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Abstract
Long term suppression of succinate dehydrogenase by selective inhibitor 3-nitropropionic acid has been 
used in rodents to model Huntington’s disease where mitochondrial dysfunction and oxidative damages 
are primary pathological hallmarks for neuronal damage. Improvements in learning and memory abilities, 
recovery of energy levels, and reduction of excitotoxicity damage can be achieved through activation of Adenyl 
cyclase enzyme by a specific phytochemical forskolin. In this study, intraperitoneal administration of 10 mg/kg 
3-nitropropionic acid for 15 days in rats notably reduced body weight, worsened motor cocordination (grip 
strength, beam crossing task, locomotor activity), resulted in learning and memory deficits, greatly increased 
acetylcholinesterase, lactate dehydrogenase, nitrite, and malondialdehyde levels, obviously decreased adenos-
ine triphosphate, succinate dehydrogenase, superoxide dismutase, catalase, and reduced glutathione levels in 
the striatum, cortex and hippocampus. Intragastric administration of forskolin at 10, 20, 30 mg/kg dose-de-
pendently reversed these behavioral, biochemical and pathological changes caused by 3-nitropropionic acid. 
These results suggest that forskolin exhibits neuroprotective effects on 3-nitropropionic acid-induced Hun-
tington’s disease-like neurodegeneration.  

Key Words: nerve regeneration; Huntington’s disease; mitochondria; adenyl cyclase; forskolin; oxidative stress; 
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Introduction
Huntington’s disease (HD) is a neurodegenerative disorder 
characterized by increasing mental disturbances, cognitive 
impairment, jerky movements and weight loss and involves 
the basal ganglia, cerebral cortex and hippocampus (Walker, 
2007; Sasone et al., 2009). In HD, mitochondrial dysfunc-
tion (Costa and Scorrano, 2012; Chaturvedi and Beal, 2013), 
energy depletion (Ribeiro et al., 2012), oxidative stress and 
glutamate excitotoxicity (Kim et al., 2011), and transcrip-
tional dysregulation (Basso, 2012) are often accompanied 
by neurochemical dysregulations like γ-amino butyric acid 
(GABA), glutamate, dopamine (DA) and adenosine recep-
tors in basal ganglia, responsible for motor functions (Chen 
et al., 2013). 

Mitochondrial 3-nitroproprionic acid (3-NP) can reverse 
behavioral, biochemical, and striatal pathological alterations 
found in HD-like neurotoxicity (Dhir et al., 2008; Kumar 
and Kumar, 2009; Liot et al., 2009; Delorme et al., 2012). 
3-NP is a naturally occurring mycotoxin that is a suicidal 
irreversible inhibitor of succinate dehydrogenase (SDH), an 
enzyme present in inner mitochondrial membrane respon-
sible for the reduction of ATP synthesis and the initiation of 
oxidative stress (Binawade and Jagtap, 2013; Jadiswami et al., 
2014). There is strong evidence that cAMP dependent CREB 
phosphorylation induces long term memory (LTP), inhibits 
apoptotic and necrotic cell death, and suppresses the synthe-
sis of proteins which are important for the growth and de-

velopment of synaptic connection and strength (Zhang et al., 
2008; Benito and Barco, 2010; Bitner, 2012). The agents that 
greatly enhance the cAMP/PKA/CREB signaling pathways 
can prevent against cerebral stroke and various neurological 
complications. The levels of adenyl cyclase  (AC) and cAMP 
have been confirmed to be reduced under neuropathologi-
cal conditions (Puzzo et al., 2005). The beneficial effects of 
natural AC activator Coleus Forskohlii (FSK) against various 
neurodegenerative abnormalities through the modulation of 
CREB and brain-derived neurotrophic factor (BDNF) (Heo 
et al., 2013; Rosales-Corral et al., 2015). cAMP-dependent 
pathways involve various neurotransmitters including se-
rotonin, acetylcholine, glutamate, and dopamine (Gloerich  
and Bos, 2010) and plays an important role in cognitive 
functioning. The activation of the cAMP-dependent protein 
kinase (PKA) significantly inhibits the release of neuroin-
flammatory cytokines like interleukins (ILs), tumor necrosis 
factor-α (TNF-α) (Chong et al., 2003), and inducible nitric 
oxide synthase (iNOS) in astrocytes and macrophages (Pahan 
et al., 1997) which are implicated in neuroinflammation and 
oxidative stress (Boulanger and Poo, 1999). cAMP signal-
ing pathway is involved in release of BDNF (Ji et al., 2005), 
plays an important role in neuronal survival and synaptic 
plasticity (Pizzorusso et al., 2000) as well as improvements 
in learning and memory impairment (Zhang et al., 2015). 
cAMP elevation reverses energy deficits, reduces excitotox-
ic damage, prevents neurotoxicity (Zou and Crews, 2006), 
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promotes biosynthesis, increases neurotransmitter release 
(Leenders and Sheng, 2005), inhibits apoptotic and necrotic 
cell death (Nishihara et al., 2003), and improves neuronal  
functioning (Gong et al., 2004). Preventive treatments of HD 
are still limited to complementary care and management of 
various neurological complications. The present study was 
designed to investigate the pathogenesis of HD and the role 
of forskolin (FSK) in 3-NP-induced HD-like neurodegenera-
tive disorders. 

Materials and Methods 
Animals 
Male Wistar rats, weighing 220–250 g, aged 8–9 months, 
were provided by Laboratory Animal Center, Rajendra Insti-
tute of Medical Sciences, China where animals were placed 
in polyacrylic cages under standard husbandry conditions at 
temperature 22 ± 2°C with proper food and water ad libitum. 
The experimental design was confirmed by Institutional An-
imal Ethics Committee (IAEC) (RITS/IAEC/2014/03/03) as 
per the instructions of CPCSEA, Government of India (888/
PO/Re/S/05/CPCSEA). Animals were accommodated to lab-
oratory conditions prior to experimentation. 

Drugs and treatment 
3-NP was obtained from Sigma-Aldrich, St. Louis, MO, 
USA. FSK was from Bangladesh Petroleum Exploration and 
Production Company Ltd, Rajasthan, India. All chemicals 
used in the experiments were of analytical grade. Solutions 
of the drugs and chemicals were freshly prepared before use. 
3-NP was dissolved in 5% dimethyl sulfoxide in saline (pH 
7.4) and administered intraperitoneally (i.p.) at 10 mg/kg for 
15 days. FSK was dissolved in 2% ethanol until it was soluble 
in water and then intragastrically (i.g.) administered. Rats 
were divided into six groups (n = 6 per group): normal, FSK 
only, 3-NP only, FSK10 + 3-NP, FSK20 + 3-NP, FSK30 + 3-NP 
groups. In the normal, FSK or 3-NP group, rats were treated 
with normal saline, FSK (30 mg/kg/d, i.g.)  only or 3-NP (10 
mg/kg/d, i.p.) only for 15 days. Rats in the latter three groups 
were subjected to FSK (10, 20, 30 mg/kg/d, i.g.) administra-
tion prior to 3-NP (10 mg/kg/d, i.p.) for 15 days (Figure 1). 

Measurement of rat body weights
Rat body weight was measured on days 1 and 15 of the study. 
Rat body weight change was evaluated by (body weight on 
day 1– body weight on day 15)/body weight on day 1 × 100%. 

Behavioral changes
Spatial navigation task in Morris water maze 
Rat spatial learning and memory was estimated in a Morris 
water maze on days 5, 10 and 15 of the study. The Morris 
water maze is a round water pool (180 cm diameter, 60 cm 
height) filled with water (25 ± 1°C) to a depth of 40 cm 
(Morris, 1984). A non-toxic water emulsion was used to 
turn water from clear to turbid. Four start locations (north, 
south, east, west) were designated on the wall to distribute 
the pool into four quadrants. An escape platform (10 cm 
in diameter) was submerged approximately 2 cm below the 

water surface and placed in the center of one of four quad-
rants throughour the entire behavior test. Before the start 
of normal training, the rats were allowed to swim freely for 
120 seconds without platform. Animals daily received one                                                                                                                                      
session of training (four trials each session; one session per 
day) for 4 days (days 1, 2, 3 and 4) before final trail, i.e. on 
days 5 and 10. Both the cut-off time and the finish time for 
each trial were 120 seconds. After reaching the hidden plat-
form, the animals were allowed to stay there for 30 seconds 
before start of the next trial. If the rats were unable to find 
out the hidden platform within 120 seconds, it was gently 
placed on the hidden platform and permitted to stay there for 
the same time period. The time taken up by the rats to find 
the designated platform, i.e., time spent in target quadrant 
zone (TSTQ), was also estimated. After the acquisition phase 
(24 hours), a probe test (day 15) was performed by removing 
the hidden platform from the Morris water maze. Rats were 
allowed to swim freely in the maze for 120 seconds and TSTQ 
was recorded (Ishrat et al., 2006; Deshmukh et al., 2009).

Spontaneous locomotor activity
On days 1, 5, 10 and 15, the spontaneous locomotor activ-
ity of each rat was measured for duration of 5 minutes in a 
closed area equipped with infrared sensitive photocells with 
a modern electrical photoactometer (Company INCO, Am-
bala, Haryana, India). Independent interference with beam 
crossing induced an electric signal, which can be seen on a 
digital reader. The photoactometer was fixed in a silent well 
ventilated place in the laboratory. Rats were evaluated over a 
period of 5 minutes and data were measured as counts per 5 
minutes (Sharma and Gupta, 2003; Kumar et al., 2006).

String test for grip strength
The rats were granted to stay with the forepaws on a steel 
wire (diameter 2 mm and length 35 cm) 50 cm high over a 
soft support on days 1, 5, 10 and 15. The time taken up by 
the rats to hold the wire was recorded. The latency to hold 
the grip loss is confirmed as a measurement of muscle grip 
strength (Shear et al., 1998).

Elevated plus maze (EPM) test
The EPM test (Kumar and Kumar, 2009) is a behavioral 
assy used to measure an animal performance in external 
environment, i.e. an animal’s working memeory. The EPM 
has two open arms and two closed arms. These arms are el-
evated from the middle platform and the EPM was kept up 
to a height of 50 cm from the floor. The EPM test was per-
formed on days 13 and 14 of the designed schedule. Each 
rat was placed at the end of the open arm, facing against 
the middle platform on day 13. Transfer latency, which 
is the time taken up by the rat to enter one of the closed 
arms with its four paws, was condirmed on day 13, i.e. ac-
quisition trail. If a rat did not enter one of the closed arms 
within 120 seconds, then it was gently forced into one of 
the two closed arms and transfer latency was noted as 120 
seconds. The rat was allowed to stay in the maze for 10 sec-
onds and then back to its main cage. The transfer latency, 
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i.e. retention latency, was evaluated again 24 hours after the 
first trial on day 14.
 
Beam crossing task 
In this behavioral paradigm, rats were allowed to move across 
a narrow wooden beam to evaluate their motor coordination. 
The instrument used for beam crossining task consisted of 
two platforms connected by a wooden beam. The beam was 
elevated 50 cm above the ground. To provide protection for a 
falling rat, a soft cushion was placed below the beam. At the 
start of the experiment on day 15, rats were allowed to stay 
on the beam for 5 minutes. The training trial was started by 
putting the rats on the platform at one end. When rats moved 
across the beam from one end to the other end, slipping of its 
paw occurred. In every trial, the number of slips by individ-
ual rats was recorded. Rat motor coordination was rated on 
a scale from 0 to 4. A score of 0 indicated that rats could im-
mediately move across the beam. Scores 1, 2 and 3 were given 
to the rats that showed mild, moderate and severe motor dys-
functions accordingly. A score of 4 was marked to the rats that 
could be move on the desired platform (Singh et al., 2015). 

Assessment of biochemical parameters
Brain homogenate formation
On day 15, rats were sacrificed by decapitation, and the 
brains were dissected and washed with ice-cold isotonic 
saline solution. Brain samples from the cortex, striatum 
and hippocampus were homogenized with 10 times (w/v) 
ice cold 0.1 M phosphate buffer (pH 7.4). The mixed clear 
solutions were then centrifuged at 10,000 × g for 15 minutes. 
Supernatant was taken out and aliquots were used for bio-
chemical estimation.

Adenosine triphosphate (ATP) assessment
A portion of homogenate was sonicated sufficiently in ice 
cold perchloric acid (1N) to suppress the ATPase. After 
centrifugation (14.000 × g, 4°C, 5 minutes), supernatant 
containing ATP was neutralized with 1 N NaOH and placed 
at –80°C until evaluation ends. ATP level in supernatant was 
measured using reversed-phase high-performance liquid 
chromatography (RP-HPLC) (PerkinElmer Inc., Hopkinton, 
MA, USA). RP-HPLC quantification was evaluated on a 
reversed-phase Hypersil C18 (4.6 mm × 250 mm, 5 μm col-
umn (Elite, Dalian, China) joined to two LC-10ATvp pumps 
(Shimadzu, Kyoto, Japan), associated with UV-Vis detector. 
The mobile phase was 100 mM KH2PO4 buffer solution (pH 
6.0), the flow rate 1.2 mL/min, the column temperature 25°C 
and the detection wavelength 254 nm. A reference solution 
of ATP was made according to dissolving standard (Sigma, 
St. Louis, MO, USA) (Ramanathan et al., 2012).

Assessment of brain tissue protein
The protein content was measured by biuret method using 
bovine serum albumin as standard (Gornall et al., 1949).

Succinate dehydrogenase (SDH) activity
SDH is a biochemical indicator of mitochondrial dysfunc-

tion in neurodegenerative disorders. The effective evaluation 
of SDH in the brain was confirmed according to the proce-
dure detailed in various results (Kumar et al., 2007). Sodium 
succinate solution 0.3 mL was stirred with 50 μL of remain-
ing homogenate. The admixture was then incubated at 37°C 
for 10–20 minutes. Following addition of 0.1 mL of p-iodo-
nitrotetrazolium violet (INT), the admixture was again in-
cubated for 10 minutes. In this procedure, reaction mixtuire 
was inhibited by 1 mL of the mixture of ethyl acetate, etha-
nol and tricholoroacetic acid (5:5:1, v/v/w) and centrifuged 
at 15,000 rpm for 1 minute. The absorbance at 490 nm was 
measured with a spectrophotometer (Shimadzu, UV-1700). 

Lactate dehydrogenase (LDH) activity
LDH activity in rat brain homogenate was measured using a 
LDH kit (Transasia Bio-Medicals Ltd., Mumbai, India) and 
it was expressed as IU/L (Maharaj et al., 2003; Choi and Lee, 
2004).

Acetylcholinesterase (AChE) activity
AChE activity in rat brain homogenate was measured as 
per the procedure given by Ellman et al. (1961). The reac-
tion solutions contained 0.05 mL of remaining residue (pH 
8), 0.3 mL of 0.01M sodium phosphate buffer, 0.10 mL of 
acetylthiocholine iodide and 0.10 mL of 5,5’- dithiobis(2-ni-
trobenzoic acid (Ellman reagent). The absorbance at 412 
nm was read using a UV-VIS spectrophotometer (Labindia, 
Maharashtra, India). AChE enzymatic activity was denoted 
as µmolmg protein (Ellman et al., 1961).

Reduced glutathione (GSH) levels
As per the procedure mentioned by Ellman (1959), the level 
of reduced glutahione in rat brain homogenate was quanti-
fied. A 1 mL of supernatant was precipitated with 1 mL of 
4% sulfosalicylic acid and cold digested at 4°C for 1hour. 
After centrifugation at 1,200 × g for 15 minutes, 0.1 mL of 
supernatant, 2.7 mL of 0.1 M phosphate buffer solution (pH 
8) and 0.2 mL of DTNB were added to the mixture.  Due to 
reaction, yellow color appeared first, absorbance at 412 nm 
was measured using a UV-VIS spectrophotometer (Labindia) 
and GSH level was expressed in µmol/mg protein.                         
             
Malondialdehyde (MDA) levels
The level of oxidative stress marker MDA in rat brain ho-
mogenate was measured as per the procedure reported by 
Wills (1996). Absorbance at 532 nm was read using a UV-
VIS spectrophotometer (Labindia) and MDA level was indi-
cated as nmol/mg protein.

Catalase activity
The activity of catalase, an anti-oxidative enzyme was de-
tected according to the method by Aebi et al. (1974). 0.1 
mL supernatant was mixed in a cuvette in which 1.9 mL 
of 50 mM phosphate buffer soluation (pH 7.0) was added. 
Reaction was initiated by adding 1.0 mL of freshly prepared 
30 mM H2O2. Absorbance at 240 nm was measured using a 
UV-VIS spectrophotometer (Labindia). Catalase activity was 
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expressed as % control. 

Super oxide dismutase (SOD) activity
Antioxidant enzyme SOD activity was measured as per the 
method given by Misra and Fridovich (1972). Epinephrine 
underwent auto-oxidation at pH 10.2. 0.2 mL supernantant 
of rat brain homogenate, 0.8 mL of 50 mM glycine buffer (pH  
10.4) and 0.2 mL epinephrine were mixed together. Five 
minutes later, absorbance at 480 nm was measured using a 
UV-VIS spectrophotometer (Labindia). SOD activity was 
expressed as % control.

Nitrite levels 
Nitrite level, an indicator for the release of nitric oxide, was 
measured by Greiss reagent (0.1% N-(1-naphthyl) ethylene 
diamine dihydrochloride and 1% sulfanilamide and 2.5% 
phosphoric acid) according to the report by Green et al. 
(1982). Residue mixture of rat brain homogenate and Greiss 
reagent were sufficiently mixed and then incubated at room 
temperature for 10 minutes. Absorbance at 540 nm was mea-
sured using a UV-VIS spectrophotometer (Labindia). Nitrite 
level was expressed as µmol/mg protein.

Histophathological studies
Brain samples (cortex, striatum and hippocampus) were 
treated with 10% formalin solution, embeeded with par-
affin wax, sectioned and then stained by hematoxylin and 
eosin (Kumar and Kumar, 2009). After fixation with DPX 
292, brain sections were observed under a light microscope 
(Nikon, Japan) and photographed using a highly digital 
zoomed camera. 

Statistical analysis
All data were statistically analyzed using GraphPad Prism 
v5.01 (Graph pad software, INC, La Jolla, CA, USA) and ex-
pressed as the mean and standard deviation (SD). Observed 
data were analyzed using one-way analysis of variance followed 
by Bonferroni post hoc test or Tukey’s multiple comparisons 
test. A level of P < 0.05 was considered statistically significant.

Results
Effect of FSK on body weight of 3-NP treated rats
3-NP administration resulted in a significantly decreased body 
weight compared with normal saline administration. Treat-
ment with FSK only did not result in any remarkable alteration 
in body weight when compared with normal saline admin-
istration. Prior treatment with FSK 10, 20 and 30 mg/kg in 
3-NP-treated rats significantly reversed the 3-NP-mediated 
reduction in body weight (P < 0.05). FSK 30 mg/kg admin-
sitration more greatly reversed 3-NP injection-caused rat 
body weitght loss than FSK 10 and 20 mg/kg administration 
(P < 0.05; Figure 2).

Effect of FSK on learning and memory abilities of 3-NP 
treated rats 
Spatial navigation task using Morris water maze
On days 5 and 10, the transfer latency for each rat was 

evaluated. Obvious alaterations in transfer latency were ob-
served in 3-NP-treated rats than in normal saline-treated 
or FSK only-treated rats. Transfer latency was significantly 
decreased in the FSK10 + 3-NP, FSK20 + 3-NP and FSK30 + 
3-NP groups than in the 3-NP only group (P < 0.05). Trans-
fer latency was significantly decreased, and memory ability 
was significantly improved in FSK 30 + 3-NP group than in 
FSK 20 + 3-NP or FSK 10 + 3-NP groups (P < 0.05) (Figure 
3A). 

On day 15 of the study, TSTQ was significantly reduced in 
3-NP only group than in normal group or FSK-only group 
(P < 0.05). There was no obvious change in TSTQ between 
FSK only and normal groups. TSTQ was significantly in-
creased in FSK 10 + 3-NP and FSK 20 + 3-NP groups than 
in 3-NP only group (P < 0.05). Rat memory was significantly 
improved in FSK 30 + 3-NP group than in FSK 20 + 3-NP or 
FSK 10 + 3-NP group (P < 0.05; Figure 3B). 

EPM
On day 14, EPM transfer latency was recorded to assess rat 
learning and memory abilities. Transfer latency was signifi-
cantly increased in 3-NP only group than in normal or FSK 
only group (P < 0.05). There was no significant difference 
in transfer latency between FSK only and normal groups. 
Transfer latency signficaintly increased in FSK30 + 3-NP, 
FSK 20 + 3-NP and FSK 10 + 3-NP groups than in 3-NP 
only group (P < 0.05; Figure 3C). 

Effect of FSK on motor function of 3-NP treated rats 
Locomotor activity 
On days 1, 5, 10 and 15, rat locomotor activity was eval-
uated. Rat locomotor activity was slightlty changed in 
3-NP only group than in normal or FSK only group (P < 
0.05). There was no significant difference in rat locomotor 
activity between FSK only and normal groups (P < 0.05). 
Rat locomotor activity was significantly dose-dependently 
changed in FSK30 + 3-NP, FSK20 + 3-NP, and FSK10 + 
3-NP groups (P < 0.05). These results suggest that FSK ex-
hibits remarkable effects on rat locomotor activity (Figure 
4A). 

Grip strength
On day 1, there was no obvious difference in time that rats 
took up to hold the wire in grip strength task between all 
treatment groups. On days 5, 10 and 15, the time was signifi-
cantly reduced in the 3-NP only group than in the normal 
group (P < 0.05; Figure 4B). However, chronic treatment 
with FSK 10, 20 and 30 mg/kg greatly ameliorated 3-NP-in-
duced reduction in grip strength (P < 0.05). 

Balance motor function
On day 15, balance motor function was evaluated. The 
number of slips (Figure 4C) was greatly increased, i.e., the 
impairment in beam walking performance was significantly 
worsened in the 3-NP only group than in the normal or FSK 
only groups, as confirmed by neurological scores (P < 0.05; 
Figure 4C, D).  
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Effects of FSK on biochemical indices in the striatum, 
cortex and hippocampus of rats 
ATP levels
ATP level in the homogenate of rat striatum, cortex and hip-
pocampus was significantly decreased in the normal or FSK 
only group than in the 3-NP only group (P < 0.05). There 
was no significant difference in ATP level between normal 
and FSK only groups. ATP level was significantly increased 
in FSK10 + 3-NP, FSK20 + 3-NP and FSK30 + 3-NP groups 
than in the 3-NP-only groups (P < 0.05). ATP level was sign-
ficaintly increased in the FSK 30 + 3-NP group than in the 
FSK 20 + 3-NP and FSK 10+3-NP groups (P < 0.05; Table 1). 

SDH activity
Mitochondrial complex II SDH activity in the homogenate 
of rat striatum, cortex and hippocampus was significantly 
decreased in 3-NP only group than in normal or FSK only 
group (P < 0.05; Table 1). SDH activity was significantly de-
creased in FSK10 + 3-NP, FSK20 + 3-NP and FSK30 + 3-NP 

groups than in the 3-NP-only groups (P < 0.05). SDH activ-
iaty was significantly decreased in the FSK30 + 3-NP group 
than in the FSK20 + 3-NP and FSK10 + 3-NP groups (P < 
0.05). 

LDH activity
LDH activity in the homogenate of rat striatum, cortex and 
hippocampus was significantly increased in the 3-NP only 
group than in the normal or FSK only group (P < 0.05; Table 
1). This suggests that FSK exhibits neuroprotective effects in 
3-NP-treated rats. Long-term administration of FSK at 10, 
20 and 30 mg/kg significantly decreased LDH activiaty com-
pared to the level in the 3-NP only group (P < 0.05). LDH 
activity was significantly greater in the FSK30 + 3-NP group 
than in the FSK20 + 3-NP or FSK10 + 3-NP group (P < 0.05).

AChE activity
AChE is an enzyme involved in the degradation of synaptic 
neurotransmitter acetylcholine (Dhir et al., 2008). 

Figure 3 Effect of forskolin (FSK) on learning and memory 
abilities of 3-nitroproprionic acid (3-NP) treated rats.
(A, B) Morris water maze: transfer latency (A) and time spent in 
target quadrant (B). (C) Transfer latency of rats using elevated plus 
maze. Values are expressed as the mean ± SD (n = 6). *P < 0.05, vs. 
normal and FSK only groups; #P < 0.05, vs. 3-NP only group; @P < 
0.05, vs. FSK10 + 3-NP and FSK20 + 3-NP groups (one-way analy-
sis of variance followed by Tukey’s multiple comparisons test). 

Figure 1 Drug treatment and evaluation indices.

Figure 2 Effect of forskolin (FSK) on body weight of 
3-nitroproprionic acid (3-NP) treated rats.
Values are expressed as the mean ± SD (n = 6). *P < 0.05, vs. normal 
and FSK only groups; #P < 0.05, vs. 3-NP only group; @P < 0.05, vs. 
FSK30 + 3-NP and FSK20 + 3-NP groups (one-way analysis of variance 
followed by Tukey’s multiple comparisons test).  
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AChE activity in the homogenate of rat striatum, cortex 
and hippocampus was significantly increased in the 3-NP 
only group than in the normal or FSK only group (P < 
0.05). FSK only injection did not induce obvious alter-
ations in AChE activity when compared to normal rats. 

AChE activity was signficiantly decreased in the FSK10 + 
3-NP, FSK20 + 3-NP, and FSK30 + 3-NP groups than in 
the 3-NP only group (P < 0.05). FSK at 30 mg/kg was more 
effective in reducing AChE activity than FSK at 10 and 20 
mg/kg (P < 0.05; Table 1). 

Figure 4 Effect of forskolin (FSK) on motor function of 3-nitroproprionic acid (3-NP) treated rats.
(A) Spontaneous locomotor activity. (B) Grip strength evaluated by string test. (C, D) Balance motor function tested by beam crossing task. (C) 
Number of slips. (D) Neurological score (higher scores represent more severe neurological deficit). Values are expressed as the mean ± SD (n = 6). 
*P < 0.05, vs. normal and FSK only groups; #P < 0.05, vs. 3-NP group; @P < 0.05, vs. FSK10 + 3-NP and FSK20 + 3-NP groups (one-way analysis of 
variance followed by Bonferroni post hoc test).  

Table 1 Effect of forskolin (FSK) treatment on 3-nitroproprionic acid (3-NP) induced changes in ATP, SDH, LDH and AChE activities in the 
striatum, cortex and hippocampus of rats 

Group Brain sample ATP (µmol/g tissue) SDH(U/mg protein) LDH(IU/L) AChE (µmol/mg protein)

Normal Striatum 642.6±5.637 4.23±0.26 425.0±36.51 9.61±0.60
Cortex 591.1±9.20 5.31±0.74 335.3±27.85 11.52±0.83
Hippocampus 560.4±13.90 3.57±0.05 305.8±10.21 13.79±0.77

FSK only Striatum 623.7±28.55 4.11±0.31 383.0±166.2 11.78±0.66
Cortex 582.1±7.83 5.38±0.37 337.5±17.09 11.54±1.51
Hippocampus 556.1±17.12 3.39±0.23 311±18.58 15.19±0.45

3-NP only Striatum 193.7±6.43* 0.51±0.21* 1176±32.29* 41.97±1.56*

Cortex 233.5±15.34* 0.88±0.20* 1052±32.02* 37.67±1.00*

Hippocampus 255.9±10.08* 0.74±0.22* 985.5±29.80* 52.26±1.93*

FSK10+3-NP Striatum 248.4±9.85# 1.74±0.23# 879.0±43.68# 34.26±1.42#

Cortex 276.2±16.21# 2.05±0.18# 785.3±41.72# 31.92±1.80#

Hippocampus 336.8±13.86# 0.81±0.23# 824.7±53.22# 45.38±3.70#

FSK20+3-NP Striatum 308.3±15.24# 2.45±0.34# 707.3±56.63# 26.01±2.54#

Cortex 352.2±38.26# 3.31±0.51# 638.0±31.59# 25.46±1.32#

Hippocampus 415.1±20.74# 2.45±0.27# 647.0±37.14# 35.40±1.48#

FSK30+3-NP Striatum 429.9±33.15#@ 3.17±0.17#@ 558.2±63.79#@ 20.95±1.33#@

Cortex 518.7±37.48#@ 4.34±0.49#@ 490.0±59.93#@ 20.35±2.30#@

Hippocampus 488.6±23.29#@ 2.97±0.23#@ 503.3±62.80#@ 25.67±2.08#@

Values are expressed as the mean ± SD (n = 6). *P < 0.05, vs. normal and FSK only groups; #P < 0.05, vs. 3-NP only group; @P < 0.05, vs. FSK10 + 
3-NP and FSK20 + 3-NP groups. (One-way analysis of variance followed by Tukey's multiple comparisons). ATP: Adenosine triphosphate; SDH: 
succinate dehydrogenase; LDH: lactate dehydrogenase; AChE: acetylcholinesterase.
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MDA levels
MDA is an end-product of neuronal cell membrane lipid 
peroxidation (Dalle-Donnea et al., 2003). MDA level was sig-
nificantly increased in 3-NP only group than in the normal 
or FSK only group (P < 0.05). There was no significant dif-

ference in MDA level between FSK only and normal groups. 
MDA level was significantly decreased in the FSK10+ 3-NP, 
FSK20 + 3-NP, and FSK30 + 3-NP groups than that in the 
3-NP only group (P < 0.05). FSK at 30 mk/kg was better ef-
fective in lowering MDA levels than FSK at 10 and 20 mg/kg 
(P < 0.05; Table 2). 

GSH levels 
GSH is the major antioxidant for reducing free radicals (Liu 
et al., 2013). GSH level in the brain samples of the stria-
tum, cortex and hippocampus was remarkably decreased in 
3-NP-treated rats than in normal or FSK only-treated rats 
(P < 0.05). There was no obvious difference in GSH level 
between FSK only and normal groups. FSK 10 and 20 mg/kg 
greatly increased GSH level (P < 0.05). GSH level was signifi-
cantly increased in FSK30 + 3-NP group than in the FSK10 
+ 3-NP and FSK20 + 3-NP groups (P < 0.05; Table 2). 

Nitrite levels 
Nitrite level in the homogenate of rat striatum, cortex and 
hippocampus was significantly increased in the 3-NP only 
group thanin the normal or FSK only group (P < 0.05). How-
ever, rats treated chronically with FSK 10, 20 and 30 mg/kg 
resulted in dose-dependent reductions in nitrite levels com-
pared with rats treated with 3-NP (P < 0.05). FSK at 30 mg/kg 
was more effective in reducing nitrite levels than FSK 10 and 
20 mg/kg (P < 0.05; Table 2). 

SOD activity 
SOD activity in the homogenate of rat striatum, cortex and 
hippocampus was significantly decreased in 3-NP only group 
than in the normal and FSK only groups (P < 0.05).  There 

Table 2 Effect of forskolin (FSK) administration on 3-nitroproprionic acid (3-NP) induced changes in MDA, GSH and nitrite levels in the 
striatum, cortex, and hippocampus of rats 

Group Brain sample MDA(nmol/mg protein) GSH(µmol/mg protein) Nitrite(µmol/mg protein)

Normal Striatum 1.10±0.21 11.79±0.98 0.87±0.26
Cortex 0.92±0.23 10.20±0.41 1.08±0.51
Hippocampus 0.82±0.23 10.13±0.57 0.93±0.20

FSK only Striatum 1.11±0.28 10.95±0.52 1.03±0.48
Cortex 1.03±0.18 9.81±0.72 1.13±0.35
Hippocampus 0.97±0.16 9.71±0.58 0.90±0.25

3-NP only Striatum 12.86±0.81* 1.05±0.24* 6.96±0.31*

Cortex 8.50±1.07* 1.89±0.20* 7.23±0.60*

Hippocampus 9.40±0.37* 1.27±0.18* 7.23±0.60*

FSK10+3-NP Striatum 8.62±0.67# 4.81±0.47# 5.79±0.52#

Cortex 6.76±0.42# 5.07±0.39# 5.39±0.41#

Hippocampus 7.57±0.81# 4.59±0.64# 5.36±0.37#

FSK20+3-NP Striatum 6.65±0.69# 4.81±0.47# 4.41±0.41#

Cortex 5.58±0.36# 5.07±0.39# 4.31±0.60#

Hippocampus 5.49±0.57# 4.59±0.64# 4.32±0.33#

FSK30+3-NP Striatum 3.93±1.02#@ 7.89±0.59#@ 3.11±0.68#@

Cortex 4.03±0.44#@ 8.11±0.82#@ 3.13±0.47#@

Hippocampus 3.48±0.75#@ 8.06±0.70#@ 3.04±0.59#@

Values are expressed as the mean ± SD (n = 6). *P < 0.05, vs. normal and FSK only groups; #P < 0.05, vs. 3-NP only group; @P < 0.05, vs. FSK10 + 3-NP 
and FSK20 + 3-NP groups (one-way analysis of variance followed by Tukey’s multiple comparisons test). MDA: Malondialdehyde; GSH: reduced 
glutathione.  

Table 3 Effect of forskolin (FSK) administration on 3-nitroproprionic 
acid (3-NP) induced changes in SOD and catalase levels in the 
striatum, cortex, and hippocampus of rats

Group Brain sample SOD (% control) Catalase (% control)

Normal Striatum 100.0±0.0 100.0±0.0
Cortex 100.0±0.0 100.0±0.0
Hippocampus 100.0±0.0 100.0±0.0

FSK only Striatum 94.50±1.87 93.00±3.22
Cortex 93.50±2.42 92.83±1.94
Hippocampus 95.67±1.36 95.50±1.87

3-NP only Striatum 21.67±5.08* 35.33±4.80*

Cortex 25.67±3.98* 32.50±5.32*

Hippocampus 21.83±2.78* 36.50±4.46*

FSK10+3-NP Striatum 43.83±4.53# 56.50±6.05#

Cortex 50.33±4.17# 55.33±3.77#

Hippocampus 43.67±4.36# 59.17±4.57#

FSK20+3-NP Striatum 61.67±6.21# 72.00±3.89#

Cortex 58.17±3.65# 73.67±3.55#

Hippocampus 58.17±3.65# 73.67±3.55#

FSK30+3-NP Striatum 75.00±4.73#@ 82.33±3.93#@

Cortex 74.00±4.33#@ 77.33±6.31#@

Hippocampus 74.67±4.80#@ 81.67±4.03#@

Values are expressed as the mean ± SD (n = 6). *P < 0.05, vs. normal 
and FSK only groups; #P < 0.05, vs. 3-NP only group; @P < 0.05, vs. 
FSK10 + 3-NP and FSK20 + 3-NP groups (one-way analysis of variance 
followed by Tukey's multiple comparisons test). SOD: Super oxide 
dismutase. 
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was no significant difference in alteration between FSK only 
and normal groups. SOD activity was significantly increased 
in the FSK10 + 3-NP and FSK20 + 3-NP groups than in the 
3-NP only group (P < 0.05).  SOD activity was signficiantly 
increased in the FSK30 + 3-NP group than in the 3-NP-on-
ly group (P < 0.05). FSK at 30 mg/kg was more effective in 
reducing SOD activity than FSK 10 and 20 mg/kg (P < 0.05; 
Table 3). 

Catalase activity
Catalase is an enzyme involved in the neurtrilization of ox-
idized free radicals (Burke et al., 2008). Catalase activity in 
the homogenate of rat striatum, cortex and hippocampus 
was significantly increased in 3-NP only group than in the 
normal and FSK only group (P < 0.05). There was no signifi-
cant difference in alterations in catalase activity between FSK 
only and normal groups. Catalase activity was significantly 
increased in the FSK10 + 3-NP and FSK20 + 3-NP groups 
than in the 3-NP only group (P < 0.05). FSK at 30 mg/kg was 
more effective in increasing catalase activity than FSK 10 and 
20 mg/kg and 3-NP (P < 0.05; Table 3). 

Effect of FSK on 3-NP induced histopathological changes 
in the striatum, cortex and hippocampus of rat brain  
Brain sections of the striatum, cortex and hippocampus 

of rats from the normal (Figure 5A) and FSK only groups 
(Figure 5B) exhibited shiny cell nuclei and intact cell mem-
brane, indicating that FSK only treatment did not lead to 
any remarkable effects on histological changes in individual 
brain sections. On brain sections of the striatum, cortex and 
hippocampus of rats from the 3-NP only group (Figure 5C), 
damaged cells with irregular appearance with dense pyknotic 
nuclei surrounded by marked focal diffuse gliosis compared 
to that found in the sections from the normal and FSK only 
groups. Supplementation with FSK 30 mg/kg (Figure 5D) 
effectivelt attenuated 3-NP induced histological alterations 
compared to 3-NP only treated rats. 

Discussion
There is no cure for Huntington’s disease. However, some 
phytochemicals and herbal extracts are being investigated to 
alleviate the symptoms of this disease and prevent it (Thakur 
et al., 2014). Natural phytochemicals have been shown to 
be an alterative and treatment strategy to improve neuronal 
dysfunction in Hungtington’s disease at the optimal level 
(Nishihara et al., 2003). These natural therapies can reduce 
oxidative stress and neuronal dysfunction in various brain 
disorders (Gao et al., 2015). Based on these findings, in this 
study, we investigated the role of AC activator FSK in the 
cAMP/CREB activation in 3-NP induced neurodegenerative 
disorder. 3-NP is a mycotoxin involved in the inhibition of 
mitochondrial complex II SDH in mitochondrial electron 
transport chain complex dysfunction and energy failure 
(Colle et al., 2013) and performs various behavioral and 
biochemical abnormalities related to memory and motor 
impairment (Sato et al., 1997; Kim et al., 2000; Cohen and 
Greenberg, 2008). In this study, rat memory impairment 
was evaluated in the Morris water maze test. 3-NP intoxi-
cated rats showed remarkable memory acquisition and re-
tention reduction in the Morris water maze test than those 
untreated or treated with FSK only. 3-NP treatment led to 
body weight reduction and caused motor and various be-
havioral dysfunctions like bradykinesia, muscle weakness 
and rigidity in rats. The present findings are consistent with 
neuronal dysfunctions mediated behavioral disorders and 
biochemical changes in 3-NP intoxicated rats as previously 
reported  (Wani et al., 2011; Sundaram et al., 2012; Mehrotra 
et al., 2015). Body weight was greatly reduced in particular 
in patients with Huntington’s disease (Harper et al., 2005). 
Reduced body weight can be considered as an indicator of 
3-NP neurotoxicity. At the end stage of Huntington’s disease, 
patients develop severe motor impairment (Lin et al., 2010). 
The body weight reduction and motor disorders in 3-NP 
intoxicated rats can mimic the same dysfunction in patients 
with Huntington’s disease. In EPM test, transfer latency is 
an indicator of improving memory impairment (Dhingra 
and Kumar, 2012). In this study, in EPM test, transfer laten-
cy was greatly increased in 3-NP intoxicated rats, showing 
that the cholinergic system in the brain plays an important 
role in learning acquisition. Intragastric administration of 
FSK at 10, 20 and 30 mg/kg exceptionally reduced the trans-
fer latency of 3-NP intoxicated rats. The present findings 

Figure 5 Photomicrographis of hematoxylin-eosin stained brain 
sections from the striatum, cortex and hippocampus (original 
magnification × 400). 
(A–D) Normal, FSK only, 3-NP only, FSK30 + 3-NP, FSK20 + 3-NP, 
FSK10 + 3-NP groups, respectively. (A, B) Black arrows indicate unin-
jured pyramidal neuronal cells with shiny nuclei and intact cell mem-
brane. (C) Damaged cells with irregular appearance with dense pyk-
notic nuclei were surrounded by marked focal diffuse gliosis (arrows). 
(D) 3-NP induced histological alterations were greatly reversed by FSK 
(arrows). FSK: Forskolin; 3-NP: 3-nitroproprionic acid. 

Striatum                             Cortex                          Hippocampus

 A   

 B   

 C   

 D   
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revealed that the brain cholinergic system was involved in 
the ameliorative effects of FSK on memory impairment of 
3-NP-intoxicated rats. 3-NP administration led to loss of 
grip strength, poor beam walking performance and impaired 
locomotor function. AC activator FSK greatly ameliorated 
3-NP caused memory impairment and motor dysfunction. 
Reduced levels of cAMP in Huntington’s disease have been 
documented (Puzzo et al., 2005). However, favorable mod-
ulation of cAMP signaling inhibition has been shown to re-
store cyclic nucleotide pathways in pre-clinical experimental 
research of Huntington’s disease (Nagakura et al., 2002) and 
to improve memory impairment and motor dysfunction in 
rats (Fontan-Lozano et al., 2012). Activated AC/cAMP/PKA/
CREB plays an important role in improving memory impair-
ment and motor dysfunction (Benito and Barco, 2010; Bit-
ner, 2012). In genetic models of Huntington’s disease, CREB 
plays a multiple role in the coordination and improvement 
in motor dysfunction (Mehan et al., 2010). CREB level in the 
striatal region was notably altered during the initial stage of 
Huntington’s disease caused by 3-NP injection in rats (Choi 
et al., 2009; Damiano et al., 2010). 

Activation of AC has been reported to restore CREB me-
diated signaling (Nagakura et al., 2002). In the present study, 
although reduction in ATP level was found to be effective 
in attenuating 3-NP induced neurotoxicity, the effective-
ness of cAMP activation was possibly due to selective and 
dominant expression of FSK dependent AC enzyme in the 
striatum, cortex and hippocampus. In the present study, 
FSK efficiently increased ATP level, a sign of cAMP/CREB 
activation in the brain homogenrate of the striatum, cortex 
and hippocampus. In the present study, to investigate the 
neuroprotective mechanism of FSK on brain acetylcholine 
level, which confirmed the formation of memory and cog-
nitive abilities, AChE level in rat brain homogenate of the 
striatum, cortex and hippocampus was measured.  The hip-
pocampus, amygdale, and cerebral cortex, which are involved 
in memory and cognitive functioning, are reported to be 
highly reactive to damage caused by free radicals (Dilling-
ham et al., 1984) and associated with cognitive impairment 
(Massaad and Klann, 2011). Huntington’s disease is mainly 
associated with an imbalance between various neurotrans-
mitters in the cholinergic nervous system, leading to memory 
and cognitive impairments. Loss of cholinergic innervations, 
as demonstrated by elevated AChE levels, is associated with 
many neurodegenerative disorders (Oda, 1999). Inhibition 
of AChE heightened availability of acetylcholine, which is 
responsible for enhancing cholinergic function (Origlia et al., 
2008). In the present study, 3-NP led to an effective in crease 
in AChE levels, although which has been reported in various 
studies (Dhir et al., 2008). In the present study, natural phy-
tochemical FSK greatly reduced AChE level. 3-NP intitated 
energy dysfunction causes excess release of free radicals, 
which is responsible for the activation of oxidative cascades 
(Shetty et al., 2015). Oxidative cascades futher activates the 
reversible secondary cascade, i.e., excitotoxicity (Breton and 
Rodríguez, 2012). 3-NP has been reported to be involved in 
the generation of free radicals in the hippocampus, basal gan-

glia, and cortex in patients with Huntington’s disease, which 
is associated with memory and cognitive impairments as well 
as poor motor coordination (Reynolds et al., 1998). However, 
in case of Huntington’s disease, impaired energy metabolism 
is mainly due to mitochondrial dysfunction and free radi-
cal generation (Monsalve et al., 2012), in which free radical 
generation mediated cell membrane damage leads to lipid 
peroxidation. MDA, the end product of lipid peroxidation is 
considered as an effective target for ameliorating Huntington’s 
disease-like disorders (Dalle-Donnea et al., 2003). GSH and 
its free radical redox ameliorating capacity against oxidative 
stress (Liu et al., 2013), through which various neurodegen-
erative disorders can be cured, is associated with learning and 
memory functioning involved in the hippocampus and cortex 
(Oliveira et al., 2007; Monsalve et al., 2012). SOD and catalase 
are most powerful anti-oxidant enzymes and play an import-
ant role in neutralizing free radicals. Administration of 3-NP 
resulted in a remarkable reduction in the levels of antioxidant 
enzymes SOD and catalase (Burke et al., 2008). FSK greatly 
restored the levels of SOD and catalase. In the present study, 
3-NP greatly decreased mitochondrial SDH and GSH activ-
ities and increased MDA and nitrite levels. 3-NP intoxicated 
rats exhibited severe neuronal cell damage as confirmed by 
increased LDH levels (Tunez et al., 2010). In this study, after 
3-NP injection, MDA, nitrite and LDH levels were increased, 
and SDH and GSH levels were decreased, but FSK adminis-
tration reversed these alterations, suggesting the anti-oxida-
tive property of FSK. FSK greatly improved mitochondrial 
dysfunction through elevating ATP levels to keep a balance 
of neuronal energy. FSK has strong anti-oxidative potential to 
reduce generation of free radicals. 

Results from this study confirmed that long term oral FSK 
perse administration does not exhibit great neuroprotective 
effects on learning and memory function in normal rats. 
Oral administration of 10, 20 and 30 mg/kg FSK exhibited 
notable neuroprotective effects on behavioral paradigms 
and alteration in biochemical antioxidant enzymes in 3-NP 
intoxicated rats. This confirms the strong neuroprotective 
mechanism of FSK in 3-NP intoxicated memory impairment 
and cognitive dysfunction. The neurotransmitter acetylcho-
line has been reportedly to play a special role in memory and 
cognifive functions (McGaugh, 2002). Moreover, systemic ad-
ministration of 3-NP drastically impaired memory retention, 
resembling Huntington’s disease-like neurodegenerative dis-
orders, and the ameliorative profile of natural herbal phyto-
chemica has been explored (Venkatesan et al., 2015). Results 
from this study demonstrated that FSK reboosted the potent 
antioxidant profile by neutralizing free radicals and confirmed 
the neuroprotective role of FSK in 3-NP intoxicated rats. Fur-
ther, reduction in AChE levels in this study indicates that FSK 
exhibits antioxidant capactity against memory impairment. 
Our results demonstrated motor dysfunction, cognitive im-
pairment and excessive generation of free radicles in animal 
models of Huntington’s disease caused by 3-NP injection and 
administration of FSK at 30 mg/kg greatly reversed these 
changes. This strongly confirms the neuroprotectiv effects of 
FSK on 3-NP-induced neurotoxicity through activating AC. 
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The cAMP/PKA/CREB pathway reveals a major role in acti-
vation of AC by FSK.  
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