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Abstract: In this study, the efficacy of the automated deep convolutional neural network (DCNN) was
evaluated for the classification of dental implant systems (DISs) and the accuracy of the performance
was compared against that of dental professionals using dental radiographic images collected from
three dental hospitals. A total of 11,980 panoramic and periapical radiographic images with six
different types of DISs were divided into training (n = 9584) and testing (n = 2396) datasets. To compare
the accuracy of the trained automated DCNN with dental professionals (including six board-certified
periodontists, eight periodontology residents, and 11 residents not specialized in periodontology),
180 images were randomly selected from the test dataset. The accuracy of the automated DCNN based
on the AUC, Youden index, sensitivity, and specificity, were 0.954, 0.808, 0.955, and 0.853, respectively.
The automated DCNN outperformed most of the participating dental professionals, including
board-certified periodontists, periodontal residents, and residents not specialized in periodontology.
The automated DCNN was highly effective in classifying similar shapes of different types of DISs
based on dental radiographic images. Further studies are necessary to determine the efficacy and
feasibility of applying an automated DCNN in clinical practice.
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1. Introduction

Dental implants have become a predictable treatment alternative for patients with partial or
complete edentulous conditions [1]. Over the years, this treatment modality has evolved as a standard
treatment protocol for replacing missing teeth. Thus, hundreds of manufacturers worldwide are
producing and distributing over 2000 different types of dental implant systems (DISs) that differ in
diameter, length, shape, coating, and surface material and properties [2,3]. Therefore, clinical dental
practitioners have to select the appropriate DIS for a specific clinical indication based on their personal
skillset and preferences.

DISs have shown a success rate of more than 90% and long-term survival rate of more than
10 years in systematic and meta-analytic review studies, which inevitably increases with the occurrence
of mechanical and biological complications, such as fixtures or screw fractures, screw loosening,
veneer chipping or fractures, low implant stability, peri-implant mucositis, and peri-implantitis [4–7].
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Therefore, identifying the correct DIS is very important to repair or replace the existing DIS without
available information [8,9]. However, studies on methods and techniques that enable the clear
identification of DISs are scarce [10,11].

A deep convolutional neural network (DCNN) is a type of artificial intelligence that uses
a cascade of multiple layers of nonlinear processing units for feature extraction, transformation,
and classification of high-dimensional datasets [12]. A DCNN that is specifically designed for detection,
classification, and segmentation in vision tasks and practical applications has been rapidly exploited
in recent years in conjunction with improvements in computer performance and deep learning
techniques [12]. Particularly, DCNN has been successfully applied in several medical and dental
fields, and demonstrated significant advantages in terms of diagnosis and prognosis, such as diabetic
retinopathy in retinal fundus photographs, skin cancer in skin lesion photographs, periodontally
compromised teeth and dental caries on dental radiographs, and oral cystic lesions on cone beam
computed tomography [13–17].

The fine-tuning of deep learning-based algorithms requires specific technical skills and
mathematical knowledge, and creating an optimized DCNN for medical and dental applications is
an extremely challenging task with numerous hidden challenges [18,19]. Therefore, in recent years,
an automated DCNN that regulates the entire deep learning process involved in appropriate model
selection and optimized hyper-parameter tuning was developed. The effectiveness and suitability of
this automated DCNN are being evaluated in medical applications [20,21].

In the dental field, it is difficult to find studies related to automated DCNN, and to the best of
our knowledge, no studies have been conducted on the classification of DISs using fully automated
DCNN. We hypothesized that automated DCNN is highly effective in classifying similar shapes of
different types of DISs compared to most dental professionals. Therefore, the purpose of this study is
to evaluate the efficacy of the automated DCNN for classifying various types of DISs and compare the
performance accuracy with dental professionals using dental radiographic images.

2. Materials and Methods

2.1. Dataset

The study design was approved by the Institutional Review Board of Daejeon Dental Hospital,
Wonkwang University (approval no. W2003/003-001). Anonymized raw panoramic and periapical
radiographic images (DICOM format panoramic images with a pixel resolution of 2868 × 1504
and periapical images with a pixel resolution of 1440 × 1920) were collected from three multi-center
investigations conducted by Daejeon Dental Hospital, Wonkwang University (WKUDH); Ilsan Hospital,
National Health Insurance Service (NHIS-IH); and Mokdong Hospital, Ewha Womans University
(EWU-MH). The dataset contained six different types of DISs taken between January 2006 and December
2009 at WKUDH and NHIS-IH, and from May 2009 to May 2019 at EWU-MH.

2.2. Classification of DISs

DISs were classified into six different types with a diameter of 3.3–5.0 mm and a length of 7–13 mm:

• Astra OsseoSpeed® TX (Dentsply IH AB, Molndal, Sweden), with a diameter of 4.5–5.0 mm and a
length of 9–13 mm;

• Implantium® (Dentium, Seoul, Korea), with a diameter of 3.6–5.0 mm and a length of 8–12 mm;
• Superline® (Dentium, Seoul, Korea), with a diameter of 3.6–5.0 mm and a length of 8–12 mm;
• TSIII® (Osstem, Seoul, Korea), with a diameter of 3.5–5.0 mm and a length of 7–13 mm;
• SLActive® BL (Institut Straumann AG, Basel, Switzerland), with a diameter of 3.3–4.8 mm and a

length of 8–12 mm;
• SLActive® BLT (Institut Straumann AG, Basel, Switzerland), with a diameter of 3.3–4.8 mm and a

length of 8–12 mm.
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2.3. Data Preparation

Images with severe noise, blur, distortion, and other conditions that impeded the clinical detection
and classification of DISs were excluded from the dataset. All included DISs were then manually
classified and labeled by five periodontal residents (EHJ, BRN, DHK, JWK, and KYP) who did not
directly participate in this study, and confirmed by three participating board-certified periodontists
(JHL, YTK, and JBL) based on annotated electronic dental and medical records. A total of 11,980 images,
including Astra OsseoSpeed® TX (n = 388, 3.2%), Impantium® (n = 2512, 21.0%), Superline® (n = 2360,
19.7%), TSIII® (n = 5617, 46.9%), SLActive® BL (n = 540, 4.5%), and SLActive® BLT (n = 563,
4.7%), were extracted from 7146 (59.6%) panoramic and 4834 (40.4%) periapical radiographic images.
The details and numbers of radiographic images for each DIS are listed in Table 1. The dataset was
randomly divided into two groups: 9584 (80%) radiographic images selected for the training dataset
and the remaining 2396 (20%) radiographic images used as the testing dataset. The dataset was resized
and transformed into a pixel resolution of 112 × 224, and the brightness and contrast were normalized
using the OpenCV library functions [22].

Table 1. Number of panoramic and periapical radiographic images for each dental implant system (DIS).

Dataset

WKUDH NHIS-IH EWU-MH

Dental Implant System Panoramic images
(n = 4989)

Periapical images
(n = 3872)

Panoramic images
(n = 1120)

Periapical images
(n = 204)

Panoramic images
(n = 1037)

Periapical images
(n = 758)

Dentsply Astra
OsseoSpeed TX® 247 139 2 - - -

Dentium Implantium® 589 578 944 148 174 79
Dentium Superline® 1011 970 71 32 202 74

Osstem TSIII® 2788 1990 100 23 351 365
Straumann SLActive® BL 102 89 3 1 206 139

Straumann SLActive® BLT 252 106 - - 104 101

Dataset collected from three dental hospitals: Daejeon Dental Hospital, Wonkwang University (WKUDH),
Ilsan Hospital, National Health Insurance Service (NHIS-IH), and Mokdong Hospital, Ewha Womans University
(EWU-MH). All DISs consist of a diameter of 3.3–5.0 mm and length of 7–13 mm.

2.4. Automated DCNN

Automated DCNN using Neuro-T version 2.0.1 (Neurocle Inc., Seoul, Korea), which are specialized
tools for automatic model selection and hyper-parameter optimization, were adopted for this study.
During training and inference, the automated DCNN automatically creates effective deep learning
models and searches the optimal hyperparameters. An Adam optimizer with L2 regularization was
used for transfer learning. The batch size was set to 432, and the automated DCNN architecture
consisted of 18 layers with no dropout (Figure 1).Diagnostics 2020, 10, x FOR PEER REVIEW 4 of 10 
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2.5. Comparing the Performance of the Automated DCNN to that of Dental Professionals

A total of 180 radiographic images (each DIS included 30 panoramic and periapical images)
were randomly selected from the test dataset using the Keras framework in Python (version
3.8, Python Software Foundation). We then compared the accuracy of the performance of 25
dental professionals (including six board-certified periodontists, eight periodontology residents,
and 11 residents not specialized in periodontology, from WKUDH, NHIS-IH, and EWU-MH) to the
trained automated DCNN.

2.6. Statistical Analysis

The accuracy of the automated DCNN was evaluated, and the differences between the trained
automated DCNN and the dental professionals were compared using the datasets from WKUDH,
NHIS-IH, and EWU-MH. For the evaluation, the following statistical parameters were taken into account:
receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), 95% confidence
intervals (CIs), standard error (SE), Youden index (sensitivity + specificity − 1), sensitivity, and
specificity, which were calculated using Neuro-T (version 2.0.1) and R statistical software (version 3.5,
R Foundation for Statistical Computing, Vienna, Austria). Delong’s method was used to compare the
AUCs generated from the test dataset, and the significance level was set at p < 0.05.

3. Results

3.1. Outcomes of Automated DCNN on the Test Dataset

The accuracy of the automated DCNN abased on the AUC, Youden index, sensitivity, and specificity
for the 2,396 panoramic and periapical radiographic images were 0.954 (95% CI = 0.933–0.970,
SE = 0.011), 0.808, 0.955, and 0.853, respectively. Using only panoramic radiographic images (n = 1429),
the automated DCNN achieved an AUC of 0.929 (95% CI = 0.904–0.949, SE = 0.018, Youden index = 0804,
sensitivity = 0.922, and specificity = 0.882), while the corresponding value using only periapical
radiographic images (n = 967) achieved an AUC of 0.961 (95% CI = 0.941–0.976, SE = 0.009, Youden
index = 0.802, sensitivity = 0.955, and specificity = 0.846). There were no significant differences in
accuracy among the three ROC curves (Table 2 and Figure 2).Diagnostics 2020, 10, x FOR PEER REVIEW 5 of 10 
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Figure 2. (a) Receiver operating characteristic (ROC) curve for classification of six types of DISs in the
testing dataset, which consisted of 2396 panoramic and periapical radiographic images. (b) The accuracy
of the automated DCNN for the test dataset did not show a significant difference among the three ROC
curves based on DeLong’s method.
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Table 2. Pairwise comparison of ROC curve for classification of six different types of DISs in the
testing dataset.

Difference between Areas SE 95% CI p-Value

Panoramic and periapical images
vs. oeriapical images 0.007 0.007 −0.008–0.022 0.365

Panoramic and periapical images
vs. panoramic images 0.025 0.021 −0.016–0.067 0.235

Panoramic images
vs. oeriapical images 0.032 0.020 −0.006–0.072 0.106

AUC, area under the curve; ROC, receiver operating characteristic curve; SE, standard error; CI, confidence
interval; AUCs were compared using DeLong’s method for paired ROC curves; panoramic and periapical images,
dataset consisting of 2396 panoramic and periapical radiographic images; panoramic images, dataset consisting of
1429 panoramic radiographic images; periapical images, dataset consisting of 967 periapical radiographic images.

3.2. Outcomes for Automated DCNN Algorithm Compared to that of Dental Professionals

Using 180 panoramic and periapical radiographic images randomly selected from the testing
dataset, the automated DCNN outperformed most of the participating dental professionals, including
board-certified periodontists, periodontal residents, and residents in other departments, in terms of
the overall sensitivity and specificity (Figure 3). In particular, the superior accuracy of the automated
DCNN was distinct for Straumann SLActive® BLT (AUC = 0.981, 95% CI = 0.949–0.996, SE = 0.009,
Youden index = 0.880, sensitivity = 0.900, and specificity = 0.980) and Straumann SLActive® BL
(AUC = 0.974, 95% CI = 0.938–0.992, SE = 0.010, Youden index = 0.833, sensitivity = 0.967, and
specificity = 0.867), as shown in Table 3.Diagnostics 2020, 10, x FOR PEER REVIEW 6 of 10 
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Table 3. Accuracy comparison between the automated deep convolutional neural network and dental
professionals for the classification of six types of DISs, based on 180 panoramic and periapical images
randomly selected from the training dataset.

Variables AUC 95% CI SE Youden Index Sensitivity Specificity

Dentsply Astra OsseoSpeed TX®

Automated DCNN 0.945 0.901–0.973 0.023 0.766 0.933 0.833
Board-certified periodontists 0.896 0.877–0.914 0.014 0.725 0.777 0.947

Periodontology residents 0.831 0.811–0.850 0.015 0.517 0.570 0.946
Residents not specialized in periodontology 0.777 0.758–0.795 0.014 0.425 0.493 0.931

Dentium Implantium®

Automated DCNN 0.908 0.856–0.946 0.026 0.780 0.933 0.847
Board-certified periodontists 0.791 0.766–0.815 0.013 0.733 0.966 0.766

Periodontology residents 0.806 0.785–0.826 0.011 0.682 0.912 0.770
Residents not specialized in periodontology 0.736 0.716–0.755 0.013 0.465 0.672 0.792

Dentium Superline®

Automated DCNN 0.903 0.850–0.942 0.041 0.786 0.833 0.954
Board-certified periodontists 0.537 0.507–0.567 0.016 0.333 0.778 0.588

Periodontology residents 0.534 0.508–0.560 0.015 0.330 0.945 0.384
Residents not specialized in periodontology 0.544 0.522–0.566 0.013 0.292 0.884 0.407

Osstem TSIII®

Automated DCNN 0.937 0.890–0.967 0.024 0.813 0.900 0.913
Board-certified periodontists 0.501 0.471–0.532 0.018 0.298 0.911 0.387

Periodontology residents 0.503 0.477–0.529 0.016 0.270 0.104 0.625
Residents not specialized in periodontology 0.556 0.534–0.578 0.014 0.215 0.821 0.394

Straumann SLActive® BL

Automated DCNN 0.974 0.938–0.992 0.010 0.833 0.967 0.867
Board-certified periodontists 0.759 0.732–0.784 0.015 0.661 0.888 0.772

Periodontology residents 0.753 0.730–0.775 0.014 0.650 0.870 0.779
Residents not specialized in periodontology 0.698 0.677–0.718 0.012 0.507 0.781 0.726

Straumann SLActive® BLT

Automated DCNN 0.981 0.949–0.996 0.009 0.880 0.900 0.980
Board-certified periodontists 0.968 0.955–0.977 0.011 0.951 0.955 0.995

Periodontology residents 0.915 0.899–0.929 0.014 0.851 0.866 0.985
Residents not specialized in periodontology 0.915 0.902–0.927 0.011 0.852 0.887 0.964

4. Discussion

Attempts have been made to identify or classify various types of DISs in the past, but most studies
have been confined to research in field trials (which use few DIS images or require additional detailed
information, such as diameter, length, taper angle, type of thread, and collar shape) [23,24]. Recently,
various studies were conducted to confirm the effectiveness of DCNN with respect to identifying
various types of DISs [25,26]. As far as we know, this is the first study to use automated DCNN for
classifying similar shapes of different types of DISs and demonstrated higher performance accuracy
compared to dental professionals.

In our previous studies, we demonstrated that the pre-trained DCNN using dental radiographic
images demonstrated high accuracy in identifying and classifying periodontally compromised teeth
(AUC = 0.781, 95% CI = 0.650–0.87.6) and dental caries (AUC = 0.845, 95% CI = 0.790–0.901) at a level
equivalent to that of experienced dental professionals [15,16]. However, an assessment of clinical
parameters (including clinical attachment level, probing depth, bleeding upon probing, tooth mobility,
percussion, and electric pulp test), subjective symptoms (including duration and severity of pain
and swelling), and radiological interpretation are essential for accurate diagnosis and appropriate
treatment. Therefore, the DCNN approach for diagnosing periodontal disease and dental caries using
radiographic images has limitations in clinical practice.

In contrast, the DCNN-based approach that uses only radiographic images is very effective and
considered to be quite useful in actual clinical practice as a method for classifying various types of
DISs with similar diameters and lengths. Two recent studies found that pre-trained or finely tuned
DCNN architectures (including VGG16, VGG19, SqueezeNet, GoogLeNet, ResNet-18, MobileNet-v2,
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and ResNet-50) showed a high accuracy of more than 86% for classifying similar but different types of
DISs [25,26]. Our previous study also indicated that the pre-trained DCNN (GoogLeNet Inception-v3)
provided reliable results and achieved a higher accuracy (AUC = 0.962, 95% CI = 0.954–0.970) than a
board-certified periodontist (AUC = 0.925, 95% CI = 0.913–0.935) for classifying three types of DISs
using panoramic and periapical radiographic images [27].

The results of our previous pilot study demonstrated that there is an insignificant difference
in the accuracy between panoramic-only and periapical-only based datasets [27]. Moreover, the
results of this study confirmed that the accuracy was not statistically or significantly different among
the use of panoramic-only (AUC of 0.929, 95% CI = 0.904–0.949), periapical-only (AUC = 0.961,
95% CI = 0.941–0.976), and panoramic and periapical (AUC = 0.954, 95% CI = 0.933–0.970) datasets.
Therefore, to compare the accuracy of automated DCNN with that of dental professionals, panoramic
and periapical radiographic images were included in one dataset (rather than divided into separate
datasets). Additionally, because each DIS used in this study had the same shape but different diameters
and lengths, the DISs were not divided according to the diameter and length used to build the dataset.

The Straumann SLActive® BLT implant system has a relatively large tapered shape compared
to other types of DISs. Thus, the automated DCNN (AUC = 0.981, 95% CI = 0.949–0.996) and dental
professionals (AUC = 0.928, 95% CI = 0.920–0.936) achieved appropriate classifications with high AUC.
However, for the Dentium Superline®and Osstem TSIII® implant systems that do not have conspicuous
characteristic elements with a tapered shape, the automated DCNN classified correctly with an AUC of
0.903 (95% CI = 0.850–0.967) and 0.937 (95% CI = 0.890–0.967), whereas dental professionals showed a
low AUC of 0.541 (95% CI = 0.527– 0.556) and 0.525 (95% CI = 0.510–0.540), respectively. Based on these
results, the automated DCNN showed statistically significant higher classification accuracy than dental
professionals, including experienced periodontists. Furthermore, it was confirmed that the automated
DCNN was highly effective in classifying similar shapes of DISs based on dental radiographic images.
Additionally, several previous studies reported that the professional experience of the examiner is
an important factor for interpreting dental radiographs [28,29]. Contrastingly, we found that the
difference in the experience level associated with DISs did not affect the classification accuracy of DISs
significantly because the classification of DISs is unfamiliar regardless of their professional experience.

Nonetheless, this study has certain limitations. Although six types of DISs were selected from
three different dental hospitals and categorized as a dataset, the training dataset was still insufficient
for clinical practice. Therefore, it is necessary to build a high-quality and large-scale dataset containing
different types of DISs. If time and cost are not limited, the automated DCNN can be continuously
trained and optimized for improved accuracy. However, owing to computing power constraints,
we have to compromise on optimization at the appropriate level. Additionally, the automated DCNN
regulates the entire process, including appropriate model selection and optimized hyper-parameter
tuning. Therefore, there is less room for human experts to manually check and intervene during the
entire process of deep learning training. Cone-beam computed tomography-based three-dimensional
images are widely used in the dental field. However, they were not included in the dataset of this study.
The classification of DISs using three-dimensional images with less distortion than two-dimensional
images is expected to improve accuracy significantly. Therefore, further research is required based on
three-dimensional images.

5. Conclusions

The selection of an appropriate DCNN model with optimized hyper-parameter tuning is key to
the success of deep learning research. We demonstrated that the accuracy of the automated DCNN
outperformed most of the participating dental professionals. Therefore, the automated DCNN can
help clinical dental practitioners to classify various types of DISs based on dental radiographic images.
Nevertheless, further studies are necessary to determine the efficacy and feasibility of applying the
automated DCNN in clinical practice.
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