
INTRODUCTION

Autophagy is a cardinal cellular mechanism that involves the 
degradation and digestion of intracellular constituents by lysosomes 
[1-3]. Autophagy controls inflammation through interactions 
with immune signaling pathways and regulates the secretion of 
molecular mediators of inflammation [4-6]. Autophagy plays a 
vital role in the physiological conditions of many immune cells 
including macrophages [7-9]. Appropriate autophagy contributes 
to neuroprotection, whereas inappropriate autophagy could induce 
cell death [10-12]. Autophagy constitutes a lysosome-mediated 
degradation process [13] and is crucial for the maintenance 

of metabolic homeostasis by inhibiting the accumulation of 
misfolded proteins and of damaged cytoplasmic organelles [14-16]. 
Autophagy mitigates neurodegeneration caused by oxidative stress 
[17], whereas impaired autophagy signaling has been implicated 
in neurodegenerative disorders such as Parkinson’s, Alzheimer’s 
diseases[18-21], spinal cord injury [22], and stroke [23]. 

Autophagosome formation is controlled by protein complexes 
including the mammalian target of rapamycin (mTOR) complex 
1 (mTORC1) and the coiled-coil myosin-like BCL2-interacting 
protein 1 (Beclin 1)-complex [24-27]. The autophagy process 
is initiated by the regulation of protein complexes composed 
of more than 30 autophagy-related (ATG) proteins [28-30] 
and autophagic adaptor light chain 3 protein (LC3) [31]. The 
phosphatidylethanol-amine-conjugated LC3 (LC3II) is localized 
at the inner and outer autophagosomal membranes and plays a 
critical role for the initiation of autophagy process [31]. Autophagy 
can regulate the production and secretion of diverse cytokines in 
cells [32-34]. Microglia degrades beta-amyloid (Aβ) via autophagy 
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in Alzheimer’s disease [35]. The decreased level of Beclin 1 and the 
blockade of microglial pahgocytosis were observed in Alzheimer’s 
disease patients [36,37].

Several microRNA (miR) are associated with autophagic 
flux [38]. The overexpression of miR-195[39], miR-14 [40], 
miRNA-30a [41] and miR-423-5p [42] promote induction of 
autophagy, whereas suppression of miR-101 induces autophagy in 
cardiomyocytes [43]. MicroRNA-Let7A (miR-Let7A) is a tumor 
suppressor miRNA that target transcription-related genes in 
apoptosis [44]. MiR-Let7A regulates anti-inflammatory responses 
through repression of specific genes acting in downstream 
signaling pathways [44] and is involved in the function of 
microglia in inflammatory injury. Notably, miR-Let7 promotes 
autophagy by suppression of mTOR signaling [45], and activates 
the neuronal autophagy in the brain of mice [46,47]. Moreover, 
the suppression of miR-Let7a in mice leads to the reduction of 
LC3 II levels [45]. In the present study, we investigated whether 
miR-Let7a controls autophagy process in microglia activated by 
lipopolysaccharide (LPS).

MATERIALS AND METHODS

BV2 microglia culture 

BV2 microglial cells were obtained from Prof. Eun-hye Joe (Ajou 

University School of Medicine, Chronic Inflammatory Disease 
Research Center). BV2 cells cultured in Dulbecco’s Modified Eagle’s 
Medium (Gibco, NY, USA) supplemented with 10% fetal bovine 
serum (Gibco, NY, USA) and 100 μg/ml penicillin-streptomycin 
(Gibco, NY, USA) at 37°C in a humidified atmosphere containing 
5% CO2. Lipopolysaccharide (LPS, 1 μg/ml; Sigma-Aldrich, St. 
Louis, MO, USA) was treated in BV2 microglia for 12 h before 
sampling.

miR- Let7A transfection 

Mmu-Let7A-5p (cat#, 4464066) was purchased from Ambion 
(Ambion, Austin, TX, USA). For the transfection of RNA duplexes, 
miR-Let7A mimic or miR-Let7A inhibitor was diluted to a 20 nM 
final concentration in Opti-MEM, and mixed with Lipofectamine 
2000 (Invitrogen, Carlsbad, CA, USA). After incubation at room 
temperature for 15 min, the mixture was added to cells. Cells 
were incubated for 72 h and harvested for total protein or RNA 
extraction. 

Reverse transcription PCR

Reverse transcription PCR was performed to measure mRNA 
levels of Beclin-1, LC3II in BV2 microglia. Briefly, cells were 
lysed with Trizol reagent (Invitrogen, Carlsbad, CA, USA), 
and total RNA was extracted according to the manufacturer’s 

Fig. 1. miR-Let7A overexpression upregulated LC3II mRNA level in BV2 microglia. (A) PCR data showing enhanced expression of LC3II mRNA level 
in microglia transfected with miR-Let7A mimic (20 nM). GAPDH was used as a control. (B) Western blotting showing LC3II protein levels in microglia 
transfected with miR-Let7A mimic. β-actin was used as a control. NC: normal control, Let7A overexpression: miR-Let7A overexpression. Data were 
expressed as mean±S.E.M, and each experiment included 3 repeats per condition. Differences were considered significant at *p<0.05 and **p<0.001.
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protocol. cDNA synthesis from isolated total RNA and sample 
normalization were performed. PCR was performed using the 
following thermal cycling conditions: 10 min at 95oC; 35 cycles 
of denaturing at 95oC for 15 sec, annealing for 30 sec at 62oC, 
elongation at 72oC for 30 sec; final extension for 10 min at 72oC, 
and held at 4oC. PCR was performed using the following primers (5' 
to 3'); Beclin-1: 5’-AGC TGC CGT TAT ACT GTT CTG-3’, (sense), 
and 5’-ACT GCC TCC TGT GTC TTC AAT CTT-3’, (antisense); 
LC3II: 5’-GAT GTC CGA CTT ATT CGA GAG C-3’, (sense),  
and 5’-TTG AGC TGT AAG CGC CTT CTA-3’ (antisense), 
GAPDH: GGC ATG GAC TGT GGT CAT GAG (sense), TGC 
ACC ACC AAC TGC TTA GC (antisense). PCR products were 
electrophoresed in 1.5% agarose gels and stained with ethidium 
bromide as described [48].

Western blot analysis

BV2 microglia were washed rapidly with ice-cold PBS, scraped, 
and collected. Cell pellets were lysed with ice-cold RIPA buffer 
(Sigma-Aldrich, St. Louis, MO, USA). The lysates were centrifuged 
at 12,000 rpm for 30 min at 4oC to produce whole-cell extracts. 
Protein content was quantified using the BCA method (Pierce, 
Rockford, IL, USA). Proteins (40 μg) were separated on a 
10% SDS–polyacrylamide (PAGE) gel and transferred onto a 
polyvinylidene difluoride (PVDF) membrane. After blocking with 
5% bovine serum albumin, prepared in Tris-buffered saline/Tween 
(TBS-T; 20 nM Tris [pH 7.2], 150 mM NaCl, and 0.1% Tween 
20), for 1 h at room temperature, immunoblots were incubated 
overnight at 4oC with primary antibodies that specifically detect 
Beclin-1 (1 : 1,000, Millipore, Billerica, MA, USA), ATG3 (1 : 
1,000, Abcam, Cambridge, MA, USA), LC3II (1 : 1,000, Cell 
Signaling Technology, Danvers, MA, USA), and β-actin (1 : 2,000, 
Cell Signaling Technology, Danvers, MA, USA). Next, blots were 
incubated with HRP-linked anti-rabbit IgG antibodies purchased 
from Abcam (Abcam, Cambridge, MA, USA) for 1 h 30 min at 
room temperature. Enhanced chemiluminescence was performed 
by ECL (Invitrogen, Carlsbad, CA, USA) [49].

Immunocytochemistry

The expression of Beclin1 and ATG3 in BV2 cells was examined 
by immunocytochemistry. Cells in all experimental groups were 
washed three times with PBS, fixed with 4% paraformaldehyde for 
3 h, and then washed with PBS. BV2 cells were permeabilized with 
0.025% Triton X-100 and blocked for 1 h at room temperature 
with dilution buffer (Invitrogen, Carlsbad, CA, USA). Primary 
antibodies, anti-rabbit-Beclin1 (1 : 500, Santa Cruz, CA, USA), and 
anti- rabbit-ATG3 (1 : 500, Santa Cruz, CA, USA) were prepared 
in dilution buffer, added to samples, and incubated for 3 h at 

room temperature. Primary antibody was then removed, and cells 
were washed 3 times for 3 min each with PBS. Next, samples were 
incubated with Rhodamine-conjugated goat anti-rabbit (1 : 200, 
Jackson Immunoresearch) for 1 h 30 min at room temperature. 
Cells were washed again three times for 3 min each with PBS and 
stained with 1 μg/mL 4',6-diamidino-2-phenylindole (DAPI) 
(1 : 100, Invitrogen, Carlsbad, CA, USA) for 15 min at room 
temperature. Fixed samples were imaged using a Zeiss LSM 700 
confocal microscope (Carl Zeiss, Thornwood, NY, USA) [49].

Statistical analysis

Statistical analyses were carried out using SPSS 18.0 software 
(IBM Corp., Armonk, NY, USA). All data are expressed as mean±S.
E.M. Significant intergroup differences were determined by one-
way analysis of variance (ANOVA) followed by Bonferroni post 
hoc multiple comparison test. Each experiment included at least 3 
replicates per condition. Differences were considered significant at 
*p<0.05, **p<0.001.

Fig. 2. miR-Let7A overexpression regulated Beclin 1 mRNA level in 
BV2 cells activated by LPS. The mRNA levels of Beclin 1 in normal BV2 
cells, BV2 cells transfected with miR-Let7A, BV2 cells treated with LPS 
(1 μg/ml), BV2 cells transfected with miR-Let7A and treated with LPS. 
LPS was treated for 12 h. GAPDH was used as a control. NC: normal 
control group, Let7A overexpression: miR-Let7A overexpression group, 
LPS: LPS treatment group. Data were expressed as mean±S.E.M, and each 
experiment included 3 repeats per condition. Differences were considered 
significant at *p<0.05, **p < 0.001.
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Fig. 3. miR-Let7A overexpression regulated Beclin 1, ATG3, LC3II protein levels in BV2 cells activated by LPS. (A~C) Western blotting showing the 
expression levels of Beclin 1 (A), ATG3 (B), and LC3II (C) and their quantifications in normal BV2 cells, BV2 cells transfected with miR-Let7A, BV2 cells 
treated with LPS (1 μg/ml), BV2 cells transfected with miR-Let7A and treated with LPS. miR-Let7A mimic was used at 20 nM and LPS was treated for 12 h. 
β-actin was used as a control. NC: normal control group, Let7A overexpression: miR-Let7A overexpression group, LPS: LPS treatment group. Data were 
expressed as mean±S.E.M, and each experiment included 3 repeats per condition. Differences were considered significant at *p<0.05, **p < 0.001. 

Fig. 4. Immunocytochemical analysis of ATG3 expression in miR-Let7A-transfected BV2 microglia activated by LPS. (A, B) Immunocytochemical 
images showing ATG3 immunoreactivity (green) in normal BV2 cells, BV2 cells transfected with miR-Let7A, BV2 cells treated with miR-Let7A 
inhibitor, BV2 cells treated with LPS (1 μg/ml), BV2 cells transfected with miR-Let7A and treated with LPS. miR-Let7A mimic was used at 20 nM and 
LPS was treated for 12 h. NC: normal control group, miR-Let7A overexpression: Let7A overexpression group, LPS: LPS treatment group, LPS+miR-
Let7A overexpression: LPS treatment plus miR-Let7A overexpression group, miR-Let7A inhibitor: miR-Let7A suppression group. Scale bar: 200 μm, 4', 
6-diamidino-2-phenylindole (DAPI): blue, ATG3: green. 
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RESULTS

The mRNA levels of LC3II in microglia were increased after 

miR-Let7A overexpression

LC3II (the microtubule-associated protein light chain 3) is 
the key element in the initial isolation membrane nucleation of 
autophagy process [50]. PCR analysis showed that the mRNA level 
of LC3II was increased in miR-Let7A-overexpressing BV2 cells 
(Fig. 1A). Western blot analysis confirmed that the protein level 
of LC3II in miR-Let7A-overexpressing BV2 cells was increased 
comparison to the normal group (Fig. 1B).

The overexpression of miR-Let7A modulated the expression 

of Beclin1 and ATG3 in inflammation-induced microglia 

The expression levels of  Beclin 1 transcripts (Fig. 2) and 
Beclin 1 protein (Fig. 3A) were slightly reduced in miR-Let7A-
overexpressing BV2 cells compared to those in normal BV2 cells. 
LPS-treated BV2 cells showed more profound reduction of Beclin 
1 transcripts and Beclin 1 protein (Fig. 2 and 3A). The miR-Let7A 
overexpression partially blocked reduced expression of Beclin 1 
transcripts and Beclin 1 protein in LPS-treated BV2 cells (Fig. 2 

and 3A). 
The ATG3 level was increased in miR-Let7A-overexpressing 

BV2 cells, whereas the ATG3 level was decreased in LPS-treated 
BV2 cells compared to that in normal BV2 cells (Fig. 3B). In LPS-
treated miR-Let7A-overexpressing BV2 cells, the ATG3 level was 
lower than that in normal BV2 cells, but it was higher than that in 
LPS-treated BV2 cells (Fig. 3B). 

The LC3II level was increased in miR-Let7A-overexpressing 
BV2 cells, whereas the LC3II was not significantly changed (Fig. 
3C). In LPS-treated miR-Let7A-overexpressing BV2 cells, LC3II 
level was higher than that in normal BV2 cells (Fig. 3C). 

Immunocytochemical analyses were performed to visualize 
the miR-Let7A-dependent regulation of ATG3 (Fig. 4) and 
Beclin 1 (Fig. 5) expressions in a cellular level. The miR-Let7A 
overexpression in BV2 cells increased the expression of ATG3, 
whereas LPS treatment suppressed ATG3 in BV2 cells (Fig. 4A). 
Overexpression of miR-Let7A partially recovered LPS-induced 
reduced expression of ATG3 (Fig. 4B). The overexpression of miR-
Let7A in LPS-stimulated BV2 cells also partially recovered LPS-
induced reduced expression of Beclin 1 (Fig. 5B). 

Considering that Beclin1 is crucial in the initiation and 

Fig. 5. Immunocytochemical analysis of Beclin 1 expression in miR-Let7A-transfected BV2 microglia activated by LPS. (A, B) Immunocytochemical 
images showing Beclin 1 immunoreactivity (green) in normal BV2 cells, BV2 cells transfected with miR-Let7A, BV2 cells treated with miR-Let7A 
inhibitor, BV2 cells treated with LPS (1 μg/ml), BV2 cells transfected with miR-Let7A and treated with LPS. miR-Let7A mimic was used at 20 nM and 
LPS was treated for 12 h. NC: normal control group, miR-Let7A overexpression: Let7A overexpression group, LPS: LPS treatment group, LPS+miR-
Let7A overexpression: LPS treatment plus miR-Let7A overexpression group, miR-Let7A inhibitor: miR-Let7A suppression group. Scale bar: 200 μm, 4', 
6-diamidino-2-phenylindole (DAPI): blue, Beclin 1: green.
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activation of autophagy [51,52] and ATG3 protein is essential in 
the formation of autophagic vesicles [53], these results suggest that 
miR-Let7A promotes the initiation and activation of autophagy in 
inflammation induced BV2 cells by increasing the level of Beclin 1 
and ATG3.

DISCUSSION 

Autophagy is an essential mechanism in degrading dysfunctional 
proteins and damaged mitochondria in cells [29,53-57]. 
Autophagy regulates inflammatory responses [58,59]. On the 
other hand, impairment in autophagy is harmful; it aggravates 
endoplasmic reticulum (ER) stress in cells [14,57,60] and is 
associated with neurodegeneration such as Alzheimer’s disease 
[61-63]. Microtubule-associated protein LC3II is located on the 
internal surface of autophagosomes [14]. Several studies suggest 
that upregulation of LC3II increases the autophagic flux and early 
autophagosome formation, which requires also Beclin 1 [64,65]. 
LC3II levels are reduced in the brain of anti-miR-Let7 treated 
Huntington’s disease mice [45]. These results, together with miR-
Let7-dependent induction of LC3II in BV2 cells (Fig. 3), support 
the notion that miR-Let7A plays a role in autophagy induction in 
microglia. 

Numerous studies have reported that Beclin1 is a key factor 
in the activation of the autophagy [51,52] and the initiation of 
autophagy by enhancing vesicle nucleation [66]. A pivotal role of 
Beclin1 in regulating autophagy in microglia has been described 
[67]. Considering that Beclin 1 is essential in autophagy [51,52], we 
speculate that miR-Let7A may boost the initiation and activation 
of microglial autophagy by up-regulating Beclin 1 against 
inflammatory stress. ATG3 is a component of autophagy-related 
ubiquitination-like systems [24] and functions as a regulator of 
cell survival [68] by generating the autophagic vesicle [53,69,70]. 
miR-Let7A partially increased ATG3 expression in LPS-treated 
BV2 cells (Fig. 3B). This result suggests that miR-Let7A promotes 
autophagy in microglia via up-regulating ATG3. 

Disruption of autophagy flux contributes to neuronal cell 
death in Alzherimer’s disease and Huntington disease [71,72]. 
Considering that several autophagic factors including LC3II, 
Beclin1, and ATG3 were regulated by miR-Let7A in activating 
microglia, miR-Let7A-depdent regulation of  microglial 
autophagy needs be studied in more detail in the context and 
neuroinflammation and neurodegeneration.
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