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Sepsis is a systemic immune response to infection that is responsible for ~35% of in-
hospital deaths and over 24 billion dollars in annual treatment costs. Strategic targeting of
non-redundant negative immune checkpoint protein pathways can cater therapeutics to
the individual septic patient and improve prognosis. B7-CD28 superfamily member V-
domain Immunoglobulin Suppressor of T cell Activation (VISTA) is an ideal candidate for
strategic targeting in sepsis. We hypothesized that immune checkpoint regulator, VISTA,
controls T-regulatory cells (Treg), in response to septic challenge, thus playing a protective
role/reducing septic morbidity/mortality. Further, we investigated if changes in morbidity/
mortality are due to a Treg-mediated effect during the acute response to septic challenge.
To test this, we used the cecal ligation and puncture model as a proxy for polymicrobial
sepsis and assessed the phenotype of CD4+ Tregs in VISTA-gene deficient (VISTA-/-) and
wild-type mice. We also measured changes in survival, soluble indices of tissue injury, and
circulating cytokines in the VISTA-/- and wild-type mice. We found that in wild-type mice,
CD4+ Tregs exhibit a significant upregulation of VISTA which correlates with higher Treg
abundance in the spleen and small intestine following septic insult. However, VISTA-/-

mice have reduced Treg abundance in these compartments met with a higher expression
of Foxp3, CTLA4, and CD25 compared to wild-type mice. VISTA-/- mice also have a
significant survival deficit, higher levels of soluble indicators of liver injury (i.e., ALT, AST,
bilirubin), and increased circulating proinflammatory cytokines (i.e., IL-6, IL-10, TNFa, IL-
17F, IL-23, and MCP-1) following septic challenge. To elucidate the role of Tregs in VISTA

-/-

sepsis mortality, we adoptively transferred VISTA-expressing Tregs into VISTA-/- mice. This
adoptive transfer rescued VISTA-/- survival to wild-type levels. Taken together, we
propose a protective Treg-mediated role for VISTA by which inflammation-induced
tissue injury is suppressed and improves survival in early-stage murine sepsis. Thus,
enhancing VISTA expression or adoptively transferring VISTA+ Tregs in early-stage sepsis
may provide a novel therapeutic approach to ameliorate inflammation-induced death.
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1 INTRODUCTION

Despite exhaustive research on sepsis over the last 50 years (1)
there remains no effective patho-physiological treatment options
nor molecular methods of diagnosis. The incidence of sepsis has
not improved, with sepsis accounting for ~35% of non-cardiac
deaths during intensive care unit hospitalization, accounting for
~1 in 5 deaths worldwide (2), and it was the consensus cause of
death assigned to those dying from COVID-19 infection (3). At
>24 billion dollars in annual treatment costs, sepsis presents an
economic as well as a healthcare burden (4). Historically, sepsis
clinical trials have targeted the initial pro-inflammatory response
by inhibiting cytokines in septic patients (5, 6). Efficacy was not
universal, and treatment predisposed patients to fatal secondary
infections (7).

Immune checkpoint blockade (ICB) has been used to
ameliorate disease pathology with greater precision and success
than many immune-directed therapies (8). Our laboratory,
among others, has demonstrated that negative checkpoint
regulator (NCR) targeting improves survival in preclinical
sepsis models, but success has been limited in clinical trials (9–
15). Strategic targeting of non-redundant NCR pathways has the
potential to cater therapeutics to the individual septic patient and
improve prognosis (16–18).

B7-CD28 superfamily member V-domain Immunoglobulin
Suppressor of T cell Activation (VISTA) is an ideal candidate for
such potential strategic targeting in sepsis (18, 19). VISTA is a
55–65-kDa type 1 transmembrane protein and has unique
biology that set it apart from all other NCRs (20, 21).

VISTA can act as a receptor or a ligand binding in VISTA :
VISTA interactions, with VSIG-3, or with PSGL-1 depending on
the cell it is expressed on (22, 23). VISTA regulation is also
temporally distinct, acting as the earliest NCR of peripheral
tolerance. Under steady-state conditions, VISTA promotes
quiescence of naïve CD4+ T cells to prevent self-reactivity (24).
Under inflammatory conditions, VISTA suppresses effector
CD4+ T cell function (17, 20), maintains the T regulatory cell
(Treg) pool size, and promotes induced Treg (iTreg) generation
(25). This CD4+ T cell-specific modularity makes VISTA a
specific and non-redundant regulator of the acute T cell
response (24–27).

Septic patients experience a reduced number/frequency of
splenic and thymic T cells, decreased cytokine production, and
increased expression of exhaustion markers (28, 29). In murine
sepsis models, there is a significant loss of CD4+ T cell frequency
which impacts survival (30). Our laboratory, among others, has
demonstrated that Tregs play an indispensable role in the acute
septic response, resolving inflammatory tissue damage and
improving survival (31–34).

Based on the findings from our laboratory and others, we set
out to determine if the immune checkpoint regulator VISTA
controls T-regulatory cells (Treg), in response to septic challenge,
thus playing a protective role and reducing septic morbidity/
mortality. Further, we investigated if changes in morbidity/
mortality were due to a Treg-mediated effect during the acute
response to a septic challenge.
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2 MATERIAL AND METHODS

2.1 Mice
Male C57BL/6 mice were purchased from Jackson Laboratories
(Bar Harbor, ME, USA). Animals obtained from our outside
vendor were acclimated no less than 7 days, and often longer
[maximum ~5 weeks], prior to utilizing these animals in the
studies described here. During this period, they were housed in
the Rhode Island Hospital (RIH) rodent facility (12-h: 12-h light/
dark cycle, 23°C–25°C, 30%–70% humidity) where they received
standard care and diet (standard rodent chow)/water ad libitum.
All protocols were carried out in the morning (8–11 a.m.) and
were performed in accordance with the National Institutes of
Health guidelines and as approved by the Animal Use
Committee of Rhode Island Hospital (AWC# 5064-18 & 5054-
21). VISTA-/- mice were produced at the Brown University
Transgenic Facility using CRISPR/Cas9 technology. Guide
RNA sequences for the 5′ deletion site:

395_Vsir_ex2upsgRNA1: CTTAGTAACAAGACCCACAT
396_Vsir_ex2upsgRNA2: GCTTAGTAACAAGACCCACA
Guide RNA sequences for the 3′ deletion site:
398_Vsir_ex7sgRNA1: ATGTGCACTTGATCTATGGC

(18-mer)
399_Vsir_ex7sgRNA2: GTGCCTAAAAGACTGTCCAA
The initial genotyping strategy and PCR results for G1 and F0

generations are described in Supplemental Figure 1. A routine
genotyping of VISTA-/- mice was performed on tail biopsy
samples collected after weaning. Tail samples were processed
for PCR and treated with custom 25-nmol DNA oligos from
Integrated DNA Technologies (Coralville, IA, USA). Following
PCR amplification, samples were run on an SDS-Page gel and
imaged for gene deletion analysis and validation. Male mice with
appropriate base-pair deletion were used for downstream
studies. All mice were housed, bred, and maintained at the
Rhode Island Hospital Central Research Facilities.

2.2 Patients
Septic/critically ill patients who were admitted to trauma and
surgical intensive care units, between July of 2018 and February
of 2020, were enrolled in this study per institutional review board
approval at Rhode Island Hospital (IRB study # 413013).
Inclusion criteria for the study were trauma or sepsis-related
critical illness requiring ICU admission. Patients were excluded
from the study if they were pregnant or had previous lymphoma
or leukemia diagnosis. Patient demographics from the day of
blood draw were used to calculate the Acute Physiology of
Chronic Health Evaluation II (APACHE II) score (Table 1).
Healthy volunteers (age- and sex-matched) were enrolled in this
study to serve as the control group.

2.3 CLP Model
Cecal ligation and puncture (CLP) as described previously (35–
37) was performed on wild-type C57BL/6 and VISTA-/- male
mice aged 8–10 weeks. Following midline laparotomy, the cecum
was ligated ~1 cm above the cecal tip and punctured twice with a
22-G needle. Cecal contents were extruded into the
March 2022 | Volume 13 | Article 861670
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intraperitoneal cavity. The abdomen was closed using a sterile
PDO suture. Mice were treated with lidocaine on the muscle
layer and a subcutaneous injection of 1 ml Lactated Ringer’s
solution. The choice of male animals was made to maximize our
ability to initially see an experimental difference septic response
based on previous reports that male mice did poorer in response
to these experimental stressors of septic (CLP) challenge than
pro-estrus stratified female mice (38, 39). Mice were euthanized
24 h post procedure (based on the experiment as described in
Figure 1), and tissues were harvested for downstream studies.
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2.4 Flow Cytometry
2.4.1 Mouse Cell Phenotyping
The spleen, thymus, and intestine were harvested from mice 24 h
following sham or CLP procedure. The spleen and thymus tissues
were homogenized using frosted slides, and red blood cells were
lysed using a Na+Cl- gradient. Small intestinal tissue was processed
using the Lamina Propria Dissociation Kit (Miltenyi Biotec,
Bergisch Gladbach, Germany: cat# 130-097-410) according to
the manufacturer protocol. The total cell number from each
sample was assessed using Trypan blue stain and
TABLE 1 | Patient demographics.

Healthy Controls Patients p-value

Number 8 8 –

Age 48.5 +/- 17.2 58.8 +/- 16.6 0.25
Male gender 5 (62.5%) 6 (75%) 0.62
WBC – 10.8 +/- 5.0 × 106/ml –

APACHE II score – 19.9 +/- 5.2 –

Mortality – 2 (25%) –

Active infection – 7 (87.5%) –
March 2022 | Volume 13 | Article
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FIGURE 1 | Experimental timeline for study. (A) WT and VISTA-/- mice underwent sham or CLP procedure, and tissues/blood were harvested for downstream
analysis via flow cytometry or spectrophotometry. (B) WT and VISTA-/- mice underwent a CLP procedure, and survival was tallied for 14 days. Surviving mice were
euthanized on the 15th day. (C) WT mice were injected with Jurkat Tregs, and tissues were harvested 2 days postinjection for downstream analysis and validation of
adoptive transfer via flow cytometry. (D) VISTA-/- mice were injected with Jurkat Tregs then underwent CLP 2 days postinjection, and survival was tallied for 14 days.
Surviving mice were euthanized on the 15th day.
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hemacytometer counting at ×10 magnification. Samples were
diluted to 106 cells/ml in FACS buffer (2 mM EDTA, 0.5% BSA,
PBS), Fc blocked, and stained with the following monoclonal anti-
mouse antibodies: CD4-BV421 (BioLegend, San Diego, CA, USA,
Cat# 100438, RRID : AB_11203718), CD8a-BV510 (BioLegend
Cat# 100752, RRID : AB_2563057), CD69-FITC (Miltenyi Biotec
Cat# 130-103-950, RRID : AB_2659081), PD-1H/VISTA-PE
(BioLegend Cat# 143708, RRID : AB_11150599), CD25-PE/
Cyanine7 (BioLegend Cat# 101916, RRID : AB_2616762), and
CD152/CTLA-4-PerCP/Cyanine5.5 (BioLegend Cat# 106316,
RRID : AB_2564474). Following initial staining, cells were fixed
using 4% paraformaldehyde and permeabilized using the True
Nuclear Transcription Buffer Set (BioLegend: cat# 424401)
according to the manufacturer’s protocol. Permeabilized cells
were stained with anti-mouse FOXP3-Alexa Fluor 647
(BioLegend: cat# 126408). To compensate for spectral overlap,
UltraComp eBeads Plus Compensation Beads (Thermo Fisher
Scientific, Waltham, MA, USA: cat# 01-3333-41) were used
according to the manufacturer’s protocol. Fluorescence minus
one (FMO) controls were used to determine positive expression
gates during analysis using FlowJo software.

2.4.2 Human Cell Phenotyping
Whole blood was drawn from patients and healthy controls,
collected in heparin-treated tubes, treated with Ficoll Histopaque-
1077, and centrifuged to isolate leukocytes. The leukocyte layer was
isolated, washed with PBS, and centrifuged. Cells were counted
using a hemacytometer and Trypan blue then diluted to 106 cells/
ml in FACS buffer (2 mM EDTA, 0.5% BSA, PBS). Cells were Fc
blocked and stained with the following monoclonal anti-human
antibodies: CD3-VioBlue (Miltenyi Biotec: Cat# 130-113-133,
RRID : AB_2725961) and VISTA-APC (Thermo Fisher
Scientific: Cat# 17-1088-42, RRID : AB_2744704). Fluorescence
minus one (FMO) control was used to determine positive
expression gates during analysis using FlowJo software.

2.4.3 Adoptive Transfer Validation
For adoptive transfer, the pMSCV-mouse Foxp3-EF1a-GFP-T2A-
puro stable Jurkat cell line (System Biosciences, Palo Alto, CA,
USA: cat# TCL110C-1), referred to as Jurkat Tregs, was harvested
from culture, pelleted via centrifugation, and resuspended in HBSS
(Thermo Fisher: cat# 24020117) at 2 × 106 cells/400 µl. 400 µl of
Jurkat Treg suspension or HBSS vehicle control was loaded into a
syringe and administered to mouse via intraperitoneal injection.
Spleen, thymus, and small intestine samples were harvested 48 h
post adoptive transfer and processed as described in the previous
section. Cells were stained with CD4-BV421 (BioLegend: Cat#
100438, RRID : AB_11203718) and VISTA/PD-1H-APC
(BioLegend: Cat# 143709, RRID : AB_11219607). A FMO
control was used to determine VISTA-positive expression gates
during analysis using FlowJo software.

2.5 Colorimetric Assays for Morbidity
Study
To assess indices of tissue injury, blood was collected from mice
24 h following sham or CLP procedure via cardiac puncture
using a heparin-coated syringe. Blood sample was centrifuged at
Frontiers in Immunology | www.frontiersin.org 4
10,000 rpm, and supernatant (plasma) was collected and stored
at -80°C. For tissue injury assays, plasma was analyzed using the
following kits according to the manufacturer’s protocol: Urea
Nitrogen (BUN) Colorimetric Detection Kit (Invitrogen,
Carlsbad, CA, USA, cat# EIABUN), Creatine Kinase Activity
Assay Kit (Sigma-Aldrich, St. Louis, MO, USA: cat# MAK116),
Alanine Aminotransferase (ALT) Activity Assay Kit (Sigma-
Aldrich: cat# MAK052), Aspartate Aminotransferase (AST)
Activity Assay Kit (Sigma-Aldrich: cat# MAK055), Amylase
Assay Kit (Colorimetric) (Abcam, Cambridge, MA, USA: cat#
ab102523), and Bilirubin Assay Kit (Direct Colorimetric)
(Abcam: cat# ab235627).

2.6 Multiplex Cytokine Analysis
Plasma samples were collected and stored as described in the
previous section. To assess the cytokine concentration in plasma
samples, the following multiplex kits were used according to the
manufacturer’s instruction: LEGENDplex Mouse Inflammation
Panel (13-plex) with a V-bottom plate (BioLegend, cat# 740446)
and LEGENDplex MU Th Cytokine Panel (12-plex) with VbP
VO3 (BioLegend, cat# 741044). Multiplex experiments were
carried out using MACSQuant Analyzer 10 (Miltenyi Biotec).
Data were analyzed using the LEGENDplex software
suite (BioLegend).

2.7 In Vitro Viability Assay
Jurkat Tregs were cultured in RPMI complete medium with 13F3
(Bio X Cell, Lebanon, NH, USA, Cat# BE0310, RRID :
AB_2736990) or Ig control (Bio X Cell Cat# BE0091, RRID :
AB_1107773) for 30 min at 37°C, 5% CO2 then stained with
alamarBlue (Bio-Rad, Hercules, CA, USA: product code
BUF012A) according to the manufacturer’s protocol. Sample
absorbance was measured every 24 h for 7 days using the Bio-
Rad spectrophotometer. Viability was calculated according to the
manufacturer’s protocol.

2.8 In Vitro Cytokine Analysis
Jurkat Tregs were cultured in RPMI complete medium with 13F3
(Bio X Cell Cat# BE0310, RRID : AB_2736990) or Ig control (Bio
X Cell Cat# BE0091, RRID : AB_1107773) overnight at 37°C, 5%
CO2. Treated cells were then stimulated with 5 µl of plasma from
CLP mouse for 2 h prior to harvest from culture. Cells were
centrifuged, and supernatant was collected for multiplex analysis
using LEGENDplex MU Th Cytokine Panel (12-plex) with VbP
VO3 (BioLegend: cat# 741044) according to the manufacturer’s
protocol. Multiplex experiments were carried out using
MACSQuant Analyzer 10 (Miltenyi Biotec). Data were
analyzed using LEGENDplex software suite (BioLegend).

2.9 Statistical Analysis
Statistical significance between two groups was determined using
either a two-tailed Student’s unpaired t test for parametric data
or the Mann–Whitney U test for the non-parametric test.
Statistical significance between multiple groups was determined
using either an ordinary one-way ANOVA for parametric data or
the Kruskal–Wallis test for non-parametric data. Alpha was set
March 2022 | Volume 13 | Article 861670
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to 0.05 as the cutoff for statistical significance using Prism 9.3.0
(GraphPad Software) statistical software.
3 RESULTS

3.1 VISTA Expression Inversely Correlates
With T-Cell Population Abundance in
Septic Mice and Critically Ill Patients
Several research groups have shown that during acute sepsis
progression there is a significant loss in T cell abundance in the
spleen and thymus in both the murine CLP model (29, 40–42)
and septic patients (43–46). In this study, we found that C57BL/6
wild-type (WT) mice exhibited a higher VISTA expression on
CD4+ T cells (Figure 2A) and reduced CD4+ T cell population
abundance (Figure 2B) in the spleen following septic challenge.

We enrolled a total of 8 critically ill patients from the trauma
and surgical ICUs at a single level-1 trauma center. There was no
significant difference between patients and healthy controls
regarding gender or age. 87.5% of patients had an active
ongoing source of infection at the time of draw, 62.5% required
mechanical ventilation, and 37.5% were actively on vasopressor at
the time of draw. 25% required dialysis due to critical illness. The
average APACHE II score for the population was 19.9 (Table 1).
Frontiers in Immunology | www.frontiersin.org 5
Sources of infection included necrotizing soft tissue infections of
the lower extremities, intra-abdominal abscesses after perforated
hollow viscus injuries, and bacteremia. 75% of enrolled patients
met systemic inflammatory response syndrome (SIRS) criteria,
63% met sepsis criteria, and 38% met septic shock criteria (47).

We found that critically ill patients experience a higher VISTA
expression on circulating CD3+ T cells (Figure 2C) despite reduced
CD3+ T cell population abundance (Figure 2D) in circulation. These
results suggest that the relationship between VISTA expression and
T-cell abundance observed in our murine model of sepsis appear to
have a potential correlate in the critically ill septic patient. To further
explore the role of VISTA in the sepsis-induced T-cell response and
better understand its potential contribution to septic morbidity, we
created a global VISTA gene-deficient (VISTA-/-) mouse strain using
CRISPR/Cas9 technology that could be examined to address this
question (Figures 2E, F).

Le Tulzo et al. found that T cells become polarized into
functionally distinct helper T-cell subsets in sepsis (44), and it is
well documented that the regulatory T-cell (Treg) subset increases
during the acute septic response (46, 48, 49). In light of this, we
chose to initially determine how VISTA impacted sepsis-induced
Treg polarization by comparing the CD4+Foxp3+ Treg

populations in WT as opposed to VISTA-/- mice via flow
cytometry (Supplementary Figure 2).
A B C

E F

D

FIGURE 2 | VISTA+CD4+ T cells in mouse splenocytes and VISTA+CD3+ lymphocytes in patient blood increase following experimental or clinical sepsis.
(A) Summary graph of VISTA+ CD4+ T cells in the wild-type mouse spleen. (B) Summary graph of CD4+ T cell frequency in the wild-type mouse spleen.
(C) Summary graph of VISTA+ CD3+ T cell frequency in the peripheral blood lymphocytes. (D) Summary graph of CD3+ T cell frequency in the peripheral blood.
(A–D) Summary graphs show mean ± SEM [WT-sham: n = 13, WT-CLP: n = 16]; significance **p < 0.01, ***p < 0.001. (E) Initial process (Strategy) for producing
embryos deficient in the ~11.3-kb region containing exon (ex) 2 to exon 7 of the VISTA gene on mouse chromosome 10 with CRISPR/Cas9 followed by NHEJ-
mediated repair. (F) Results of initial heterozygous cross of VISTA-/+ founder mice resulting from CRISPR/Cas9 technology that produced homozygous VISTA-/- mice
for breeding (PCR genotyping strategy: 403/412: 11,745 bp from WT and ~0.4 kb from VISTA deletion alleles).
March 2022 | Volume 13 | Article 861670
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3.2 CD4+ Treg Abundance Increases
Following Septic Challenge, But the CD4+

Treg Population Is Significantly Smaller in
Peripheral T-Cell Compartments of
VISTA-/- Mice Compared to WT Mice
We found that in the WT spleen, there is a significant increase in
total proportion of CD4+ Tregs and VISTA+CD4+ Tregs following
CLP (Figures 3A–C). VISTA-/- mice exhibit decreased
abundance of total CD4+ Tregs in the spleen (Figures 3B, C).
In the thymus, we observe no change in VISTA expression on the
Treg populations between sham and CLP WT mice
(Supplementary Figures 3A, D); however, VISTA-/- mice have
higher total abundance of CD4+ Tregs and CD4+CD8+ Tregs

compared to WT mice (Supplementary Figures 3B, E). In the
intraepithelial compartment of the small intestine, the frequency
of VISTA+CD4+ Tregs increases significantly following CLP
(Figure 4A) and VISTA-/- mice have less CD4+ Tregs under
steady-state (sham) and inflammatory (CLP) conditions
compared to WT mice (Figures 4B, C). We did not observe
any trends in the lamina propria compartment of the small
intestine (Supplementary Figure 4).

3.3 CD4+ Tregs Demonstrate Compensatory
Upregulation of Several Checkpoint
Proteins and Suppressive Factors
in VISTA-/- Mice
The loss in CD4+ Tregs in VISTA-/- mice lead us to ask if the cell-
surface expression signature, as it related to suppressive function
of these cells, was altered by CLP. In the spleen, Foxp3, CTLA4,
and CD25, but not CD69, are significantly upregulated on CD4+

Tregs in VISTA-/- mice compared to WT mice under steady-state
Frontiers in Immunology | www.frontiersin.org 6
and inflammatory conditions (Figures 5A–D). In the thymus
(Figures 6A–G), CD25 is significantly upregulated on CD4+ Tregs

in VISTA-/- mice compared to WT mice under steady state and
inflammatory conditions (Figure 6C). CD4+ Tregs upregulate
CD69 following CLP in WT and VISTA-/- mice (Figure 6D).
We also found that Foxp3, CTLA4, and CD25 are significantly
upregulated on CD4+CD8+ Tregs in WT mice compared to
VISTA-/- mice under steady-state and inflammatory conditions
(Figures 6E–G). In the lamina propria compartment, we observe a
significant upregulation of CTLA4 on CD4+ Tregs in VISTA

-/- mice
(Supplementary Figure 5B). However, this trend is not observed
in the small intestinal intraepithelial compartment
(Supplementary Figure 6).

3.4 VISTA-/- Mice Have Higher Th17-
Related Cytokine Production Compared to
WT Mice Following Septic Challenge
To expand from the Treg phenotyping described above, we
sought to measure the abundance of several cytokines in
circulation implicated in the helper T cell response
(Figures 7A–J). We found that VISTA-/- mice have
significantly higher circulating IL-17F and IL-23 compared to
WT mice post CLP (Figures 7G, I).

3.5 Compensatory Upregulation of Foxp3,
CTLA4, and CD25 on Peripheral Treg
Populations Correlates With Decreased
Survival in VISTA-/- Mice
Based on the apparent compensatory upregulation of suppressive
Treg mediators, we decided to compare the mortality and
morbidity of VISTA-/- as opposed to WT mice when subjected
A B

C

FIGURE 3 | VISTA expression correlates with CD4+ Treg population increase following CLP and VISTA-/- mice fail to expand the CD4+Treg population in the spleen.
(A) Summary graph of VISTA+ CD4+ Treg frequency in the spleen. (B) Summary graph of CD4+ Treg frequency in the spleen and (C) representative flow cytometry
plots comparing fluorescence minus one (FMO) control, sham (WT), CLP (WT), and CLP (VISTA-/-) samples. Summary graphs show mean ± SEM [WT-sham: n = 8,
WT-CLP: n = 8, VISTA-/–sham: n = 8, VISTA-/- -CLP: n = 13]; significance *p < 0.05; **p < 0.01.
March 2022 | Volume 13 | Article 861670
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to CLP (Figures 8A–J). We found that VISTA-/- mice had
significantly decreased survival, which coincided with increased
blood bilirubin, ALT, and AST 24 h following CLP (Figures 8A,
D–G). VISTA-/- mice also present a more proinflammatory
systemic cytokine profile (Figures 9A–J). These mice exhibit
higher circulating IL-6, IL-10, TNF-a, and MCP-1 compared to
WT mice post CLP (Figures 9C, D, G, I).

3.6 Adoptive Transfer of VISTA-Expressing
Tregs to VISTA-/- Mice Rescues Survival to
WT Levels Following CLP
To establish the contribution of VISTA+ Tregs to survival in
murine sepsis, we chose to adoptively transfer pMSCV-mouse
Foxp3-EF1a-GFP-T2A-puro stable Jurkat cells, hereby referred
to as Jurkat Tregs, into VISTA-/- mice prior to CLP. 48 h post
adoptive transfer, Jurkat Tregs accumulate in the spleen, thymus,
and small intestine (Supplementary Figures 7A–D) and express
high levels of VISTA (Supplementary Figures 7E–H). Based on
these results, we performed the adoptive transfer 48 h before CLP
and then subsequently assessed overall survival. We found that,
following Jurkat Treg adoptive transfer, VISTA-/- mice had
comparable survival to WT mice post CLP (Figure 10A).

3.7 In Vitro, VISTA Blockade Reduces
Jurkat Treg Viability and Cytokine
Production
In addition to establishing the relevance of VISTA-expressing
Tregs in septic mouse morbidity/mortality, we wanted to uncover
how VISTA expression/ligation might be directly impacting Treg

function. To do this, we again utilized the Jurkat Treg cell line for
Frontiers in Immunology | www.frontiersin.org 7
mechanistic in vitro studies. Jurkat Tregs were pretreated with a
commercially available VISTA-neutralizing antibody, 13F3, or
antibody control then stained with alamarBlue. alamarBlue is a
redox indicator used to measure metabolic activity as a readout
for viability. The concentration of alamarBlue was assessed via a
spectrophotometer every 24 h for 7 days. We found that there
was a significant reduction in viability following treatment and
this reduction was maintained for 7 days without additional 13F3
treatment (Figure 10B). Upon in vitro acute stimulation of
Jurkat Tregs with plasma from septic mice, these cells produce
several helper T cell-related cytokines (Figures 10C–I) but failed
to produce IFN-g, IL-4, or IL-17A (Supplementary Figure 8).
Interestingly, 13F3-treated Jurkat Tregs produce lower levels of
IL-9, IL-10, and IL-17F following acute stimulation
(Figures 10E, F, H).
4 DISCUSSION

Since its initial discovery, VISTA has been implicated in diverse
immune-related pathologies driven by both innate and adaptive
cells (20–27, 50–54). In a preliminary study, we found that septic
mice and critically ill patients exhibit a higher proportion of
VISTA+ T cells as compared to healthy controls. Based on these
results, we set out to determine the impact of VISTA expression
on regulatory T cells (Tregs) in murine sepsis. The CD4+ Treg

plays a vital role in peripheral tolerance, regulation of effector
cells, and prevention of bystander tissue damage under
inflammatory and steady-state conditions as reviewed by
Corthay (55). In sepsis, peripheral Tregs increase significantly
A B

C

FIGURE 4 | VISTA expression correlates with CD4+ Treg population increase following CLP and VISTA-/- mice fail to expand the CD4+ Treg population in the intestinal
intraepithelial compartment. (A) Summary graph of VISTA+ CD4+ Treg frequency in the small intestine. (B) Summary graph of CD4+ Treg frequency in the small
intestine and (C) representative flow cytometry plots comparing fluorescence minus one (FMO) control, sham (WT), CLP (WT), and CLP (VISTA-/-) samples. Summary
graphs show mean ± SEM [WT-sham: n = 3, WT-CLP: n = 3, VISTA-/-sham: n = 4, VISTA-/- -CLP: n = 4]; significance *p < 0.05; **p < 0.01.
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and correlate with patient outcomes and lymphoproliferative
pathology as reviewed by Jiang et al. (56, 57).

4.1 The Treg Population Is Composed of
Several Subpopulations That Arise From
Diverse Stimuli and Developmental
Programs
The Treg classification as a distinct T cell lineage has been a point of
contention due to the inherent plasticity of Tregs and the lack of a
definitive “Treg” marker as effector T cells can transiently express
Treg markers upon activation. Forkhead/winged-helix transcription
factor box P3 (Foxp3) is arguably the most reliable Treg marker in
mice and was used to delineate effector T cells and Tregs in this study
(55, 58, 59). CD4+Foxp3+ T cells are potent suppressors of effector
CD4+ T cells, CD8+ T cells, natural killer (NK) cells, dendritic cells
(DCs), and B cells under inflammatory conditions (55).
Frontiers in Immunology | www.frontiersin.org 8
4.2 VISTA Plays a Role in T-Cell Polarizing
Cytokine Production and CD4+ Treg
Abundance in Sepsis
In this study, we found that VISTA expression and total CD4+

Treg abundance increase significantly during the acute septic
response. Further, this increase in peripheral Treg abundance is
dependent on VISTA expression. We also found that VISTA
expression plays a role in orchestrating the cytokine response to
septic challenge. Cytokines provide contextual immunologic cues
that shape cell lineage determination and plasticity. Higher levels
of IL-17F, IL-6, and IL-23 promote CD4+ T cell polarization
toward a Th17 phenotype, and higher concentrations of these
cytokines may explain the reduced Treg abundance observed in
VISTA-/- mice (60, 61). Previous studies found that VISTA
regulated the Treg–Th17 polarization axis in mice (25), further
supporting our results in the context of sepsis.
A B

C D

FIGURE 5 | Expression of suppressive markers is upregulated on CD4+ Tregs in the spleen of VISTA-/- mice. Median fluorescence intensity (MFI) of (A) Foxp3,
(B) CTLA4, (C) CD25, and (D) CD69 on CD4+ Tregs in the spleen. Summary graphs show mean ± SEM [WT-sham: n = 3, WT-CLP: n = 3, VISTA-/-sham: n = 4,
VISTA-/- -CLP: n = 4]; significance *p < 0.05; ***p < 0.001.
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4.3 VISTA-/- Mice Experience
Compensatory Upregulation of Several
Endogenous Mediators of Treg
Suppression Such as CTLA4, Foxp3, and
CD25 Under Steady-State Conditions
Interestingly, CTLA4 expression regulates the turnover and
maintenance of Tregs at steady state while Foxp3 regulates Treg

function and lineage commitment (62–64). A steady-state Treg pool
is requisite for preventing autoimmune lymphoproliferative
pathology (65). Several groups have shown that VISTA-/- mice
do not exhibit overt autoimmune pathologies under tolerogenic
conditions (26, 53, 66). Therefore, we posit that the higher baseline
expression of CTLA4, Foxp3, and CD25 in VISTA-deficient CD4+

Tregs represents an inherent compensatory mechanism to sustain
peripheral tolerance under tolerogenic conditions.

4.4 In the Acute Immune Response to
Infection, as Observed With Our Murine
Model of Sepsis, Compensatory
Upregulation of CTLA4, Foxp3, and CD25
by CD4+ Tregs Is Insufficient
An explanation may lie in the efficacy of CTLA4, Foxp3, and/or
CD25-mediated suppression in our model. CD4+ Tregs utilize diverse
contact-dependent and independent mechanisms to exert immune
Frontiers in Immunology | www.frontiersin.org 9
suppression (35–37, 67, 68). For example, CTLA4-expressing Tregs
bind to B7-1/2 on antigen-presenting DCs, promoting trans-
endocytosis of B7-1/2 and preventing DC-mediated activation of
effector T cells. CD25 scavenges IL-2 from the environment, reduces
IL-2 activation of effector T cells via competitive inhibition, and
regulates the function of mature DCs (69).

Another mechanism by which Tregs exert immune suppression is
by directly polarizing the monocyte lineage commitment from M1
to M2 macrophages (69, 70). M1 macrophages produce
proinflammatory cytokines and exacerbate inflammation-derived
tissue injury in sepsis (71). Two potent M1 cytokines, IL-6 and
MCP-1, are highly upregulated in VISTA-/- mice following septic
challenge. M1-mediated pathology is particularly profound in the
liver during infection (72), which may explain the increased acute
liver injury observed in septic VISTA-/- mice.

4.5 Higher M1-Associated Cytokines and
Apparent Liver Injury in VISTA-/- Mice
Represents a Possible Lapse in the
Suppressive Capacity of VISTA-/- Tregs
Despite Compensatory Upregulation of
CTLA4, Foxp3, and CD25
To determine if VISTA-/- Tregs contribute to the survival deficit
observed in VISTA-/- mice, we adoptively transferred VISTA-
A B C D

E F G H

FIGURE 6 | Expression of suppressive markers is upregulated on CD4+ Tregs and is downregulated on CD4+CD8+ Tregs in the thymus of VISTA-/- mice. Median
fluorescence intensity (MFI) of (A) Foxp3, (B) CTLA4, (C) CD25, and (D) CD69 on CD4+ Tregs in the thymus. Median fluorescence intensity (MFI) of (E) Foxp3,
(F) CTLA4, (G) CD25, and (H) CD69 on CD4+CD8+ Tregs in the thymus. Summary graphs show mean ± SEM [WT-sham: n = 3, WT-CLP: n = 3, VISTA-/-sham: n =
4, VISTA-/- -CLP: n = 4]; significance *p < 0.05; **p < 0.01; ***p < 0.001.
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overexpressing Jurkat Tregs into VISTA-/- mice prior to septic
challenge. We found that addition of Jurkat Tregs into VISTA-/-

mice rescues survival to wild-type levels. Upon VISTA blockade
in vitro, the Jurkat Tregs exhibited reduced proliferative capacity
and production of IL-9 and IL-10. Treg-derived IL-9 plays a
significant role in recruiting other suppressive immune cells,
such as mast cells, to suppress bystander tissue damage as
observed in a murine nephrotoxic serum nephritis model (73).
Treg-derived IL-10 is required to regulate effector T cells during
acute inflammation (74, 75).

A recent study was published demonstrating a survival benefit
upon VISTA antibody blockade prior to CLP (76). Importantly,
in the Tao et al. study they utilizedWTmice. However, it has also
been shown that VISTA-gene-deficient mice have a
Frontiers in Immunology | www.frontiersin.org 10
predisposition to proinflammatory immune activation in
several disease contexts (17, 20, 26, 66). Based on prior studies
and our results, we believe that the VISTA-gene-deficient mice
develop a predisposition to proinflammatory tissue injury that is
exacerbated by CLP, thus resulting in a survival deficit.
Consequently, acute VISTA blockade with an exogenous
antibody in a developmentally normal WT mouse, as used in
the Tao et al. study, might yield different results than observed in
VISTA-/- mice in our study.

In conclusion, we found that WT mice have increased
VISTA+CD4+ Tregs and increased total CD4+ Tregs in the
spleen and small intestine post CLP. This increase in total
CD4+ Treg abundance is lost in VISTA-/- mice; however,
VISTA-/- CD4+ Tregs have a higher expression of Foxp3,
A B C D

E F

I J

G H

FIGURE 7 | VISTA-/- mice have significantly higher levels of several Th17 cytokines following septic challenge. (A–J) Plasma cytokine concentration of wild-type and
VISTA-/- mice. Summary graphs show mean ± SEM [WT-sham: n = 5, WT-CLP: n = 5, VISTA-/-sham: n = 5, VISTA-/- -CLP: n=5]; significance #p = 0.05; *p < 0.05;
**p < 0.01; ****p < 0.0001.
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A B C

D E GF

FIGURE 8 | VISTA-/- mice have significantly worse survival and morbidities following septic challenge. (A) 14-day survival following CLP [WT: n = 28, VISTA-/-: n =
26]. (B) Creatine kinase activity [WT-sham: n = 9, WT-CLP: n = 9, VISTA-/-sham: n = 10, VISTA-/- -CLP: n = 10]. (C) blood urea nitrogen [WT-sham: n = 4, WT-CLP:
n = 9, VISTA-/-sham: n = 5, VISTA-/- -CLP: n = 8]. (D) a-Amylase activity [WT-sham: n = 5, WT-CLP: n = 6, VISTA-/-sham: n = 5, VISTA-/- -CLP: n = 6]. (E) Direct
bilirubin concentration [WT-sham: n = 3, WT-CLP: n = 3, VISTA-/-sham: n = 3, VISTA-/- -CLP: n = 4]. (F) alanine aminotransferase activity [WT-sham: n = 4, WT-CLP:
n = 8, VISTA-/-sham: n = 4, VISTA-/- -CLP: n = 8]. (G) Aspartate aminotransferase activity [WT-sham: n = 4, WT-CLP: n = 8, VISTA-/-sham: n = 4, VISTA-/- -CLP: n =
8] from plasma samples of wild-type and VISTA-/- mice. (B–G) Summary graphs show mean ± SEM; significance *p < 0.05; **p < 0.01.
A B C D
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FIGURE 9 | VISTA-/- mice have significantly higher levels of several proinflammatory cytokines following septic challenge. (A–J) Plasma cytokine concentration of
wild-type and VISTA-/- mice. Summary graphs show mean ± SEM [WT-sham: n = 10, WT-CLP: n = 10, VISTA-/-sham: n = 10, VISTA-/- -CLP: n = 10]; significance
#p = 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.
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CTLA4, and CD25 relative to WT mice. VISTA-/- mice also have
an altered cytokine profile including higher IL-6, IL-10, TNF-a,
IL-17F, IL-23, and MCP-1 relative to WT mice. VISTA-/- mice
have higher indices of acute liver injury (i.e., bilirubin, ALT, and
AST) and reduced survival post CLP compared to WT mice.
Interestingly, we were able to rescue VISTA-/- survival to WT
levels by adoptively transferring VISTA-expressing Jurkat Tregs

into VISTA-/- mice prior to CLP. In addition, treating Jurkat Tregs

with a VISTA-neutralizing antibody in vitro, reduced viability
and cytokine production. We can conclude from these
experiments that VISTA expression plays a pivotal role in
promoting acute CD4+ Treg survival/stability and regulating the
cytokine milieu in acute sepsis to confer a survival benefit.

4.6 Future Considerations
This study has raised questions as to the mechanism by which
VISTA promotes Treg survival. Interestingly, Foxp3 and VISTA
are both under the transcriptional regulation of p53 and HIF-1a.
In fact, p53-Foxp3 and HIF1a-Foxp3 induction are
Frontiers in Immunology | www.frontiersin.org 12
indispensable for protective Treg suppression under
inflammatory conditions (24, 77–79). The tentative
relationship between VISTA and Foxp3 expression provide an
additional line of query regarding Treg plasticity.

Another area for further investigation concerns the effector
immune cells that are non-redundantly regulated by VISTA+

Tregs. Based on results from this study, VISTA may act as a non-
redundant marker for the Treg subset responsible for regulating
M1/M2 polarization and limiting acute liver injury in sepsis.
More work must be done to fully elucidate these mechanisms;
however, we think this study contributes a novel perspective on
checkpoint regulator, VISTA, in the acute sepsis response.
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