
Detectable clonal mosaicism from birth to old age and its 
relationship to cancer

A full list of authors and affiliations appears at the end of the article.

Abstract

Clonal mosaicism for large chromosomal anomalies (duplications, deletions and uniparental 

disomy) was detected using SNP microarray data from over 50,000 subjects recruited for genome-

wide association studies. This detection method requires a relatively high frequency of cells (>5–

10%) with the same abnormal karyotype (presumably of clonal origin) in the presence of normal 

cells. The frequency of detectable clonal mosaicism in peripheral blood is low (<0.5%) from birth 

until 50 years of age, after which it rises rapidly to 2–3% in the elderly. Many of the mosaic 

anomalies are characteristic of those found in hematological cancers and identify common deleted 

regions that pinpoint the locations of genes previously associated with hematological cancers. 

Although only 3% of subjects with detectable clonal mosaicism had any record of hematological 

cancer prior to DNA sampling, those without a prior diagnosis have an estimated 10-fold higher 

risk of a subsequent hematological cancer (95% confidence interval = 6–18).

INTRODUCTION

Chromosomal mosaicism is the presence of different karyotypes in two or more cell lineages 

within an individual derived from a single zygote1,2. This karyotypic variation may arise 
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early in development and involve both the soma and the germline or it may occur later and 

be restricted to one or more specific cell types. In cancer, chromosomal anomalies can 

initiate a neoplastic clone or arise during clonal evolution and serve as clonal markers3. Here 

we consider such clonal variation as a form of mosaicism, since the cancer cells may have 

acquired one or more chromosomal abnormalities, while other cells in the same tissue, or 

elsewhere in the body, retain the normal karyotype. Chromosomal mosaicism in humans has 

been well studied in embryos4,5, fetuses from spontaneous abortions6, children with birth 

defects or developmental delay7,8 and cancer patients9. However, little is known about the 

type, frequency and age distribution of acquired chromosomal anomalies in large samples 

from the general population9,10.

Data from genome-wide association studies now provide an opportunity to detect 

chromosomal variation in tens of thousands of people of all ages and to investigate the 

association of mosaicism with disease. Single nucleotide polymorphism (SNP) microarray 

data are used routinely to detect chromosomal anomalies (copy number variants (CNV) and 

uniparental disomy (UPD)) in clinical cytogenetic laboratories11,12 and to detect small 

CNVs in population studies13–15. However, the analytical methods used in population 

studies are not optimized for detecting large anomalies or mosaicism. Therefore, we 

developed an efficient method to identify and localize large (50 kb to whole-chromosome) 

anomalies and mosaicism within a single DNA sample. This method requires a relatively 

high frequency of cells (>5–10%) with the same abnormal karyotype (presumably of clonal 

origin) in the presence of normal cells. Therefore, we use the term ‘detectable clonal 

mosaicism’, rather than simply ‘chromosomal mosaicism’, to emphasize the observation of 

clones of cells with abnormal karyotype that occur at a frequency sufficient for detection 

using SNP microarray data.

DNA samples (primarily from peripheral blood) from over 50,000 people genotyped for the 

Gene-Environment Association Studies (GENEVA) consortium16 were analyzed to detect 

clonal mosaicism. The GENEVA studies include all ages from birth to old age, several 

major ethnic groups, and a variety of different health conditions, including healthy controls 

(Table 1, Supplementary Table 1, Supplementary Fig. 1). Here we characterize the types of 

chromosomal anomalies detected, show how the prevalence of detectable clonal mosaicism 

within blood cells increases with age, and examine the association between mosaic 

anomalies and hematological cancer.

RESULTS

Types of anomalies detected

This report deals with autosomal anomalies, defined here as deviations from the normal 

biparental disomic state. Anomalies were detected using log R ratio (LRR) and B Allele 

Frequency (BAF)17. LRR is a measure of relative signal intensity (log2 of the ratio of 

observed to expected intensity, where the expectation is based on other samples). BAF is an 

estimate of the frequency of the B allele of a given SNP in the population of cells from 

which the DNA was extracted. In a normal cell, the B allele frequency at any locus is either 

0 (AA), ½ (AB) or 1 (BB) and the expected LRR is 0. Both copy number changes and copy-

neutral changes from biparental to uniparental disomy (UPD) result in changes in BAF, 
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while copy number changes also affect LRR (Figures 1 and 2). Our detection method 

identifies both non-mosaic (constitutional) and clonal mosaic anomalies, which were 

distinguished subsequently using standards based on parent-offspring transmission in family 

studies and polymorphic CNVs in non-family studies. Three types of clonal mosaics were 

detected: mixtures of disomic and monosomic cells (deletions), mixtures of disomic and 

trisomic cells (duplications), and copy-neutral mixtures of biparental and acquired 

uniparental disomy (aUPD) (see examples in Figure 3 and Supplementary Figure 2). The 

aUPDs are primarily terminal segments, as expected for an origin through mitotic crossing 

over (Supplementary Fig 3), while some cases of whole-chromosome aUPD may be due to 

aneuploidy rescue (Supplementary Fig. 4).

Using a method optimized to detect large anomalies (50 kb to whole chromosome), we 

identified at least one non-mosaic anomaly (i.e. large CNV) in 75% of all subjects, at least 

one clonal mosaic anomaly in 0.80%, and both types in 0.69%. The median size of all 

anomalies detected is 150 kb (Supplementary Fig. 5) and the mean number per subject is 

1.5, with a range of 0 to 13. There were 514 mosaic anomalies in 404 of 50,222 subjects 

analyzed.

The reproducibility (in 568 duplicate sample pairs) of all anomalies analyzed for mosaic 

status is 82% (with >80% overlap; see Methods and Supplementary Table 2 for details). For 

clonal mosaic anomalies in duplicate samples, the reproducibility is 15/22 = 68% and all 

discordant calls appear to be false negatives, based on examination of BAF/LRR plots. We 

also assessed the reproducibility of clonal mosaic anomaly calls in comparison with the 

results of Jacobs et al.18, who analyzed the same raw data for 5,510 subjects from the 

GENEVA Lung Cancer study. While both methods detected 83 mosaics, the GENEVA 

method described here detected an additional 28 mosaics (8 > 2 Mb) and the Jacobs method 

detected an additional 20 mosaics (all > 2 Mb). The overall reproducibility is 63% or, when 

considering only anomalies greater than 2 Mb (the size-detection limit of the Jacobs 

method), 75%. Both estimates are considerably greater than the 25–50% reproducibility 

across methods estimated for several common CNV-calling algorithms19. All of the 

discordant mosaic detections appear to be due to false negatives. The Jacobs method is more 

conservative with respect to size threshold (2 Mb), while our method is more conservative 

with respect to sample quality (but calling mosaics involving segments less than 2 Mb when 

sample quality is sufficient). Therefore, the false negative rate of both methods appears to be 

high and the prevalence of clonal mosaic anomalies detected here is likely to be 

underestimated. Mosaic detection is difficult when the fraction of abnormal cells is extreme, 

when the anomaly length is small or when sample quality is low (i.e. high BAF/LRR 

variability).

The clonal mosaic anomalies detected in GENEVA subjects were classified as 15.6% 

duplications, 50.4% deletions and 34.0% aUPDs. All three classes of mosaic anomalies are 

large (Figure 4 and Supplementary Fig. 6). Median lengths are 34.1 Mb for duplications, 3.8 

Mb for deletions and 39.8 Mb for aUPD. Mosaic aneuploidies include +8, +9, +12, +14, 

+15, +18, +19, −21, and +22, while whole-chromosome mosaic UPDs include chromosomes 

2, 3, 13, 14, and 15. Plots of the breakpoints of all mosaic anomalies are provided in 
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Supplementary Figure 7 and genomic coordinates (along with other information) are 

provided in Supplementary Table 3.

There is a highly significant excess of subjects with multiple clonal mosaics, compared to 

the Poisson distribution expected if the anomalies occurred independently. The multiples are 

of two kinds: (a) ‘compound’ sets of anomalies adjacent to one another on a single 

chromosome, suggesting a single event or related mechanism of origin (e.g. Supplementary 

Figure 2g) and (b) non-adjacent sets. Among the 404 mosaic subjects, 64 had multiple 

mosaics of one or both types (while 2.6 were expected) and 55 had only non-adjacent sets 

(2.4 expected). The excess of multiple mosaics occurs for both CNVs and aUPD. The age of 

subjects with multiple anomalies is not significantly different than those with a single 

anomaly (p=0.99).

The frequency of detectable clonal mosaicism increases with age

The observed frequency of subjects with one or more clonal mosaic anomalies detected 

(‘mosaic status’) is shown in Figure 5 and Supplementary Table 4. It is low (< 0.5%) in 

subjects less than 50 years old, but increases thereafter to 2.7% in subjects over 80. The 

mosaic frequency is 0.2% in both the 0–14 (15/8535) and 15–29 year old group (16/6739), 

despite the fact that approximately half of the 0–14 year old subjects have a phenotypic 

abnormality (non-syndromic cleft lip/palate, prematurity or low birth weight). Excluding 

subjects less than 15 years old, in multiple logistic regression of mosaic status on age at 

DNA sampling, and adjusting for several covariates (study, sex, DNA source, and ethnicity), 

age is a highly significant predictor of mosaic status (p = 2 × 10−16, odds ratio=1.05, 95% 

confidence interval (CI)=1.04 – 1.07). Among the covariates, only study is significant 

(p=0.01) and a subsequent test of age-by-study interaction was not significant. It is notable 

that DNA source (92% from blood, 8% from saliva/buccal swabs) was not a significant 

predictor (p=0.45). When only blood samples are analyzed, the age effect estimate is the 

same (to three decimal places) and the p-value is only slightly higher (4 × 10−15). Copy-

number mosaics and aUPD, when tested separately, each have a significant age effect and 

similar odds ratios (p-value for gain=0.01, loss=5 × 10−11, aUPD=6 × 10−8; OR (95% CI) 

for gain = 1.032 (1.005 – 1.061), loss = 1.057 (1.039 – 1.075), aUPD = 1.056 (1.035 – 

1.077).

This age effect is specific for mosaic anomalies. The same logistic regression performed 

with the non-mosaic anomalies did not have a significant age effect (p=0.11) and the sign of 

the regression coefficient estimate was reversed (Supplementary Figure 8). This result 

indicates that our classification method distinguishes effectively between acquired and 

constitutional anomalies.

To further explore the robustness of the age effect on clonal mosaicism, additional analyses 

were performed with each of the seven studies having more than 1,000 subjects over 50 

years old (using both blood and saliva/buccal samples). Only the age effect was significant 

(p=8 × 10−16) in a combined logistic regression of mosaic status on study, sex, DNA source, 

ethnicity and smoking status (separately testing either ‘ever’ smoker or ‘never’ smoker). 

When only controls from these studies were analyzed together, the age effect remained 

highly significant (p=7 × 10−11). We also analyzed each study separately, with age and the 
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case status specific to each study. A meta-analysis shows a highly significant effect of age 

(Figure 6), which is very robust to differences in both study and subject characteristics.

These cross-sectional analyses strongly suggest that most of the mosaic anomalies detectable 

by SNP microarrays appear late in life, because they arise more frequently and/or because 

they are more readily detected due to clonal expansion. This suggestion is supported by 

longitudinal observation in one GENEVA subject (the only subject sampled twice who had 

mosaicism in at least one sample). This subject was sampled at age 66 and again at age 72 

(both with DNA from saliva). No mosaic anomalies were detected in the earlier sample, but 

the later sample contained 5 mosaic deletions, each on a different chromosome. Additional 

studies with subjects sampled at multiple ages are needed to evaluate the temporal origin 

and stability of mosaic anomalies.

In some GENEVA subjects, anomalies appear to have occurred early enough in 

development to be mosaic in both the soma and germline. In 35 parent-offspring pairs in 

which a mosaic anomaly was detected in the parent, there are three cases in which the 

offspring appears to be non-mosaic for the same anomaly (one deletion and two 

duplications), while there is no corresponding anomaly (mosaic or otherwise) in the 

remaining 32 offspring. Although this result suggests that a fairly large fraction of cases 

have mosaicism shared by the germline and soma, it may not be representative of the more 

frequent mosaics that occur in older subjects because parents in the family studies were 

sampled in their 20s and 30s (Table 1). The mosaics that appear in subjects less than 50 

years of age may have different origins than those that appear later, when the frequency 

increases rapidly.

Mosaic anomalies characteristic of hematological cancers

The clonal mosaic anomalies detected in this study tend to cluster in location both within 

and among chromosome arms (Figure 4; Supplementary Fig. 7 and 9). Regions with 

multiple overlapping anomalies frequently coincide with regions of copy number change or 

aUPD characteristic of hematological cancers. Using the Mitelman "Recurrent Chromosome 

Aberrations in Cancer Database" (http://cgap.nci.nih.gov/Chromosomes/Mitelman), we 

found that 222 of 669 recurrent duplications and deletions found in hematological cancers 

have >80% overlap with at least one mosaic CNV in GENEVA subjects. Also, 77% of 

GENEVA mosaic CNVs have >80% overlap with the Mitelman aberrations and 48% 

overlap both cytological bands defining the limits of the aberration. The most common 

overlaps are 20q-, 13q-, 11q-, 17p-, 12+ and 8+.

Common deleted regions (CDR) of mosaic anomalies in different GENEVA subjects often 

pinpoint genes previously associated with the hematological cancers. The following 

examples are shown in Supplementary Figure 7: (1) On 13q, 31 deletions have a CDR of 

299 kb, containing only one gene, DLEU7, which is thought to be a tumor suppressor20. In 

addition, 18 deletions on 13q cover RB1 and 24 cover MiR15a and MiR16-1. Deletions in 

this region (13q14) represent the most common cytogenetic abnormality in chronic 

lymphocytic leukemia (CLL)21, which is the most common leukemia in older adults (http://

seer.cancer.gov). (2) On 4q, 14 deletions have a CDR of 214 kb containing only one gene, 

the TET2 oncogene, which is commonly deleted in myelodysplastic syndrome (MDS), 
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myeloproliferative disorder (MPD) and acute myeloid leukemia (AML)22. (3) On 2p, 17 

deletions have a CDR of 194 kb, which contains two genes, one of which is DNMT3A, 

recently found to be commonly mutated in AML-M523. (4) On 22q, 11 deletions have a 

CDR of 153 kb, which includes three genes, one of which is PRAME, which is frequently 

deleted in CLL24. (5) On 20q, 46 deletions have a CDR of 965 kb, containing 7 genes 

including L3MBTL1, which is a candidate tumor suppressor in del(20q12) myeloid 

disorders25.

Long (multi-megabase) segments of aUPD are frequently observed in cancers of many 

types26. In most cases, the UPD occurs on a terminal segment of one arm, consistent with 

origin by a single mitotic crossover, followed by outgrowth of one of the daughter cells. 

Acquired UPDs are frequently observed in hematological cancers such as MDS, MPD and 

AML and are associated with homozygosity of mutations in several tumor suppressors and 

oncogenes27,28. All autosomes (except chromosome 10) have at least one clonal mosaic 

aUPD in GENEVA subjects. Chromosomes 9 (with 24), 14 (with 21) and 11 (with 19) have 

the most aUPDs, which greatly exceed the expected number based on arm length 

(Supplementary Figure 9).

Despite the observation that many of the clonal mosaic anomalies observed here are 

characteristic of hematological cancer, the fraction of subjects with one or more mosaics 

who have a record of hematological cancer before DNA sampling is low. This fraction was 

estimated as 2.8% (95% CI=1.0 – 4.7%) in 291 mosaic subjects (with DNA from blood; 

from 13 GENEVA studies; using medical records, self-reported conditions and study 

exclusion criteria, as described in the Supplementary Note).

Hematological cancer incidence

We investigated whether detectable clonal mosaicism predisposes to incident hematological 

cancer after DNA sampling by using three GENEVA studies, which included cohorts with 

cancer diagnosis records both before and after DNA sampling. From the following studies, 

we analyzed 8,562 subjects who had DNA derived from blood and no record of 

hematological cancer prior to DNA sampling: (1) Glaucoma study, with subjects from the 

Nurses Health Study (NHS, N=363) and Health Professionals Follow-up Study (HPFS, 

N=285), (2) Lung Cancer study, with subjects from the Prostate, Lung, Colorectal and 

Ovarian Cancer Screening Trial (PLCO, N= 1600) and (3) Prostate Cancer study, with 

subjects from the Multiethnic Cohort (MEC, N=6314). Among the 8,562 subjects analyzed 

for incident hematological cancer, 8,323 were non-mosaics with no events, 90 were non-

mosaics with events, 134 were mosaics with no events, and 15 were mosaics with events 

(where ‘event’ is a hematological cancer diagnosis).

To test for an association between mosaic status and incident hematological cancer, we used 

a cause-specific Cox proportional hazards model to analyze time to a hematological cancer 

diagnosis from the date of DNA sampling, with right censoring at death and the endpoint of 

follow-up data. We performed a stratified analysis of the four cohorts, which included 

mosaic status and adjusted for age at DNA sampling, non-hematological cancer status (as a 

time-dependent covariate), ethnicity (two principal components) and sex (within the PLCO 

stratum). The hazard ratio estimate for mosaic status is 10.1 (95% CI=5.8 – 17.7) with a p-
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value of 3 × 10−10. A meta-analysis showed consistent results among cohorts and gave a 

very similar effect estimate (Supplementary Figure 10). These results estimate that the risk 

of hematological cancer is ten-fold higher for mosaic than for non-mosaic subjects.

Because both cancer and the clonal mosaic anomalies detected in this study increase with 

age, the adjustment for age at time of DNA sampling in the Cox regression model is critical. 

We modeled the age covariate as either a linear effect or as a non-linear effect (spline 

smoothing with 5 degrees of freedom) and found that the mosaic effect estimates and p-

values are essentially identical.

Among the 15 mosaic subjects who had a hematological diagnosis after DNA sampling, four 

had myeloid leukemia, six had chronic lymphocytic leukemia, one had multiple myeloma, 

one had MDS, one had MPD and two had non-Hodgkin lymphoma. Thus, the 15 cases are 

about evenly divided between mature B-cell neoplasms and myeloid malignancies. Not 

surprisingly, the leukemias are over-represented among mosaic compared with non-mosaic 

subjects (p-value=0.005, Supplementary Tables 5 and 6). A variety of chromosomal 

anomalies were found in the mosaic subjects (Supplementary Table 7). Deletions covering 

the CDRs described above were found in several of these subjects: 13q- in five CLLs, 4q- in 

one chronic myelogenous leukemia (CML), 20q- in one multiple myeloma and one AML, 

and 22q- in one CLL. Five of the 15 mosaic subjects with incident hematological cancer had 

more than one mosaic anomaly, which is higher than in the remaining subjects within this 

set of cohort samples (25/134), although not significantly so (p=0.18).

Although the risk of incident hematological cancer is estimated as 10-fold higher for mosaic 

than for non-mosaic subjects (95% CI=5.8 – 17.7), it is important to note that the incidence 

rate in mosaics is low (10 year event rate of 0.143, 95% CI=0.065 – 0.214, Figure 7) and 

that only a small fraction of GENEVA mosaic subjects have a record of hematological 

cancer before DNA sampling (2.8%, 95% CI=1.0 – 4.7%). The period between first 

appearance of detectable clonal mosaicism and incidence of hematological cancer is of 

interest, but cannot be estimated from our data since mosaicism was present for an unknown 

period of time prior to DNA sampling. However, the median time of 3.5 years between 

DNA sampling and hematological cancer diagnosis provides a very rough minimum 

estimate (range 3.5 months to 10.7 years with N=15; see Figure 7).

Non-hematological cancer

To investigate the relationship between mosaic status and non-hematological cancer, two 

types of analyses were done. First, in each of the three GENEVA case-control cancer studies 

(Lung Cancer, Prostate Cancer, Melanoma), we did logistic regression of mosaic status on 

case status and age at DNA sampling. Case status was not significant in any of the three 

studies or in a meta-analysis (one-tailed p=0.06). The estimated odds of having a clonal 

mosaic anomaly was higher among cancer cases than controls in the lung and prostate 

cancer studies, but lower in the melanoma study (Supplementary Fig. 11). Second, in the 

cohort studies (PLCO, HPFS, NHS and MEC), we did logistic regression of mosaic status 

on whether or not the subject had a non-hematological cancer prior to DNA sampling 

(excluding any hematological cancer cases). In these analyses the relationship is consistently 

positive, but small and not significant overall (one-tailed p=0.11, Supplementary Figure 12). 
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In summary, the evidence hints at a positive relationship between mosaic status and non-

hematological cancer, but lacks statistical significance. Therefore, further work is needed in 

larger sets of non-hematological cancer studies, including data on potential exposure, 

disease and treatment effects.

DISCUSSION

Here we have shown that the frequency of subjects with detectable clonal mosaicism for 

large chromosomal anomalies in peripheral blood is low (<0.5%) from birth until 50 years of 

age, after which it rises rapidly. This relationship between mosaicism and age is very robust 

to both study and subject characteristics. Among the covariates sex, ethnicity, smoking and 

disease status (exclusive of hematological cancer), none had a significant effect on mosaic 

status. The age effect in GENEVA subjects is consistent with a recent study showing that 

acquired differences in structural chromosome variants between members of monozygotic 

twin pairs (including clonal mosaic anomalies) are observed in pairs >55 years of age but 

not in younger pairs29. Nevertheless, longitudinal studies are required to rule out the 

possibility that a trend in environmental exposures across birth cohorts may contribute to the 

increase in mosaicism with age.

The observed increase in detectable clonal mosaicism late in life may be due to a change in 

the frequency with which chromosomal anomalies occur (i.e. increased somatic mutation 

rate) and/or their ability to form large clones (i.e. clonal expansion). Previous work has 

shown that the occurrence of chromosomal anomalies (rearrangements and aneuploidies) 

during cell division increases with age in cultured lymphocytes and fibroblasts30,31, that 

DNA damage accumulates with age in mouse hematopoietic stem cells32, and that mitotic 

recombination (leading to uniparental disomy) increases with replicative age in yeast33. This 

apparent increase in somatic mutation may result from age-related decline in genomic 

maintenance mechanisms (such as telomere attrition34). Clonal expansion of cells containing 

chromosomal anomalies could be due to either positive selection or to random changes in 

the frequencies of hematopoietic stem cell descendants. In principle, stem cell senescence 

and age-related decline in replicative function35 could result in a decrease in the effective 

population size of stem cells, leading to shifts in clonal composition analogous to random 

drift in small populations of individuals36. However, analyses of the clonal composition of 

blood cells, based on X-inactivation markers in healthy women, suggest stability over time 

and between lymphoid and myeloid lineages, even in the elderly37,38. Therefore, in most 

cases, positive selection may be required to establish clones of cells with chromosomal 

anomalies that are sufficiently large for detection with SNP microarrays. The potential for 

positive selection may increase with age as somatic mutations accumulate in genes that 

regulate cellular proliferation. For example, a highly proliferative clone may arise when a 

recessive tumor suppressor mutation becomes hemizygous in combination with a deletion, 

or homozygous due to aUPD. This suggestion is supported by the observation that acquired 

anomalies tend to cluster in certain genomic regions and that common deleted regions 

pinpoint genes previously associated with hematological cancer.

In the mosaics described in this study, the chromosomally abnormal cells constitute a 

significant fraction of white blood cells, since a minimum of 5–10% is required for detection 
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by our method and many abnormal clones are substantially larger (Figure 2). The blood 

samples used for DNA extraction were not fractionated by white blood cell type. The 

abnormal blood cells within an individual may include multiple cell types if the anomaly 

arose in a multipotent hematopoietic stem cell that became predominant due to senescence 

or positive selection within the stem cell population. Alternatively, the abnormal cells may 

include a restricted set of cell types, particularly when the normal composition of blood (i.e. 

60–70% of neutrophils and 20–40% of lymphocytes39) is altered by unregulated 

proliferation40.

There is a strong association between the clonal mosaic anomalies detected in our study and 

hematological cancer. We estimate the risk of acquiring a hematological cancer diagnosis as 

10-fold higher for subjects with mosaic anomalies. This association is strongly supported by 

finding that many of the mosaic anomalies are characteristic of those found in hematological 

cancers. Nevertheless, the event numbers analyzed here are small and additional studies are 

needed across a broader diversity of cohorts to establish the clinical significance of these 

findings.

Notwithstanding the strong association with hematological cancer, we estimated that ~97% 

of subjects with clonal mosaic anomalies did not have a record of a hematological cancer 

prior to DNA sampling and the incidence rate is low (~ 14% over ten years in subjects who 

survive and are not lost to follow-up during this period). These results suggest that the clonal 

mosaicism observed in elderly subjects may be an asymptomatic condition with a 

predisposition to hematological cancer that is often not realized.

It is possible that many of the subjects with detectable clonal mosaicism in our study have 

monoclonal B-cell lymphocytosis (MBL), an asymptomatic condition with an estimated 

prevalence of 3–5% in the elderly. MBL is characterized by a clonal population of B 

lymphocytes with an immunophenotype similar to CLL or other B-cell malignancy41. Most, 

if not all, cases of CLL are preceded by MBL, but most cases of MBL do not progress to 

malignancy42,43. However, 85% of MBL detected in population screening studies have a B-

cell count below 500/μl43, which is less than 10% of the normal white blood cell count. 

Since 10% is near the lower limit of detection for chromosomal mosaicism using our 

methods, the two types of clones may not be closely related. Nevertheless, further work on 

the relationship between B cell immunophenotypes and mosaic anomalies is warranted.

Although it appears that most of the clonal mosaicism observed in GENEVA subjects 

represents a non-malignant condition, further work is needed to evaluate the fraction of 

subjects who might have unrecorded malignant conditions such as MDS and MPD, or 

undiagnosed CLL. MDS and MPD were added to the Surveillance, Epidemiology, and End 

Results (SEER) cancer registries in 2001 and may still be under-recorded because they are 

often managed outside of the hospital setting44. Therefore, accurate prevalence data from 

widespread populations are not available, but local population estimates (0.1% MDS45 and 

0.5% MPD46 in the elderly) are substantially less than the ~2.5% of GENEVA subjects with 

mosaic anomalies in the over 75 age.
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This survey is the first large-scale study of acquired chromosomal anomalies in people of all 

ages and various states of health. Previously, the extent of chromosomal variation within 

developmentally normal individuals, in the absence of overt cancer, was largely unknown. 

The results presented here indicate that a significant fraction of blood cells in people without 

a prior history of hematological cancer may contain large chromosomal anomalies, 

including multi-megabase deletions, duplications and aUPD. The frequency of people with 

such clonal anomalies in a mosaic state is low up to about 50 years of age and then increases 

rapidly up to 2–3%. We find that these anomalies are associated with an approximately ten-

fold higher risk of hematological cancer, but subjects with detectable clonal mosaicism may 

survive for years without having a hematological cancer diagnosis. Further work is needed 

to determine the stability of the mosaic state over time, to replicate and improve estimates of 

the predisposition to hematological cancer, and to identify anomalies associated with 

asymptomatic cancer precursor conditions. It also will be important to explore the health 

consequences of these anomalies for conditions other than cancer, such as immune system 

function.

METHODS

Study subjects, phenotypic data and genotyping

Subjects were recruited for 15 different studies belonging to the Gene Environment 

Association Studies (GENEVA) consortium16 (Table 1). Each study was approved by the 

institutional review board of the study investigator’s institution, and all subjects provided 

written informed consent for participation in the study. The Supplementary Note describes 

the phenotypes. Each study was genotyped on one of five different Illumina array types at 

the Center for Inherited Disease Research (CIDR), the Broad Institute Center for 

Genotyping and Analysis, or the University of Southern California (Supplementary Table 1). 

DNA samples were derived from blood (92%) or saliva/buccal swabs (8%). No 

lymphoblastoid cell line or whole-genome amplified samples were included in the analyses 

described here. Because cell lines may have artifactual mosaic anomalies47, mis-

identification of DNA source is a concern. However, only the Addiction study had both cell 

line and non-cell line samples and the non-cell line samples analyzed here did not have an 

unusual frequency of mosaic anomalies. Genotypic data cleaning and calculation of BAF 

and LRR are described in the Supplementary Note. Sample sizes for analyses vary (as stated 

in Results) because a small proportion of the subjects are missing data for age at DNA 

sampling or other variables.

Anomaly detection and quality control

The method of anomaly detection is described in detail in the Supplementary Note and 

summarized here. Detection of anomalies (both mosaic and non-mosaic) was based on BAF 

and LRR metrics. The primary focus for detecting anomalies was BAF, because we wanted 

to identify copy-neutral events (mosaic UPD) and because BAF is much less noisy and 

prone to artifacts (such as GC waves48) than LRR. The main approach was to detect a split 

in the BAF intermediate band, which in normal (biparental disomic) samples is centered at 

1/2 and corresponds to AB heterozygotes (Figure 1). In trisomic samples, this band splits 

into two components (AAB and ABB) at BAF= 1/3 and 2/3. In disomic-trisomic mosaics, 

Laurie et al. Page 10

Nat Genet. Author manuscript; available in PMC 2012 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the width of the split varies from zero to one third and LRR varies from zero to a theoretical 

value of log2(3/2). In disomic-monosomic mosaics, the width of the split varies from zero to 

one and LRR varies from 0 to a theoretical value of log2(1/2). In biparental-uniparental 

disomic mosaics, the width of the split varies from zero to one, while LRR remains constant 

at zero. These transitions are shown in Figure 2 as deviations from expected. In 

chromosomal regions containing heterozygous SNPs, use of BAF alone can detect 

duplications (both mosaic and non-mosaic), mosaic deletions, mosaic uniparental disomy 

and homozygous deletions. LRR is required to detect monosomic regions and duplications 

in regions lacking heterozygosity. Therefore, we implemented two separate but 

complementary methods, called ‘BAF’ and ‘LOH’ (the latter for LRR change detection in 

regions lacking heterozygosity). Anomalies detected by the BAF method were classified as 

mosaic or non-mosaic. Anomalies detected by the LOH method were used here only to 

define the BAF/LRR position of heterozygous deletions and not for mosaic detection. We 

did not attempt to identify non-mosaic segments of uniparental isodisomy, which have no 

heterozygosity and normal LRR.

In the BAF method, Circular Binary Segmentation (CBS)49 was used to detect change points 

in a metric modified from Itsara et al.15: sqrt(min(BAF,1-BAF,|BAF -median(BAF)|)) for 

SNPs called as missing or heterozygotes (i.e. excluding homozygotes). The use of missing 

calls allows detection of wide splits (e.g. Figure 3d). In the LOH method, CBS was applied 

to LRR values and combined with overlapping runs of homozygosity. By focusing on 

regions of homozygosity, we avoided a high false positive rate associated with a genome-

wide search for changes in LRR. In both methods, the identification of anomalous segments 

involved establishing a non-anomalous baseline, choosing anomalous segments based on 

deviation from baseline, and applying quality control filters. Computations were done using 

the Bioconductor packages DNACopy and GWASTools. The latter was developed by our 

group; relevant functions are described in the Supplementary Note.

Quality control (QC) was done at the sample and anomaly level. Low quality samples (with 

high variance of BAF and/or LRR metrics or a high level of segmentation) were removed 

differentially for the two methods. Supplementary Table 1 shows the percentage of samples 

that passed QC for the BAF method (mean = 99.1%) and the LOH method (86.8%). In some 

studies, a high fraction of samples failed QC for LOH detection (maximum 47%), but the 

failure rates for BAF-detection (from which all mosaics were identified) are all low 

(maximum 8%). Anomaly-level QC involved several steps, including manual curation of all 

anomalies designated as mosaic and all other anomalies greater than 2 Mb in length. (see 

Supplementary Note). Manual curation involved evaluation of BAF/LRR plots, as shown in 

Figure 3 and Supplementary Fig. 2. Note that Supplementary Fig 2(m-t) shows a sample of 

eight of the smallest mosaic deletions. Features that distinguish mosaic from non-mosaic are 

described in the Figure 3 legend.

The reproducibility of anomaly detection was assessed using samples genotyped in duplicate 

(N = 568 pairs). For each sample pair, we defined a unit of observation as a contiguous 

chromosomal region containing an anomaly in one or both samples. Each unit is given a 

score equal to the length of the intersection divided by the length of the union of anomalies 

in that unit. A reproducibility measure was defined as the fraction of units with a score 
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greater than either 0.30 or 0.80 (chosen for comparison with published CNV studies). We 

also calculated the average of the scores that were greater than zero. Supplementary Table 2 

summarizes these quantities for each study. For BAF, the mean reproducibility measure was 

90% with a 30% overlap threshold and 82% with 80% overlap. For LOH, the means were 

71% (30% overlap) and 67% (80% overlap). The mean of scores greater than zero was 95% 

for BAF- and 96% for LOH-detected anomalies (30% threshold), indicating that when an 

anomaly is detected in both scans, the breakpoints are highly reproducible. These 

reproducibility estimates are higher than the 40–60% that is typical for detecting CNVs 

using Hidden Markov Models (HMM)19,50, perhaps in large part because we do not attempt 

to detect small anomalies (the 5th percentile of anomalies we detect is 35 kb). In our 

experience, standard methods of CNV detection, such as PennCNV51, tend to break up large 

anomalies into many segments and to miss large mosaics.

Identifying and classifying clonal mosaic anomalies

Clonal mosaic anomalies were identified in GENEVA family studies by using transmitted 

anomalies to characterize the bivariate BAF/LRR distribution expected for non-mosaic 

(constitutional) anomalies. For transmitted anomalies, this distribution is approximately 

bivariate normal within a study and we used this distribution to estimate a 95% prediction 

ellipse52, which defines an area likely to contain most of the constitutional anomalies 

(Supplementary Figure 13). Among the anomalies used to identify mosaics, the majority are 

3N duplications. There is also a small cluster of 4N anomalies, but we did not attempt to 

detect 3N/4N mosaics. Anomalies outside of these two clusters contain mosaics and 

artifacts. The latter consist of false positives and anomalies with inaccurate breakpoints 

(which distorts the median BAF/LRR values). To distinguish between the mosaics and 

artifacts, we performed a manual review of BAF/LRR plots for all anomalies that fell 

outside of the 95% prediction ellipse and below the mean LRR for anomalies used to define 

the ellipse. The non-family studies were analyzed in a similar way, except that we replaced 

the class of transmitted anomalies with polymorphic CNVs. The latter were defined by 

hierarchical clustering to identify sets of anomalies with similar breakpoints. We then 

defined polymorphic sets as those with at least 4 members (but excluding sets with mean 

anomaly length greater than 10 Mb). We also included in the mosaic class three whole-

autosome anomalies (12, 8, 22) that fell within the 3N ellipse, because constitutional 

trisomies for these chromosomes are not compatible with normal development1. Although 

we did not have access to biospecimens necessary for experimental validation of mosaics 

(i.e. live cells or those preserved for cytology), all anomalies classified as mosaics were 

manually reviewed and the BAF/LRR patterns that we observed are very similar to those 

reported by Peiffer17, Rodriguez-Santiago53 and Conlin7, who performed cytological 

validation for a variety of mosaic types.

Classification of clonal mosaic anomalies as duplication, deletion or aUPD was done using 

the median LRR and BAF deviations from non-anomalous segments (Figure 2b). Deviations 

from non-anomalous segments within the same sample were used to control for overall LRR 

variation among samples and for BAF asymmetry that occurs in some samples. Anomalies 

that are either terminal segments or whole chromosome and that have an LRR deviation 

within a ‘neutral zone’ (|LRR|<0.05) were classified as aUPD. This neutral zone was chosen 
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because it includes nearly all of the wide splits (BAF deviation > 0.25) that have much 

smaller LRR deviations than expected for disomic/trisomic or disomic/monosomic 

transitions, while including very few interstitial anomalies (Supplementary Figure 3). All 

other anomalies (except for a few outliers) were classified as either duplications or deletions, 

depending on the sign of their LRR deviation. There is some ambiguity in classifying 

anomalies near the tip of the arrow, where the three transition zones intersect. This 

ambiguity is noted as ‘intensity.flag’ in Supplementary Table 3. Mixture proportions in 

mosaics can be estimated as position along the transitional line that connects the two 

constitutional states (Figure 2; see Supplementary Note).

All anomalies discussed in this paper are autosomal in the reference genome. Detection of X 

chromosome mosaics is complicated by the fact that LRR is a measure of the intensity of a 

sample relative to other samples. X chromosome LRR values (calculated in the standard 

way) are affected by the sex ratio in the sample set and are not comparable to those for the 

autosomes.

Statistical analysis

All statistical analyses were done in the R statistical package (http://www.R-project.org) 

using functions described in the Supplementary Note.

URLs

http://cgap.nci.nih.gov/Chromosomes/Mitelman, Mitelman, F., Johansson, B. & Mertens, F. 

(eds.). Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer, (2011).

http://seer.cancer.gov, SEER. US Estimated 33-Year L-D Prevalence Counts on 1/1/2008. 

(ed. Surveillance, E., and End Results (SEER) Program, National Cancer Institute, DCCPS, 

Surveillance Research Program, Statistical Research and Applications Branch, released 

April 2011, based on the November 2010 SEER data submission.) (2011).

http://www.R-project.org, The R Development Core Team, R: A language and environment 

for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 

3-900051-07-0, URL. (2006).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors 

Cathy C. Laurie(1),(38),(39), Cecelia A. Laurie(1),(38), Kenneth Rice(1), Kimberly F. 
Doheny(2), Leila R. Zelnick(1), Caitlin P. McHugh(1), Hua Ling(2), Kurt N. Hetrick(2), 
Elizabeth W. Pugh(2), Chris Amos(3), Qingyi Wei(3), Li-e Wang(3), Jeffrey E. Lee(4), 
Kathleen C. Barnes(5), Nadia N. Hansel(5), Rasika Mathias(5), Denise Daley(6), Terri 
H. Beaty(7), Alan F. Scott(8), Ingo Ruczinski(9), Rob B. Scharpf(10), Laura J. 
Bierut(11), Sarah M. Hartz(11), Maria Teresa Landi(12), Neal D. Freedman(12), Lynn 
R. Goldin(12), David Ginsburg(13),(14), Jun Li(15), Karl C. Desch(16), Sara S. 

Laurie et al. Page 13

Nat Genet. Author manuscript; available in PMC 2012 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.R-project.org
http://cgap.nci.nih.gov/Chromosomes/Mitelman
http://seer.cancer.gov
http://www.R-project.org


Strom(17), William J. Blot(18), Lisa B. Signorello(18), Sue A. Ingles(19), Stephen J. 
Chanock(12), Sonja I. Berndt(12), Loic Le Marchand(20), Brian E. Henderson(19), 
Kristine R Monroe(19), John A. Heit(21), Mariza de Andrade(22), Sebastian M. 
Armasu(22), Cynthia Regnier(23),(24), William L. Lowe(25), M. Geoffrey Hayes(25), 
Mary L. Marazita(26), Eleanor Feingold(27), Jeffrey C. Murray(28), Mads Melbye(29), 
Bjarke Feenstra(29), Jae H. Kang(30), Janey L. Wiggs(31), Gail P. Jarvik(32), Andrew 
N. McDavid(33), Venkatraman E. Seshan(34), Daniel B. Mirel(35), Andrew 
Crenshaw(35), Nataliya Sharopova(36), Anastasia Wise(37), Jess Shen(1), David R. 
Crosslin(1), David M. Levine(1), Xiuwen Zheng(1), Jenna I Udren(1), Siiri Bennett(1), 
Sarah C. Nelson(1), Stephanie M. Gogarten(1), Matthew P. Conomos(1), Patrick 
Heagerty(1), Teri Manolio(37),(39), Louis R. Pasquale(31),(39), Christopher A. 
Haiman(19),(39), Neil Caporaso(12),(39), and Bruce S. Weir(1),(39)

Affiliations
(1)Department of Biostatistics, University of Washington, Seattle, WA

(2)The Center for Inherited Disease Research, Johns Hopkins University, Baltimore, 
MD

(3)Department of Epidemiology, Division of Cancer Prevention and Population 
Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX

(4)Department of Surgical Oncology, Division of Surgery, The University of Texas 
MD Anderson Cancer Center, Houston, TX

(5)Department of Medicine, School of Medicine, Johns Hopkins University, 
Baltimore, MD

(6)Department of Medicine, University of British Columbia, Vancouver, BC

(7)Department of Epidemiology, School of Public Health, Johns Hopkins University, 
Baltimore, MD

(8)Institute of Genetic Medicine, School of Medicine, Johns Hopkins University, 
Baltimore, MD

(9)Department of Biostatistics, Johns Hopkins University, Baltimore, MD

(10)Department of Oncology, Johns Hopkins University, Baltimore, MD

(11)Department of Psychiatry, School of Medicine, Washington University School of 
Medicine, St Louis, Missouri

(12)Division of Cancer Epidemiology and Genetics, National Cancer Institute, 
National Institutes of Health, Bethesda, MD

(13)Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI

(14)Department of Internal Medicine, University of Michigan, Ann Arbor, MI

(15)Department of Human Genetics, University of Michigan, Ann Arbor, MI

(16)Department of Pediatrics and Communicable Diseases, University of Michigan, 
Ann Arbor, MI

Laurie et al. Page 14

Nat Genet. Author manuscript; available in PMC 2012 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(17)Department of Epidemiology, The University of Texas M. D. Anderson Cancer 
Center, Houston, TX

(18)Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology 
Center, Vanderbilt University, Nashville, TN

(19)Department of Preventive Medicine, Keck School of Medicine and Norris 
Comprehensive Cancer Center, University of Southern California, Los Angeles, CA

(20)Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, 
HI

(21)Department of Internal Medicine, Mayo Clinic, Rochester, MN

(22)Department of Health Sciences Research, Division of Biomedical Statistics and 
Informatics, Mayo Clinic, Rochester, MN

(23)Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN

(24)Mayo Hyperoxaluria Center, Mayo Clinic, Rochester, MN

(25)Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern 
University, Chicago, IL

(26)Center for Craniofacial and Dental Genetics, Department of Oral Biology School 
of Dental Medicine, University of Pittsburgh, Pittsburgh, PA

(27)Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA

(28)Department of Pediatrics, University of Iowa, Iowa City, IA

(29)Department of Epidemiology Research, Statens Serum Institut, Copenhagen, 
Denmark

(30)Department of Medicine, Brigham and Women’s Hospital, Boston, MA

(31)Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard 
Medical School, Boston, MA

(32)Division of Medical Genetics, University of Washington, Seattle, WA

(33)Cancer Prevention Public Health Sciences, Fred Hutchinson Cancer Research 
Center, Seattle, WA

(34)Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer 
Center, New York, NY

(35)Broad Institute (MIT/Harvard), Cambridge, MA

(36)National Center for Biotechnology Information, Bethesda, MD

(37)Office of Population Genomics, National Human Genome Research Institute at 
National Institutes of Health, Bethesda, MD

Laurie et al. Page 15

Nat Genet. Author manuscript; available in PMC 2012 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

The GENEVA consortium thanks the subjects and the staff of all GENEVA studies for their important 
contributions. Support for the GENEVA genome-wide association studies was provided through the NIH Genes, 
Environment and Health Initiative (GEI). Some studies also received support from individual NIH Institutes. The 
grant numbers are: Melanoma (NCI R29CA70334, R01CA100264, P50CA093459); Lung Health (U01HG004738); 
Cleft lip/palate (NIDCR: U01DE018993, NIH contract: HHSN268200782096C); Addiction (U01HG004422, 
NIAAA: U10AA008401, NCI: P01CA089392, NIDA: R01DA013423, R01DA019963); Lung cancer 
(Z01CP010200); Blood clotting (R37 HL 039693); Prostate cancer (U01HG004726, NCI: CA63464, CA54281, 
CA1326792, RC2 CA148085); Venous thromboembolism (U01HG004735); Birth weight (U01HG004415); Dental 
Caries (NIDCR:U01DE018903 and R01DE014899, NIH CIDR contract: HHSN268200-782096C); Prematurity 
(U01HG004423); Glaucoma (U01HG004728, NEI: R01EY015473, NEI: R01EY015872); GENEVA Coordinating 
Center (U01 HG004446); Center for Inherited Disease Research (U01HG004438, HHSN268200782096C); Broad 
Center for Genotyping and Analysis (U01HG04424); Intramural Research Program of the NIH, National Library of 
Medicine; Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer 
Institute, NIH. Dr. Pasquale was also supported by Physician Scientist award from Research to Prevent Blindness in 
NYC, an Ophthalmology Scholar Award from Harvard Medical School and from the Harvard Glaucoma Center of 
Excellence. Leila Zelnick was supported by T32 CA09168 from the National Cancer Institute. We thank the 
following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, 
ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. We thank 
Charles Laird and Gerald Marti for helpful comments on the manuscript, and Barbara Wakimoto and Daniel 
Gottschling for enlightening discussions. We also thank Kevin Jacobs for exchanging ideas and for working with us 
to estimate cross-method concordance of mosaic detection using the PLCO/GENEVA Lung Cancer study.

References

1. Miller, OJ.; Therman, E. Human Chromosomes. Vol. 501. Springer-Verlag; 2001. 

2. Strachan, T.; Read, AP. Human Molecular Genetics. Wiley-Liss; New York: 1996. 

3. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976; 194:23–8. [PubMed: 
959840] 

4. Delhanty JD. Mechanisms of aneuploidy induction in human oogenesis and early embryogenesis. 
Cytogenet Genome Res. 2005; 111:237–44. [PubMed: 16192699] 

5. Vanneste E, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 
2009; 15:577–83. [PubMed: 19396175] 

6. Hassold T. Mosaic trisomies in human spontaneous abortions. Hum Genet. 1982; 61:31–5. 
[PubMed: 7129422] 

7. Conlin LK, et al. Mechanisms of mosaicism, chimerism and uniparental disomy identified by single 
nucleotide polymorphism array analysis. Hum Mol Genet. 2010; 19:1263–75. [PubMed: 20053666] 

8. Ballif BC, et al. Detection of low-level mosaicism by array CGH in routine diagnostic specimens. 
Am J Med Genet A. 2006; 140:2757–67. [PubMed: 17103431] 

9. Heim, S.; Mitelman, F. Nonrandom chromosome abnormalities in cancer - an overview. In: 
Mitelman, F.; Heim, S., editors. Cancer Cytogenetics. John Wiley & Sons, Inc; Hoboken, NJ: 2009. 
p. 25-44.

10. Gardner, RJM.; Sutherland, GR. Chromosome Abnormalities and Genetic Counseling. Oxford 
University Press; Oxford: 2004. 

11. Maciejewski JP, Tiu RV, O’Keefe C. Application of array-based whole genome scanning 
technologies as a cytogenetic tool in haematological malignancies. Br J Haematol. 2009; 146:479–
88. [PubMed: 19563474] 

12. Dougherty MJ, et al. Implementation of high resolution single nucleotide polymorphism array 
analysis as a clinical test for patients with hematologic malignancies. Cancer Genet. 2011; 204:26–
38. [PubMed: 21356189] 

13. McCarroll SA, Altshuler DM. Copy-number variation and association studies of human disease. 
Nat Genet. 2007; 39:S37–42. [PubMed: 17597780] 

14. Conrad DF, et al. Origins and functional impact of copy number variation in the human genome. 
Nature. 2010; 464:704–12. [PubMed: 19812545] 

15. Itsara A, et al. Population analysis of large copy number variants and hotspots of human genetic 
disease. Am J Hum Genet. 2009; 84:148–61. [PubMed: 19166990] 

Laurie et al. Page 16

Nat Genet. Author manuscript; available in PMC 2012 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Cornelis MC, et al. The Gene, Environment Association Studies consortium (GENEVA): 
maximizing the knowledge obtained from GWAS by collaboration across studies of multiple 
conditions. Genet Epidemiol. 2010; 34:364–72. [PubMed: 20091798] 

17. Peiffer DA, et al. High-resolution genomic profiling of chromosomal aberrations using Infinium 
whole-genome genotyping. Genome Res. 2006; 16:1136–48. [PubMed: 16899659] 

18. Jacobs K, Yeager M, Zhou W, Wacholder S, Chanock S. Detectable clonal mosaicism and its 
relationship to aging and cancer. Nat Genet. 2012 (in press). 

19. Pinto D, et al. Comprehensive assessment of array-based platforms and calling algorithms for 
detection of copy number variants. Nat Biotechnol. 2011; 29:512–20. [PubMed: 21552272] 

20. Pekarsky Y, Zanesi N, Croce CM. Molecular basis of CLL. Semin Cancer Biol. 2010; 20:370–6. 
[PubMed: 20863894] 

21. Dohner H, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J 
Med. 2000; 343:1910–6. [PubMed: 11136261] 

22. Bejar R, Levine R, Ebert BL. Unraveling the molecular pathophysiology of myelodysplastic 
syndromes. J Clin Oncol. 2011; 29:504–15. [PubMed: 21220588] 

23. Yan XJ, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene 
DNMT3A in acute monocytic leukemia. Nat Genet. 2011; 43:309–15. [PubMed: 21399634] 

24. Gunn SR, et al. Array CGH analysis of chronic lymphocytic leukemia reveals frequent cryptic 
monoallelic and biallelic deletions of chromosome 22q11 that include the PRAME gene. Leuk 
Res. 2009; 33:1276–81. [PubMed: 19027161] 

25. Gurvich N, et al. L3MBTL1 polycomb protein, a candidate tumor suppressor in del(20q12) 
myeloid disorders, is essential for genome stability. Proc Natl Acad Sci U S A. 2010; 107:22552–
7. [PubMed: 21149733] 

26. Tuna M, Knuutila S, Mills GB. Uniparental disomy in cancer. Trends Mol Med. 2009; 15:120–8. 
[PubMed: 19246245] 

27. O’Keefe C, McDevitt MA, Maciejewski JP. Copy neutral loss of heterozygosity: a novel 
chromosomal lesion in myeloid malignancies. Blood. 2010; 115:2731–9. [PubMed: 20107230] 

28. Raghavan M, Gupta M, Molloy G, Chaplin T, Young BD. Mitotic recombination in 
haematological malignancy. Adv Enzyme Regul. 2010; 50:96–103. [PubMed: 19895835] 

29. Forsberg LA, et al. Age-related somatic structural changes in the nuclear genome of human blood 
cells. Am J Hum Genet. 2012; 90:217–28. [PubMed: 22305530] 

30. Vorobtsova I, Semenov A, Timofeyeva N, Kanayeva A, Zvereva I. An investigation of the age-
dependency of chromosome abnormalities in human populations exposed to low-dose ionising 
radiation. Mech Ageing Dev. 2001; 122:1373–82. [PubMed: 11470127] 

31. Mukherjee AB, Thomas S. A longitudinal study of human age-related chromosomal analysis in 
skin fibroblasts. Exp Cell Res. 1997; 235:161–9. [PubMed: 9281365] 

32. Rossi DJ, et al. Hematopoietic stem cell quiescence attenuates DNA damage response and permits 
DNA damage accumulation during aging. Cell Cycle. 2007; 6:2371–6. [PubMed: 17700071] 

33. Lindstrom DL, Leverich CK, Henderson KA, Gottschling DE. Replicative age induces mitotic 
recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae. PLoS Genet. 
2011; 7:e1002015. [PubMed: 21436897] 

34. Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during 
ageing. Nature. 2010; 464:520–8. [PubMed: 20336134] 

35. Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat Rev Mol 
Cell Biol. 2007; 8:703–13. [PubMed: 17717515] 

36. Crow, JF.; Kimura, M. An Introduction to Population Genetics Theory. Vol. 591. Harper and Row; 
New York: 1970. 

37. Prchal JT, et al. Clonal stability of blood cell lineages indicated by X-chromosomal transcriptional 
polymorphism. J Exp Med. 1996; 183:561–7. [PubMed: 8627167] 

38. Swierczek SI, et al. Hematopoiesis is not clonal in healthy elderly women. Blood. 2008; 112:3186–
93. [PubMed: 18641369] 

39. Fischbach, F.; Dunning, MB, III. A Manual of Laboratoy and Diagnostic Tests. Lippincott, 
Williams and Wilkins; Philadelphia: 1992. 

Laurie et al. Page 17

Nat Genet. Author manuscript; available in PMC 2012 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



40. Vandewoestyne ML, et al. Laser microdissection for the assessment of the clonal relationship 
between chronic lymphocytic leukemia/small lymphocytic lymphoma and proliferating B cells 
within lymph node pseudofollicles. Leukemia. 2011; 25:883–8. [PubMed: 21321570] 

41. Marti GE, et al. Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J Haematol. 2005; 
130:325–32. [PubMed: 16042682] 

42. Landgren O, et al. B-cell clones as early markers for chronic lymphocytic leukemia. N Engl J Med. 
2009; 360:659–67. [PubMed: 19213679] 

43. Shanafelt TD, Ghia P, Lanasa MC, Landgren O, Rawstron AC. Monoclonal B-cell lymphocytosis 
(MBL): biology, natural history and clinical management. Leukemia. 2010; 24:512–20. [PubMed: 
20090778] 

44. Cogle CR, Craig BM, Rollison DE, List AF. Incidence of the myelodysplastic syndromes using a 
novel claims-based algorithm: high number of uncaptured cases by cancer registries. Blood. 2011; 
117:7121–5. [PubMed: 21531980] 

45. Neukirchen J, et al. Incidence and prevalence of myelodysplastic syndromes: data from the 
Dusseldorf MDS-registry. Leuk Res. 2011; 35:1591–6. [PubMed: 21708407] 

46. Ma X, Vanasse G, Cartmel B, Wang Y, Selinger HA. Prevalence of polycythemia vera and 
essential thrombocythemia. Am J Hematol. 2008; 83:359–62. [PubMed: 18181200] 

47. Simon-Sanchez J, et al. Genome-wide SNP assay reveals structural genomic variation, extended 
homozygosity and cell-line induced alterations in normal individuals. Hum Mol Genet. 2007; 
16:1–14. [PubMed: 17116639] 

48. Diskin SJ, et al. Adjustment of genomic waves in signal intensities from whole-genome SNP 
genotyping platforms. Nucleic Acids Res. 2008; 36:e126. [PubMed: 18784189] 

49. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of 
array-based DNA copy number data. Biostatistics. 2004; 5:557–72. [PubMed: 15475419] 

50. Lin P, et al. Copy number variation accuracy in genome-wide association studies. Hum Hered. 
2011; 71:141–7. [PubMed: 21778733] 

51. Wang K, et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy 
number variation detection in whole-genome SNP genotyping data. Genome Res. 2007; 17:1665–
74. [PubMed: 17921354] 

52. Tracy ND, Young JC, Mason RL. Multivariate Control Charts for Individual Observations. Journal 
of Quality Technology. 1992; 24:88–95.

53. Rodriguez-Santiago B, et al. Mosaic uniparental disomies and aneuploidies as large structural 
variants of the human genome. Am J Hum Genet. 2010; 87:129–38. [PubMed: 20598279] 

Laurie et al. Page 18

Nat Genet. Author manuscript; available in PMC 2012 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Expected values of B Allele Frequency (BAF) and Log R Ratio (LRR) for discrete copy 

number states. Mosaics have intermediate positions between these discrete states. Copy 

number is given above the horizontal lines in the LRR plot, while SNP genotypes are given 

in the BAF plot. M=maternal and P=paternal chromosome. States with M and P reversed are 

also possible. The scatter of points for copy number = 0 (homozygous deletion) represents 

background signal noise.
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Figure 2. 
Expected and observed values of B Allele Frequency (BAF) and Log R Ratio (LRR) metrics 

for clonal mosaic anomalies detected in GENEVA subjects. (a) Expected. (b) Observed 

(N=514). In (b), “med”=median, “anom”=within the anomaly, “nonanom”=non-anomalous 

autosomal regions of the same sample. The solid purple and red circles represent the mean 

values of non-mosaic anomalies and the solid black and cyan circles are theoretical.
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Figure 3. 
B Allele Frequency (BAF) and Log R Ratio (LRR) plots of four representative mosaic 

anomalies. Each pair of plots is for a different sample-chromosome combination and each 

point is a single SNP. Points in BAF plots are color-coded by genotype (red=AA, cyan=AB, 

purple-blue=BB, black=missing call). The vertical black lines indicate the breakpoint(s) of 

the anomaly. The vertical gray rectangle is the centromeric gap. Horizontal pink lines are 

drawn at 0, 1/3, 1/2, 2/3 and 1 in the BAF plots. The solid horizontal red line in each plot is 

the median value for non-anomalous regions of the autosomes. The horizontal dashed red 

line is the median value within the anomaly. (a) Mosaic acquired uniparental disomy for 

distal 12q is indicated by the split in the intermediate BAF band along with the lack of 

change in LRR. A non-mosaic uniparental isodisomy would have only two BAF bands (at 0 

and 1). (b) Mosaic trisomy for chromosome 19 is indicated by a narrow split in the 

intermediate BAF band along with a small elevation of LRR. A non-mosaic trisomy would 
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have a wider BAF split (at 1/3 and 2/3) and a larger elevation of LRR. (c) A mosaic deletion 

on 20q is indicated by a narrow split in the intermediate BAF band along with a small 

decrease in LRR. A non-mosaic heterozygous deletion would have no intermediate BAF 

bands and a larger decrease in LRR. (d) A mosaic deletion on 6q is indicated by a wide split 

in the intermediate BAF band along with a large decrease in LRR. The mosaic deletion in 

(d) has a greater proportion of cells containing the deletion than the one in (c). See 

Supplementary Figure 2 for additional examples.
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Figure 4. 
The lengths and chromosomal positions of the 514 clonal mosaic anomalies detected in 

GENEVA subjects. An ideogram of each autosome is shown with scaled and color-coded 

representations of each mosaic anomaly to the right.
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Figure 5. 
The percentage of subjects having one or more mosaic anomalies within 5-year age bins. 

Vertical bars are 95% confidence intervals. For two cells with zero counts, the upper bar 

connects zero to the frequency with a lower 95% confidence interval of zero given the 

sample size. Expected leukemia values are given for reference and calculated using age- and 

sex-specific prevalence estimates (http://seer.cancer.gov).
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Figure 6. 
Fixed-effects meta-analysis for effect of age at DNA sampling on mosaic status. Effect 

estimates are from logistic regression of mosaic status on age at DNA sampling, with 

adjustment for case status specific to each study. The summary estimate of the log odds ratio 

is 0.05 (95% CI=0.04 – 0.07) and the corresponding odds ratio is 1.06 (95% CI=1.04 – 

1.07). Cochran’s Q test of heterogeneity has p-value=0.89. The sizes of the black boxes are 

proportional to the inverse of the squared standard error and the gray lines are 95% 

confidence intervals. The horizontal points of the diamond span the 95% confidence interval 

of the summary estimate. See Table 1 for study descriptions. AA = African American and JL 

= Japanese/Latino.
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Figure 7. 
A Kaplan-Meier plot of the proportion of living subjects who remain free of hematological 

cancer as a function of time since the time of DNA sampling and determination of mosaic 

status. Estimates for mosaic (red) and non-mosaic (black) subjects are given separately 

(solid lines), each with their 95% confidence intervals (dashed lines). The vertical ticks 

represent censoring times. For the 15 mosaic subjects with incident cancer, the times 

between DNA sampling and diagnosis are 3.5, 6.1, 12.7, 18.8, 25.0, 36.9, 37.5, 42.9, 44.0, 

46.2, 48.0, 60.4, 61.8, 91.1, and 130.5 months.
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