ventricles tissues were dissected
and minced into 1-2 mm? pieces after the hearts had been
rapidly placed on ice, and neonatal cardiomyocytes were
isolated in 0.25% trypsin at 37°C. Heart tissues were
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trypsinized until the tissues disappeared and cell sus-
pensions were collected by centrifugation at 1500 rpm for
5min. The isolated cells were resuspended in DMEM
(Hyclone, Logan, UT, USA) containing 10% FBS
(Hyclone, Logan, UT, USA) and penicillin/streptomycin
(100 U/ml; Beyotime, Shanghai, China). Cardiomyocytes
were purified by different times. The resuspension was
plated onto a culture flask for 90 min at 37 °C, allowing for
preferential attachment of fibroblasts to the bottom.
Cardiomyocytes were removed and seeded into plates. 5-
bromo-2-deoxyuridine (10 nM; cat. no. B5002; Sigma,
Saint Louis, USA) was added to the cardiomyocytes
medium, resulting in the inhibition of the growth of
cardiac fibroblasts. The normal cardiomyocytes were
incubated at 37 °C with 5% CO, and 95% air in a humi-
dified incubator. The hypoxia cardiomyocytes were cul-
tured in D-Hank’s liquid, saturated with 5% CO,, 1% O,,
and 94% N, for 12 h.

AC16 cell culture

Adult ventricular cardiomyocyte cell line (AC16) was
purchased from ATCC and authenticated by short tan-
dem repeat (STR) profiling and tested for mycoplasma
contamination. AC16 cell was routinely cultured in
DMEM F-12 (Hyclone, Logan, UT, USA) containing 10%
EBS (Hyclone, Logan, UT, USA) and penicillin/strepto-
mycin (100 U/ml; Beyotime, Shanghai, China) as pre-
viously described'.

Cell transfection

GDF11 and HOXA3-overexpressing pcDNA3.1 plasmid
(100nM) or the NC (empty pcDNA3.1 plasmid) were
synthesized and transfected into neonatal cardiomyocytes
using Lipofectamine 2000 reagent (Invitrogen, Carlsbad,
CA, USA) as previously described®. After 6h of cell
culture, the fresh medium was used for 48 h.

RNA extraction and real-time PCR

Total RNA from mouse heart tissues and neonatal
cardiomyocytes were extracted using 1 ml TRIzol reagent
(Invitrogen, Carlsbad, CA, USA). One microgram of lysed
RNA was used to generate cDNAs with random primer,
applied with a High-Capacity ¢cDNA RT kit (cat. no.
4368814; Applied Biosystems, Carlsbad, CA, USA). The
resultant cDNAs were amplified by a SYBR Green PCR
Master Mix kit (cat. no. 4309155; Applied Biosystems,
Carlsbad, CA, USA) to quantify the relative levels of
GDF11 and HOXAS3. All results were normalized against
GAPDH. Polymerase chain reaction (PCR) was achieved
with the ABI 7500 FAST Real-Time PCR system. The
expression levels of GDF11 and HOXA3 mRNAs were
determined by the cycle threshold (Ct) method (27AACT),

The following primers were reflected in the real-
time PCR:
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GDF11: Forward, 5'-agccaggggtagcaagaaat-3’ and
Reverse, 5'-gagtggagaaatctgggect-3';

HOXA3: Forward, 5'-aagattccctgageacctgg-3' and
Reverse, 5'-tcgctgagetgtcgtagtag-3/;

GAPDH: Forward, 5’-aagaaggtggtgaagcagge-3’ and

Reverse, 5'-tccaccacccagttgetgta-3'.

Western blot

Protein extraction was obtained from heart tissues of
C57BL/6 mice and neonatal cardiomyocytes using RIPA
solution (Solarbio, Beijing, China) supplemented with
protease inhibitors for immunoblotting analysis. With the
following centrifugation at 13,500 rpm at 4 °C for 15 min,
the supernatant was collected and quantified by a BCA kit
(Beyotime, Shanghai, China). SDS-PAGE (11% gels)
separated each protein sample (100 pg). The protein was
transferred to nitrocellulose membranes and blocked with
5% BSA at room temperature for 2 h. Following incuba-
tion used the primary antibodies of GDF11 (1:500, cat. no.
MAB19581; R&D Systems, MAB19581, Minneapolis,
MN, USA), HOXA3 (1:500, cat. no. ab230879; Abcam,
Inc., Cambridge, MA, USA), NLRP3 (1:1000, cat. no.
15101; Cell Signaling Technology, Danvers, MA, USA),
ASC (1:1000, cat. no. 67824; Cell Signaling Technology,
Danvers, MA, USA), cleaved-caspase-1 (1:500, cat. no.
67314; Cell Signaling Technology, Danvers, MA, USA),
GSDMD-N (1:500, cat. no. 93709; Cell Signaling Tech-
nology, Danvers, MA, USA), and GAPDH (1:1000, cat. no.
TA-08; Zhongshanjingiao, Inc., Beijing, China) in PBS at
4°C overnight. Membranes were incubated with the
fluorescence-labeled secondary antibody at room tem-
perature for 1h (1:10,000; LI-COR, Lincoln, NE, USA).
Western blot bands were captured by Odyssey Imaging
system, and quantified via Odyssey v30 software
throughout the measured band intensity (area x OD) in
each group.

Chromatin immunoprecipitation (ChIP) assay

The ChIP was achieved using SimpleChIP Enzymatic
Chromatin IP Kit (Magnetic Beads; Cell Signaling
Technology, Danvers, MA, USA). Briefly, proteins and
DNA were cross-linked with 37% formaldehyde for
10 min. AC16 cells were added into lysis buffer for 5 min.
Then, cell lysates were dealt with pulses ultrasonication
to break nuclear membrane and shear DNA into frag-
ments with 150-900 bp fragments. The final lysates were
incubated with 10ug HOXA3 antibody (cat. no.
ab230879; Abcam, Inc., Cambridge, MA, USA), 2ug
nonspecific immunoglobulin G (IgG) antibody, and 10 pg
Histone H3 antibody at 4°C overnight. In all, 10-pl
chromatin was used as input control, Histone H3 was
used as positive control, and rabbit anti-IgG was used as
negative control. The precipitated DNAs were subjected
to PCR using a primer pair specific for NLRP3 (Forward:
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5'-gagctgaccgtegtctttga-3’; Reverse: 5'-aaccagctacaaaaagc
atggat-3’). The amplified fragments were analyzed by
1.5% (w/v) agarose gel analysis and verified by DNA
sequencing.

Cell viability assay

Cell viability was detected with Cell Counting Kit-8
(CCK-8; Dojindo, Kumamoto, Japan) as previously
described by our laboratory**. Briefly, neonatal cardio-
myocytes (60% confluence) were cultured in 96-well
plates followed by constructive transfection or hypoxia
treatment. Subsequently, 10% CCK-8 solution was added
to the cell culture medium and incubated for 1h. The
optical density was determined at 450 nm on a microplate
reader and viability rates were calculated.

Hoechst 33342/PI fluorescent staining

Cell pyroptosis was detected by double staining with
fluorescent dyes Hoechst 33342 (Sigma, St. Louis, MO,
USA) and PI (Sigma, St. Louis, MO, USA) staining.
Briefly, neonatal cardiomyocytes were cultured in 24-well
plates, and the cells were transfected with varying con-
structs or treated with hypoxia. Next, Hoechst 33342 and
PI were added to the cultured medium at final con-
centrations of 1.5 and 8 M, respectively, and cultured at
37 °C for 30 min. The stained cells were observed under a
confocal laser scanning microscope (FV300, Olympus,
Japan). The total number of cells and the number of
damaged cells were counted under x200 magnification in
triplicate.

Enzyme-linked immunosorbent assay (ELISA)

After various treatments, the concentration of IL-1p (E-
EL-MO0037c, Elabscience, Wuhan, China) and IL-18 (E-
EL-MO0730c, Elabscience, Ltd, Wuhan, China) in the
serum of MI mice was measured by ELISA kit according
to the protocols®. Absorbance at 450 nm was measured
in each well by visualization of color intensity
development.

Statistical analysis

All data were presented as the mean+ SEM. Each
experiment was replicated three times independently.
Statistical comparisons were performed by Student’s ¢-test
between two groups. Differences among groups were
analyzed by one-way ANOVA by Dunnett’s test. p < 0.05
was considered statistically significant. GraphPad Prism
version 5.0 software was used for statistical analysis.

Results
Downregulation of GDF11 expression in ischemic heart
and hypoxic cardiomyocytes

To investigate the potential function of GDF11, we
generated MI model with C57BL/6 mice by coronary
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artery ligation. The expression of GDF11 was markedly
decreased in heart tissues of MI compared with the sham
group as demonstrated by western blot and real-time PCR
analyses (Fig. 1A, B). It is known that hypoxia is a key
event in acute myocardial infarction, which causes cardiac
injuries. The neonatal mouse cardiomyocytes (NMCM:s)
were treated with hypoxia for 12h. The continuous
hypoxia induced a significant decrease in GDF11 protein
and mRNA levels compared to that under normoxic
conditions (Fig. 1C, D).

GDF11 improves heart function in Ml mice

A question we asked ourselves was whether GDF11
could produce cardioprotective effects in the setting of
acute myocardial infarction. To address this point, we
overexpressed GDF11 in MI mice by infecting heart with
AAV9 vector carrying the GDF11 gene. AAV9-GDF11
was injected into mice through tail vein 4 weeks before
LAD occlusion. Successful delivery of AAV9-GDF11 into
the mice heart in vivo was verified by western blot and
real-time PCR (Supplementary Fig. 1A, B). Cardiac func-
tion was measured using echocardiography 12 h post MI
creation. The results revealed that AAV9-GDF11 sig-
nificantly increased EF% and FS$%, compared with the MI
group. Moreover, LVIDd and LVIDs were both sub-
stantially decreased, compared with the MI group
(Fig. 2A). Hematoxylin and eosin (HE) staining result
demonstrated that cardiac tissue was badly damaged in
the MI group relative to the sham group, as indicated by
ruptured cardiomyocytes and disordered myocardial
fibers. Notably, GDF11 overexpression alleviated the
abnormal morphological alterations of cardiomyocytes
and restored the orderly arrangement of myofibrils. These
results suggest that GDF11 prevented cardiac injuries
caused by MI (Fig. 2B).

GDF11 inhibits pyroptosis in ischemic heart and hypoxic
cardiomyocytes

To further explore whether GDF11 plays an important
role in adjusting cardiomyocytes pyroptosis in myocardial
infarction, we evaluated the protein levels of NLRP3, ASC,
cleaved-caspase-l (c-caspase-1), and GSDMD-N in
ischemic heart and hypoxia cardiomyocytes with or
without GDF11 treatment. As shown in Fig. 3A-E, the
results clearly demonstrated that NLRP3, ASC, c-caspase-
1, and GSDMD-N proteins were markedly increased in
MI mice, which was partially reversed by AAV9-GDF11.
IL-18 and IL-1f secretion was also markedly increased in
the serum of MI mice. Consistently, AAV9-GDF11
treatment effectively decreased the IL-18 and IL-1p
levels in mouse serum (Fig. 3F, G). Besides, to observe the
morphological changes of cardiomyocytes caused by
pyroptosis in MI, transmission electron microscopy
(TEM) was used for the examination of cardiac tissue
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FS (%)

9-NC

N

+AAV9-GDF11 +AAV

&

i P

Fig. 2 GDF11 improves heart function in Ml mice. A Echocardiogram and EF%, FS%, LVIDd, and LVIDs in the sham, MI, Ml + AAV9-GDF11, and
MI -+ AAV9-NC groups. **p < 0.01, **p < 0001 vs sham; "p < 0,05, *p < 0.01 vs MI; *p < 0.05, **p < 0.01 vs Ml + AAVO-GDF11; n = 3 for EF% and FS%,
n=4 for LVIDd, n =5 for LVIDs. B HE staining assesses histology of heart tissue. Scale bar indicates 50 um; n = 3.

\.

Official journal of the Cell Death Differentiation Association



Li et al. Cell Death and Disease (2020)11:917

Page 6 of 10

n=3.

\.

A B c F
%5 50 e B %0 150
-3 - £ =
s 840 ok 3540 888 E 888
o o 220
820 # 20 ## < 5 w
k14 ® D10 4
S0 . E]
< o0 X o0 0
S S N S a0t N £ a0t N @
& N W & s & W« b
c-caspase-1 20 kDa TN TP T L
QR N »
¥ E W G ¥
« « o
| 32 kDa £ £
GSDMD-N 5 .gz.o o s B %2.0 . 28 - 600 88
- - [ [3
— = 2 515 2 2415 E
3 e o S 400 Fkk
£ ] 200
% 205 T=o05 5 i
<& \'i'o Q\\ éo 2 ? K a -
‘& \ o Aq zo.o ® 0.0 [
o8 ) & 8 Y & 0 & © S 0 N ©
S & & & K

Fig. 3 GDF11 inhibits pyroptosis in ischemic heart. A Representative western blot bands for pyroptosis-associated proteins (NLRP3, ASC, c-
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ultrastructure. We also found that MI tissue exhibited
typical pathological changes of pyroptosis, such as round-
up and rupture of mitochondria. GDF11 treatment cor-
rected these anomalies (Fig. 3H).

Next, we further investigated the impacts of GDF11 on
the expression of NLRP3, ASC, c-caspase-1, and
GSDMD-N at protein level in cardiomyocytes under
hypoxic condition. The results revealed that GDF11 dra-
matically decreased the protein levels of NLRP3, ASC, c-
caspase-1, and GSDMD-N (Fig. 4A-E). Meanwhile, PI
uptake was decreased further confirming anti-pyroptosis
effects of GDF11 (Fig. 4F). Furthermore, GDF11 increased
the viability of hypoxic cardiomyocytes by CCK-8 assay
(Fig. 4G).

HOXA3 transcriptionally inactivates NLRP3 expression and
indirectly regulates pyroptosis of cardiomyocytes

In order to understand how GDFI11 regulates the
expression of NLRP3 inflaimmasome, we searched the
transcription factors of NLRP3 in PROMO and JASPAR
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databases and found that HOXA3 is a negative regulator
of inflammatory response®® and it is predicted to have a
high affinity for binding to NLRP3 promoter region
(Supplementary Fig. 2A, B). We therefore decided to test
the feasibility of HOXA3 as a transcriptional regulator of
NLRP3. To this end, we first measured the expression of
HOXA3 in ischemic heart tissue and hypoxic cardio-
myocytes. The protein and mRNA levels of HOXA3 were
markedly downregulated under ischemic condition
(Fig. 5A-D). Chromatin immunoprecipitation in AC16
cells confirmed that HOXA3 bound to the promoter
region of NLRP3 with a relatively high affinity (Fig. 5E). In
addition, we found that NLRP3 protein levels were
markedly decreased by HOXA3 overexpression (Fig. 5F,
Q). To further determine the role of HOXA3 in cardio-
myocytes pyroptosis, we overexpressed HOXA3 by plas-
mids in hypoxic NMCMs. As shown in Fig. 5H-],
western blot results exhibited that the expression of
ASC, c-caspase-1, and GSDMD-N were decreased by
HOXA3 overexpression. These results suggest that the
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transcriptional inactivation of NLRP3 by HOXA3 is cru-
cial for cardiomyocytes pyroptosis in ML

GDF11 increases HOXA3 expression via TGF-3/Smad2/3
signaling

We further detected the regulatory role of GDF11 to
HOXA3. As shown in Fig. 6A, GDF11 upregulated
HOXA3 expression. Several studies have reported the
activation of TGF-B/Smad signaling pathway by GDF11%”.
Of note, we found that pretreatment of cardiomyocytes
with the TGF-B1 receptor inhibitor SB505124 restored
the upregulation of HOXA3 by GDF11 (Fig. 6A), indi-
cating that TGF-B mediated the HOXA3 regulation by
GDF11. Activation or phosphorylation of Smad2/3 is
downstream event of TGF-B signaling®®. NMCMs were
treated with SB203580, a Smad2/3 phosphorylation inhi-
bitor, followed by treatment with GDF11 for 48 h. We
observed that SB203580 reversed the upregulation of
HOXA3 induced by GDF11 (Fig. 6B).
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Discussion

Collectively, the present study generates a number of
main findings as summarized below. (1) GDF11 inhibits
cardiomyocytes pyroptosis in acute myocardial infarction
(MI). (2) Cardiomyocytes pyroptosis contributes impor-
tantly to MI progress. (3) GDF11/HOXA3/
NLRP3 signaling pathway participates in suppressing
cardiomyocytes pyroptosis. These results indicate that
GDF11 has cardioprotective effects, and suggest that
GDF11 is expected to become a new agent for the
treatment of ML

In 1992, Zychlinsky et al. first published an article
related to pyroptosis. They accidentally found that shigella
falciparum induced pyroptosis of host macrophages,
which they considered to be apoptosis at that time®.
Pyroptosis, which is mediated by inflammasome, is an
inflammation-dependent type of programmed cell death,
distinct from traditionally cell death, such as apoptosis
and necrosis®>*'. NLR protein (nod-containing protein-
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Fig. 5 HOXA3 transcriptionally inactivates NLRP3 expression and indirectly regulates pyroptosis of cardiomyocytes. A Western blot analysis
of HOXA3 protein level in mice hearts from sham and Ml model. ***p < 0.001 vs sham; n = 10. B Real-time PCR results showing the HOXA3 expression
in mice hearts from sham and Ml model. ***p < 0.001 vs sham; n = 5. C Western blot analysis of HOXA3 protein level from NMCMs treated with and
without hypoxia for 12 h. ***p < 0.001 vs control; n = 10. D Real-time PCR results showing the HOXA3 mRNA expression from NMCMs treated with
and without hypoxia for 12 h. ***p < 0.001 vs control; n = 6. E ChIP assay was performed to analyze the binding of HOXA3 to the NLRP3 promoter;
n=3.F, G Western blot analysis of NLRP3 protein. **p < 0.01 vs control; *p < 0,001 vs hypoxia; 8885 <0001 vs hypoxia+GDF11; n = 5. Western blot
analysis of ASC (H), c-caspase-1 (1), and GSDMD-N (J) protein transfected with HOXA3 overexpression plasmid in the NMCMs with hypoxia. *p < 0.05,
*p <001 vs control; 'p < 0.05, p < 0,01 vs hypoxia; %p < 0,05, **p < 0.01, **¥p < 0.001 vs hypoxia+GDF11; n = 4 for c-caspase-1,n =5 for ASC, n =6
for GSDMD-N.

like sensors) is a receptor protein, of which various sti-
mulus signals are received. According to different sensors,
inflammasomes can be divided into NLRP1, NLRP3,
NLRC6, NLRC10, and NLPC12**. NLRP3 inflammasomes
(also known as cryopyrin and NAPL3) have been exten-
sively studied. Indeed, other research groups and our
team have proved that NLRP3 inflammasome plays cru-
cial roles in several kinds of diseases, including cancer,
type 2 diabetes mellitus, atherosclerosis, and heart dis-
ease”'"*, Studies have shown that measures to reduce
NLRP3 can play a safeguard role in myocardium®*. These
studies urge us to check the important effect of NLRP3
inflammasome in MIL.

GDF11 has been discovered and researched for more
than 20 years'®. A large number of studies have confirmed
that GDF11 is widely used in the process of pyroptosis
and treatment of cardiovascular disease, respectively'*>”.
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However, its cardiac protective role by reversing cardio-
myocytes pyroptosis has not been studied. In this work,
we are the first to explore the expression of GDF11 was
decreased in the ischemic heart and hypoxic NMCMs,
and overexpression of GDF11 could exert the cardiac
protective  effect via reversing cardiomyocytes
pyroptosis in ML

Previous studies have demonstrated that GDF11 can
regulate the expression of HOX family transcription fac-
tors through Smad2/3 signaling pathway®®. As a tran-
scription factor located in nucleus, HOXA3 plays an
active part in the regulation of embryonic development,
inflammation response, and cell death®®*”*®, Evidence
suggested that several transcription factors participate in
cell pyroptosis, including Fli-1 and STAT1***. To illu-
minate the underlying molecular mechanisms by which
HOXA3 participates in pyroptosis, various databases
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including PROMO and JASPAR prediction software,
predicted that HOXA3 was an important regulator of
NLRP3 by binding to its promoter regions. We found that
HOXAS3 contributed to the repression of NLRP3 tran-
scription, and HOXA3 expression was decreased in
ischemic heart and hypoxic NMCMs. In addition, we
verified that hypoxia-induced reduction of HOXA3
expression in cardiomyocytes could be significantly
reversed after overexpression of GDF11. Therefore, we
deduced that HOXA3 could be an upstream regulate
agent of pyroptosis in ML

In conclusion, our current studies demonstrated the
first evidence that GDF11 plays anti-pyroptosis role by
HOXA3/NLRP3 axis to improve heart function in ML
These findings may greatly provide an acute myocardial
infarction with a new therapeutic approach.
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