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Personal and social patterns predict
influenza vaccination decision
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Abstract

Background: Seasonal influenza vaccination coverage remains suboptimal in most developed countries, despite
longstanding recommendations of public health organizations. The individual’s decision regarding vaccination is
located at the core of non-adherence. We analyzed large-scale data to identify personal and social behavioral
patterns for influenza vaccination uptake, and develop a model to predict vaccination decision of individuals in an
upcoming influenza season.

Methods: We analyzed primary data from the electronic medical records of a retrospective cohort of 250,000
individuals between the years 2007 and 2017, collected from 137 clinics. Individuals were randomly sampled from
the database of Maccabi Healthcare Services. Maccabi’s clients are representative of the Israeli population, reflect all
demographic, ethnic, and socioeconomic groups and levels. We used several machine-learning models to predict
whether a patient would get vaccinated in the future. Models’ performance was evaluated based on the area under
the ROC curve.

Results: The vaccination decision of an individual can be explained in two dimensions, Personal and social. The
personal dimension is strongly shaped by a “default” behavior, such as vaccination timing in previous seasons and
general health consumption, but can also be affected by temporal factors such as respiratory illness in the prior year.
In the social dimension, a patient is more likely to become vaccinated in a given season if at least one member of his
family also became vaccinated in the same season. Vaccination uptake was highly assertive with age, socioeconomic
score, and geographic location. An XGBoost-based predictive model achieved an ROC-AUC score of 0.91 with accuracy
and recall rates of 90% on the test set. Prediction relied mainly on the patient’s individual and household vaccination
status in the past, age, number of encounters with the healthcare system, number of prescribed medications, and
indicators of chronic illnesses.

Conclusions: Our ability to make an excellent prediction of the patient’s decision sets a major step toward personalized
influenza vaccination campaigns, and will help shape the next generation of targeted vaccination efforts.
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Background
Influenza continues to constitute a major health threat
with a significant economic burden. In the United States
alone, influenza is responsible for over 100,000 hospitali-
zations and over 4000 deaths each year [1–4]. Similar
outcomes are observed in most developed countries,
including in Israel [5, 6]. The most efficient way for an
individual to prevent influenza infection and its compli-
cations is vaccination [7]. Because influenza is an

infectious disease, vaccination also reduces the transmis-
sion of influenza, providing benefits for both the vacci-
nated individual and the rest of the population [8].
Long-standing CDC recommendations suggest that all
individuals above six months of age [9] should be vacci-
nated against seasonal influenza. However, the majority
of the US population does not comply with these recom-
mendations, and vaccination rates against seasonal influ-
enza hover around 40% annually [10]. Similar trends are
observed in almost all developed countries [11]. Because
the elderly above 65 are at higher risk of developing
complications due to influenza, the World Health
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Assembly has set a less ambitious goal of 75% vaccin-
ation coverage for this specific population [12]. To en-
courage this goal, the OECD defined the vaccination
coverage for the elderly as an important healthcare qual-
ity indicator. Nevertheless, the vast majority of devel-
oped countries including Israel fail to meet this goal.
In Israel, the national guidelines by the Ministry of

Health recommend influenza vaccination for all individ-
uals above six months of age [13] with the focus on the
following groups: individuals above 65, pregnant women,
healthcare workers, and individuals with certain health
conditions. The Ministry of Health also recommends
prioritizing individuals that were previously hospitalized
due to influenza or pneumonia [14] following recent
studies in Israel that indicated these populations are at
elevated risk to become infected and complicated with
influenza [15], as well as transmit the disease to others
[16]. Since 2008, vaccination has been fully subsidized
and is accessible in over 2000 health clinics located
throughout the entire country. The vaccine is typically
available each year between October and March, which
corresponds to 1–2 months prior to the influenza season
and 1–2 months after the pick of the season. The inven-
tory in the clinics is backed-up with logistic support
from the Health Maintenance Organization’s (HMO)
main branches on a daily basis.
The dissonance between the importance of influenza

vaccination and the observed vaccination rates suggests
that more research is required to understand the individ-
ual decision of whether or not to become vaccinated.
Health behavior models, such as the Health Belief Model
[17], place subjective and psychological elements at the
core of the individual’s health behaviors. According to
these models, the decision to vaccinate is often based on
personal beliefs regarding vaccinations as well as an
individual’s risk perceptions, which reflect the perceived
severity of influenza, an individual’s perceived suscepti-
bility, the perceived vaccination efficiency, and the ef-
fects of worries and regrets [18–20]. Studies that rely on
these models have two main methodological limitations:
a) they are mostly based on small-scale and relatively
homogeneous samples, and b) they were primarily de-
rived from self-reported and subjective measurements
that may lead to inherent biases. Furthermore, most of
these studies did not take into account personal charac-
teristics and behavioral patterns to predict future vaccin-
ation behavior.
Other studies in the field have analyzed large-scale

data from social media and other sources. While some
of these studies have focused on forecasting cases of
illness [21], others aimed to capture the geographic and
demographic patterns of influenza vaccination behavior
relying on aggregated, rather than personal, vaccination
data [22]. Although electronic medical records (EMRs)

are increasingly used in research [23], even for predictive
modeling [24, 25], the usage of EMRs for influenza vaccin-
ation behavior remains limited. We sought to take advan-
tage of EMRs and demographic data at a large scale to
address this gap in the literature. To our knowledge, this
is the first study to analyze and predict the decisions of
individuals to get vaccinated against influenza using
personal, detailed, and longitudinal data. The goals of this
study were to: a) Identify personal and social behavioral
patterns and indicators for influenza vaccination uptake,
and b) use these indicators to develop a machine-learning
model that would predict vaccination decisions of individ-
uals in the upcoming influenza season.

Methods
Data description and case definition
We analyzed primary data from anonymized electronic
medical records of 250,000 individuals between the years
2007 and 2017, collected from Maccabi Healthcare
Services (Maccabi). Maccabi is the second-largest health
maintenance organization (HMO) in Israel, serving
about 25% of the population (2,215,000 clients). Macca-
bi’s clients are representative of the Israeli population,
and reflect all demographic, ethnic, and socioeconomic
groups and levels [26].
In order to avoid biases that may arise from death or

changes in healthcare provider, we randomly selected
250,000 individuals who were members of Maccabi dur-
ing the entire period from 2007 to 2017 or who were
born during this period and remained members until
2017. We chose 2008 as the earliest influenza season be-
cause it was the first season that the vaccination was of-
fered free of charge for all members of all the health-
care providers in Israel [27].
For each member, we compiled demographic characteris-

tics, influenza vaccination history, respiratory diagnoses,
prescriptions, encounters with the healthcare system, hospi-
talizations, chronic illnesses, and family connections to
other members in the data set (Additional file 1: Table S1).
The data were approved for use by Maccabi’s sub-Helsinki
institutional review board, signed by Dr. Yosef Azuri, proto-
col number 0048–17-BBL.

Season
Influenza is a seasonal disease, with the highest preva-
lence between October and March [28]. Therefore, we
defined each “season” as the period ranging from June 1
until May 31 of the following year and named it after
the end year. For example, “season 2016” was defined as
the period between June 1, 2015 and May 31, 2016.

Age group
Our data specifies for each member the year of birth.
Thus, we divided the population into the seven age

Shaham et al. BMC Public Health          (2020) 20:222 Page 2 of 12



groups (0–4, 5–16, 17–25, 26–35, 36–50, 51–64, and
65+). This division was done with respect to the season
in question; if a specific analysis included several sea-
sons, the population was divided into age groups separ-
ately in each season. Therefore, in some cases, a patient
belonged to one age group in a specific season and
moved to another age group in the following season.

Respiratory illness
We define a respiratory illness as a respiratory diagnosis
reported by a physician, according to several codes from
the International Statistical Classification of Diseases and
Related Health Problems protocol (ICD-9; Additional file 1:
Table S2). Given that perceptions rather than the actual
cause of infection govern the decision for an individual to
get vaccinated against influenza [18–20], analyzed this
considerably broad definition rather than using ICD-9
codes that are limited to influenza or influenza-like-
illness.

Family
Family members are defined as a set of patients having
the same “family code” in the surveillance systems of
Maccabi. Among the 250,000 patients included in our
study, 55,749 patients shared a “family code” with at
least one other patient within the data, creating 25,999
families.
To accomplish the two goals of this study, we estab-

lished three discrete steps. The first step was personal
pattern analysis, in which we identified behavioral pat-
terns that relate to the personal aspects of an individual’s
vaccination decision. The second step was social pattern
analysis, in which we evaluated the environmental fac-
tors that may influence an individual’s vaccination deci-
sion. Finally, in the predictive modeling step, we
developed a machine learning model that converted the
data and the insights from the previous tasks into an
individual-level prediction of a future vaccination deci-
sion. The third step was conducted in accordance with
the tripod statement [29] for multivariable prediction
models.

A. Descriptive personal patterns

We examined the behavior of a random variable repre-
senting the probability of a patient to become vaccinated
in a given season, as a function of the patient’s vaccin-
ation decision and respiratory illnesses in the previous
season. For each season (among the 2009–2017 seasons),
we divided the population into seven age groups and
then divided each age group into four mutually exclusive
sub-groups: 1) patients who vaccinated and became in-
fected in the previous season, 2) patients who vaccinated
and did not become infected in the previous season, 3)

patients who were not vaccinated and became infected
in the previous season, and 4) patients who were not
vaccinated and did not become infected in the previous
season. We calculated the proportion of patients who
became vaccinated in the given season for each of the
28 groups.
We then created a measurement that encodes the time

during the season that each patient became vaccinated,
and named it the patient’s Average Vaccination Rank. In
each season, each patient received a value within the
range [0–1], representing the timing of the vaccination
within the season relative to other patients. The first
patient to become vaccinated received the value 1, and
the last patient to become vaccinated received the value
0. The patient’s Average Vaccination Rank was defined
as the average of these values across seasons the patient
became vaccinated in. In order to examine the distribu-
tion of the Average Vaccination Ranks among patients,
we divided the population into 11 mutually exclusive
groups according to the number of vaccinations in a 10-
season period. For this purpose, we excluded patients
under 10 years old. We then used boxplot analysis to
depict the distribution of the Average Vaccination Rank
among each group separately by age groups.
We also examined the relationship between healthcare

consumption and vaccination decision. We used two
measurements for this purpose: 1) the average number
of prescribed medications (of any kind) per season, and
2) the vaccination proportion, calculated as the number
of seasons that the patient became vaccinated out of 10
seasons, or less for patients under 10. We then divided
the population into 10 equal groups by deciles of the
average number of prescriptions and examined the
distribution of the vaccination proportion for each group
separately using boxplot analysis. In addition, we
conducted a similar analysis for the average number of
encounters with the healthcare system (of any kind).

B. Descriptive Social patterns

Family analysis – we analyzed the vaccination decision
of patients with respect to the vaccination decisions of
other members of the patients’ families. We then calcu-
lated a relative risk for becoming vaccinated, defining
the exposed group as the group of patients with at least
one other family member who became vaccinated in a
given season. This analysis was conducted for all seasons
combined. We also examined the similarities between
family members over time and compared it to the simi-
larities between randomly sampled patients (Additional
file 1: Figure S1).
Geographic analysis – Each patient was associated

with one of 137 Maccabi clinics, where he receives most
of his medical care. We used the vaccination proportion,
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calculated as the number of seasons the patient became
vaccinated out of 10 seasons (or less for patients under
10) and grouped the patients by clinic. We then con-
ducted an ANOVA test to examine the variance between
clinics. In addition, we calculated the proportion of
patients who became vaccinated, for each season, at each
clinic. We then took all 3070 statistical areas in Israel
(according to the Israeli Central Bureau of Statistics) and
associated each statistical area with its nearest clinic.
Using these data, we created a heat-map that displays
the variance in vaccination proportion across socioeco-
nomic areas based on the average vaccination proportion
across all seasons in the associated clinics.
Socioeconomic analysis - We performed an analysis

of the vaccination proportion with respect to the so-
cioeconomic score, range from 1 to 10, that was
assigned to each patient by Maccabi. We calculated
the average vaccination proportion for each socioeco-
nomic score across all seasons and displayed the vari-
ance of the vaccination proportion of different
socioeconomic scores.

C. Predictive modeling

We developed a model to predict the influenza vac-
cination behavior of a patient in a future influenza
season. The predictive model development was guided
by and made in accordance with the tripod statement
[29] for multivariable prediction models. This is a
classification problem with a binary label, as the pa-
tient may or may not become vaccinated (positive
label or negative label, respectively). We created a
time-free model, which does not attempt to predict a
patient’s behavior in a specific season, but rather al-
lows predicting behavior in any future season given
the relevant previous data. Based on the results of an
entropy analysis (SI Appendix), we used the data of
three consecutive seasons in order to predict the be-
havior in the subsequent fourth season. For example,
we data from seasons 2008 through 2010 to predict
each patient’s behavior in 2011, data from seasons
2009 through 2011 were used to predict behavior in
2012, and so on. Therefore, the ten-season period
data of each patient produced up to seven records
with seven labels (seasons 2011–2017), depending on
the patient’s age, creating a dataset of 1,553,907 re-
cords in total.
The features we used for the prediction were based

on demographic attributes of the patient and on cal-
culated or aggregated medical characteristics. In order
to build a comprehensive model, the features of the
dataset were rather basic. Because 55,749 of the pa-
tients had family members within the data, we could
extract family-related features in addition to the basic

features. We therefore divided the 1,553,907 records
into 2 datasets: a basic dataset containing 1,225,032
records, where each record had 27 features and a
label, and a ‘family’ dataset containing 328,875 re-
cords, where each record had 30 features and a label.
The features are described under Sociodemographic &
EMR in Table 1 (a detailed description can be found
in Additional file 1: Table S3).
We trained several models using the following algo-

rithms: 1) Logistic Regression [30], 2) Naïve Bayes [30],
3) XGBoost Random Forest [31], 4) Light GBM Random
Forest [32] and 5) Artificial Neural Network [30]. While
preprocessing, we used min-max scaling where relevant.
Random Forest algorithms were trained using 500 deci-
sion trees.
We split both the basic dataset and the family dataset

into training sets (70%), validation sets (15%), and test
sets (15%). We trained each algorithm on both train
sets, creating two models, one for each dataset (basic
dataset and family dataset), using 4-fold cross-
validation to maximize the ROC AUC score. When
training the models, we conducted hyper-parameters
tuning using grid-search to discover the combination of
parameters that performed best on the train set. De-
tailed description of the hyper-parameters tuning is
presented in (Additional file 1: Table S4).
After the training phase, we received two trained

models for each algorithm. We predicted the labels of
the records in the validation sets and evaluated the per-
formance of the models using the ROC AUC score, pre-
cision, recall, and F1-score.
As a benchmark, we created four additional simple

models. The first is the Age model and it relies on
the patient’s age alone. The second one is the Socio-
demographic model (SD), which does not utilize per-
sonal medical records, but instead uses a subset of
demographic features of the patient and the vaccin-
ation coverage in the patient’s clinic. The third is
Vaccination decision in the previous season model
(PS), which relies solely on the patient’s behavior in
the previous season; this model predicts that an indi-
vidual that became vaccinated in the last season will
become vaccinated in the predicted season, and vice
versa. The fourth simple model, the Vaccination deci-
sion in the previous season & Sociodemographic model
(PS&SD), uses the patient’s behavior in the previous
season in addition to the features used by SD model.
The features of the models are described in Table 1.
Because none of the simple models use family-based
features, they were all trained over the entire training
population and predicted the labels for all validation
samples. The training of these simple models was
based solely on the algorithm that performed best on
the basic and family datasets.
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Finally, we evaluated the most successful models and
the simple models on the test sets, and analyzed the fea-
ture importance of these models.

Results
Overall, we found several personal and social behavioral
patterns that are associated with a patient’s tendency to
become vaccinated and that provide predictive insight
into the future vaccination decision of the patient. Fur-
thermore, these patterns served as the foundations for a
machine-learning modeling phase, which yielded an ac-
curate and comprehensive predictive model for the pa-
tient’s vaccination decision in the next season.

Descriptive personal patterns
The average seasonal vaccination coverage is approxi-
mately 20%. Of the 250,000 patients included in this
study, 101,407 (41%) became vaccinated at least once,
32,584 (13%) became vaccinated at least five times, and
only 7609 (3%) became vaccinated during this entire 10-
year period. The age of the patients in 2017, ranged from
1 year to 116 years, with a median of 36 years (first quar-
tile = 12 years, third quartile = 53 years). Fifty-two per-
cent of the patients were female.
By examining the decision of a patient to become vac-

cinated in a given season with respect to the patient’s
vaccination decision and respiratory diagnosis in the sea-
son prior, we found two main patterns: 1) The default

effect – a patient is much more likely to become vacci-
nated if she or he has done so in the previous season; 2)
Patients who were not vaccinated in the previous season
and were also diagnosed with respiratory illness were
more likely to become vaccinated in the next season
(Fig. 1a). We further found that the more frequently a
patient becomes vaccinated, the higher the patient’s
Average Vaccination Rank, meaning that the patient
tends to become vaccinated in an earlier stage of the
season. These findings were consistent in all age groups
(Fig. 1b).
Finally, both the average number of prescriptions and

the average number of encounters with the healthcare
system are associated with vaccination proportion. Pa-
tients that scored higher on these metrics (i.e., those
with more prescriptions and more interactions with the
healthcare system) are also characterized by higher
values of vaccination proportion (Fig. 2).

Descriptive - social patterns
By analyzing the vaccination decision of patients with
respect to the vaccination decisions of their family
members, we found that a patient is 11.09 times more
likely to become vaccinated in a given season, if at least
one member of his or her family also became vaccinated
in the same season (RR: 11.09; 95% CI: 10.92 to 11.25).
Our geographic analysis revealed significant differences
between different clinics (P value <.0001), with average

Table 1 Features of the models used in this study. “V” represents that a specific feature was used in a specific model

Feature(s) Socio demographic
model

Vaccination decision
in the previous
season model

Vaccination decision
in the previous season
& Socio demographic
model

Socio demographic
& EMR model

Age V V V

Gender V V V

Socioeconomic scores V V V

Country of origin V

Year of immigration V

Vaccination indicator in the previous season V

Vaccination rank in the three previous seasons V V

Number of respiratory diagnoses in the three previous seasons V

Cumulative hospitalized days in the three previous seasons
(hospitalizations of any reason)

V

Number of encounters with the healthcare system in the three
previous seasons (encounters of any reason)

V

Number of prescribed medications in the three previous seasons
(any kind of medications)

V

Chronic illness in the three previous seasons V

Vaccination proportion at the patient’s clinic, in the three
previous seasons

V V V

Average Vaccination rank of the patient’s family in the three
previous seasons

V
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Fig. 1 (See legend on next page.)
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vaccination rates ranging between 4.4 and 25.3%. A
geographical heat map of the average vaccination rates
displays these differences among the statistical areas of
Israel (Fig. 3a). We denote these high variations between
statistical areas were observed despite similar accessibil-
ity to vaccination. In addition, we observed that a higher
socioeconomic score is associated with a higher vaccin-
ation rate (Fig. 3b).

Predictive modeling
In the basic datasets (train, validation and test), the age
of the patients, as of 2017, ranged from 3 years to 116
years, with a median of 43 years (first quartile = 19 years,
third quartile = 58 years). Fifty-two percent of the
patients were female. In the family datasets (training,
validation, and test), the age of the patients in 2017
ranged from 3 years to 94 years, with a median of 17
years (first quartile = 11 years, third quartile = 45 years).
Fifty-three percent of patients in the family datasets were
female.
We evaluated all models using the precision, recall, F1

score and ROC AUC measurements (Additional file 1:
Table S4). The most successful models, which utilize
sociodemographic and EMR data, were the XGBoost
and LightGBM algorithms, with an ROC AUC score of

0.91 on the basic validation and test sets and 0.88 on the
family validation and test sets. Although the XGBoost
achieved slightly better F1-scores, we found that while
the XGBoost holds a higher precision than the
LightGBM for positive-label records (i.e., individuals
who became vaccinated), its recall among these records
is relatively lower. These differences may arise from the
differences between the two algorithms [32], which cre-
ate different decision forests and therefore different
predictions.
All four simple models – Age, Sociodemographic (SD),

Vaccination decision in the previous season (PS), and
Vaccination decision in the previous season & Sociode-
mographic (PS&SD) achieved lower scores than did the
XGBoost algorithm in all measurements. The PS&SD
model was the most successful of the four, with an ROC
AUC score of 0.87 on the validation and test sets. An
ROC AUC comparison of the four simple models and
the XGBoost, which was the most successful model of
those utilizing sociodemographic & EMR data, is shown
in Fig. 4.
According to a feature importance analysis for both

the XGBoost and LightGBM models, the patient’s previ-
ous vaccination decisions are the most prominent
features in the algorithms’ prediction process. When

(See figure on previous page.)
Fig. 1 a Vaccination coverage in the 2017 season with respect to vaccination decision and respiratory diagnoses in the 2016 season. Because not
all groups are of equal size, the horizontal black line indicates the weighted vaccination coverage of each age group. For (a), the confidence
intervals are extremely small, and therefore not displayed, due to the large size of the groups (more than 10,000 individuals in each group).
Similar patterns were observed in every pair of consecutive seasons from 2008 until 2017. b Boxplots of the Average Vaccination Rank by the
number of vaccinations during the seasons 2008–2017. Every patient who became vaccinated at least once resides in exactly one boxplot. Each
group consists of more than 4000 individuals. The higher the Average Vaccination Rank, the earlier the patient’s average vaccination timing within
the season. These graphs show that an individual who becomes vaccinated more often also tends to do so at an earlier stage of the season,
regardless of his or her age group

Fig. 2 Vaccination rate and healthcare consumption. Boxplot charts of the average vaccination rank by (a) the number of vaccinations during
seasons 2008–2017, and (b) the number of encounters with the healthcare system during seasons 2008–2017. The deciles values are displayed on
the boxes
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data were available, the vaccination decisions of a pa-
tient’s family also played a meaningful role in prediction.
These features were followed by other personal features
such as the patient’s age, the number of encounters with
the healthcare system, the number of prescribed medica-
tions and chronic illnesses. The five most prominent fea-
tures in the algorithms’ prediction process of the
XGBoost model, the LightGBM model, and the simple
models (except the Age model) are presented in Table 2.
An elaborated feature importance plots is presented in
Additional file 1: Figure S2.

Discussion
From a large-scale analysis of electronic medical re-
cords and demographic data, we identified several
behavioral patterns regarding influenza vaccination
and developed a machine-learning model that pre-
dicts the decision-making of the individual in the
next season. Our results indicate that the vaccination
decision of an individual can be explained in two di-
mensions – personal and social. The personal di-
mension is strongly shaped by a “default” behavioral
approach, which is often manifested in repeated vac-
cination decisions in subsequent seasons, a preferred
timing of vaccination within the season. This ap-
proach is associated with a patient’s healthcare con-
sumption measurements. We also found evidence

that this “default” behavior could be affected by
temporal effects such as a recent respiratory illness
diagnosis, suggesting that experiencing a recent re-
spiratory illness changes patients’ perception of the
risk associated with influenza. The social dimension
is divided into the social environment and immediate
relatives. We observed significant differences in vac-
cination rates between geographical regions and pa-
tients with different socioeconomic scores. We also
observed that family members tended to have similar
vaccination decisions. It is likely that while the social
environment sets a general approach towards influ-
enza vaccination as a context, immediate relatives
may influence the ad-hoc decision of an individual.
These patterns served as a foundation for our predict-

ive machine learning models, which take advantage of
the EMR data and demographic data to provide an ex-
cellent prediction of an individual’s future vaccination
decision. Previous vaccination decisions, along with age,
the number of encounters with the healthcare system,
and prescriptions, serve as the strongest predictors of a
future vaccination decision. In cases where the family
vaccination decision in previous seasons is provided, it
also serves as a strong predictor. The simple models
demonstrate how a considerably accurate prediction is
achieved even when only a small subset of the patient’s
personal and social information is available.

Fig. 3 a Geographical heat map of the average vaccination rates across season 2008–2017. The axes represent the longitude and latitude. The
darker the color, the higher the average vaccination coverage against influenza across all seasons. The map was generated using the GeoPandas
open source project, http://geopandas.org/. b A Bar plot of the average of the vaccination proportions across all seasons as a function of
socioeconomic score. The 95% confidence interval is displayed on top of each bar
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The behavioral patterns that we observed by analyzing
the Israeli population are consistent with widely held hy-
potheses regarding individual decision making in several
key ways. First, our work corroborates the importance of
previous vaccination decisions and the influence of an
individual’s social circle in predicting future decisions
[20, 22]. However, our study extends these behavioral
concepts by using large-scale longitudinal data and ob-
jective measurements. Despite the inherent differences
between cultures and healthcare systems worldwide, we
believe that the behavioral patterns and the predictive
models we have developed can be reproduced with
minor modifications in most developed countries.
This study identifies and relies on correlations and as-

sociations, in both pattern analysis and predictive mod-
eling, and does not attempt to assume or imply
causality. In addition, this study does not explicitly ac-
count for intervention efforts by Maccabi during the
study period or any possible effects of media exposure.
The collected data do not contain information on vac-
cination programs in workplaces, which are relatively ef-
fective in Israel [33], and yet small-scale. For privacy,
our data include for each member, only the year of birth.
This result in a small bias, because patients under six
month are not eligible for vaccination. However, we

expect this bias to be minor, not only as this age group
accounts for < 0.1% of the population but also as vaccin-
ation season lasts for 3–6 months.
Despite these limitations, and because most individuals

do not become vaccinated on a seasonal basis, our ability
to make an excellent prediction of a patient’s decision-
making represents a major step towards personalized in-
fluenza vaccination campaigns. In this way, our work
can help shape the next generation of targeted and cus-
tomized vaccination efforts. Our study demonstrates
how personal EMRs and demographic data can give new
insight into a patient’s perceptions and can serve as a
platform to anticipate the most likely decision of an indi-
vidual. This predictive capacity will likely be valuable for
healthcare providers and health insurance agencies who
may wish to design intervention efforts for their patients
or to assess the required number of doses of influenza
vaccination.

Conclusion
Influenza vaccination decision of an individual is highly
predictable and can be identified even in the absence of
detailed medical information about the patient. Predic-
tors primarily include vaccination timing in previous
seasons and general health consumption, but can also be

Fig. 4 Receiver operating characteristic (ROC) curves comparison
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affected by temporal factors such as respiratory illness in
the prior year. Other predictors include vaccination
uptake of family members and vaccination coverage in
the individual’s main clinic in the year prior, as well as
standard socio-demographic characteristics. Our ability
to make an excellent prediction of the patient’s decision
sets a major step toward personalized influenza vaccin-
ation campaigns against vaccine refusales, and will help
shape the next generation of targeted vaccination efforts.
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2017.The black dot represents the level of entropy with no information,
the red dot represents the level of entropy when age groups distribution
is provided, and the blue dots represent the levels of entropy when age
group distribution is provided with increasing (left to right) amount of
historical influenza-vaccination decisions data. Similar results were observed
for all seasons between 2012 and 2017. Figure S2. Feature importance plots
for the following models. (A) XGBoost for the basic dataset (B) LightGBM for
the basic dataset (C) XGBoost for the family dataset (D) LightGBM for the
family dataset (E) Sociodemographic model (F) Vaccination decision in the
previous season & Sociodemographic model. X-axis values represent the
total percentage of information that was gained by the splits of the feature
in all the decision trees of the random forest. Y-axis values represent the
features’ indices according Table S3.

Abbreviations
AUC: Area under the Curve; EMR: Electronic Medical Record; ROC: Receiver
operating characteristic; RR: Relative risk

Acknowledgements
We thank Adi Rennert from Maccabitech for all the administrative work
required for the IRB approval. We also like to thank Matan Yechezkel from for
his contribution to the design of the study, and Angelika Hofmann for her
help in editing the manuscript. The authors would like to thank the Israel
National Institute for Health Policy Research and the organizers of the 7th
International Jerusalem Conference on Health Policy in which part of the
findings was presented.

Authors’ contributions
DY and AS contributed to the study design, analysis and interpretation of
the results. GH and VS contributed in providing and interpreting the raw
data. AS and DY wrote the first draft of the manuscript. All authors
contributed to further versions of the manuscript. All authors have read and
approved the manuscript.

Funding
This research was supported by the Israel Science foundation (grant No.
3409/19), within the Israel Precision Medicine Partnership program, and by
the Koret Foundation grant for Smart Cities and Digital Living. The funders
has no role in the design of the study, collection, analysis, and interpretation
of data.

Availability of data and materials
The data that support the findings of this study are available from the
Maccabi Health Services but restrictions apply to the availability of these
data, which were used under license for the current study and so are not
publicly available. Data are however available from the authors upon
reasonable request and with permission of Maccabi Health Services.

Ethics approval and consent to participate
Ethics and study approval was conducted by the Helsinki institutional review
board of “Maccabi Health Services” signed by Dr. Yosef Azuri protocol
number 0048–17-BBL. Because the study was performed in accordance with
the Israeli Public Health Code for public health purposes with anonymized
data, there were no further requirements for ethical approval, consent to
participate or data protection agency approval.

Consent for publication
Not Applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Industrial Engineering, Tel Aviv University, 55 Haim Levanon
St, Tel Aviv, Israel. 2MaccabiTech Institute of Research and Innovation, 4
Kaufmann St, Tel Aviv, Israel.

Received: 4 December 2019 Accepted: 5 February 2020

References
1. Thompson WW, Shay DK, Weintraub E, Brammer L, Bridges CB, Cox NJ, et al.

Influenza-associated hospitalizations in the United States. J Am Med Assoc.
2004;292(11):1333–40.

2. Rolfes MA, Foppa IM, Garg S, Flannery B, Brammer L, Singleton JA, et al.
Annual estimates of the burden of seasonal influenza in the United States: a
tool for strengthening influenza surveillance and preparedness. Influenza
Other Respir Viruses. 2018.

3. Thompson MG, Shay DK, Zhou H, Bridges CB, Cheng PY, Burns E, Bresee JS,
Cox N. Estimates of deaths associated with seasonal influenza --- United
States, 1976-2007. MMWR Morb Mortal Wkly Rep. 2010;59(33):1057–62.

4. Reed C, Chaves SS, Daily Kirley P, Emerson R, Aragon D, Hancock EB, et al.
Estimating influenza disease burden from population-based surveillance
data in the United States. PLoS One. 2015;10:e0118369.

5. Preaud E, Durand L, Macabeo B, Farkas N, Sloesen B, Palache A, et al. Annual
public health and economic benefits of seasonal influenza vaccination: a
European estimate.

6. Yamin D, Gavious A, Davidovitch N, Pliskin JS. Role of intervention programs
to increase influenza vaccination in Israel. Isr J Health Policy Res. 2014;3:13.
https://doi.org/10.1186/2045-4015-3-13.

7. Nichol KL. The efficacy, effectiveness and cost-effectiveness of inactivated
influenza virus vaccines. Vaccine. 2003;21:1769–75.

8. Ghendon Y. Influenza : its impact and control. World Heal Stat Q. 1992;45:
306–11.

9. Grohskopf LA, Sokolow LZ, Broder KR, Walter EB, Fry AM, Jernigan DB.
Prevention and control of seasonal influenza with vaccines:
recommendations of the advisory committee on immunization practices-
United States, 2018-19 influenza season. MMWR Recomm reports Morb
Mortal Wkly Rep Recomm Rep. 2018;67:1–20.

10. Santibanez T, Kahn K, Zhai Y, O’Halloran A, Liu L, Bridges C, et al. Flu
vaccination coverage United States, 2015-16 influenza season. Center for
Disease Control and Prevention 2016.

11. Endrich MM, Blank PR, Szucs TD. Influenza vaccination uptake and
socioeconomic determinants in 11 European countries. Vaccine. 2009.

12. OECD. OECD (2015), “Influenza for older people”, in health at a glance
2015: OECD indicators. Paris: OECD publishing; 2015.

13. Vaccination Recommendations by the Israeli Ministry of Health. 2019.
https://www.health.gov.il/Subjects/vaccines/Pages/default.aspx.

14. Influenza vaccination guidelines 2019, the Israeli Ministry of Health. 2019.
https://www.health.gov.il/UnitsOffice/HD/PH/epidemiology/td/docs/360_
Influenza.pdf. Accessed 21 Jan 2020.

15. Yamin D, Balicer RD, Galvani AP. Cost-effectiveness of influenza vaccination
in prior pneumonia patients in Israel. Vaccine. 2014. https://doi.org/10.1016/
j.vaccine.2014.05.015.

16. Yamin D, Gavious A, Solnik E, Davidovitch N, Balicer RD, Galvani AP,
et al. An innovative influenza vaccination policy: targeting last Season’s
patients. PLoS Comput Biol. 2014;10:e1003643. https://doi.org/10.1371/
journal.pcbi.1003643.

Shaham et al. BMC Public Health          (2020) 20:222 Page 11 of 12

https://doi.org/10.1186/s12889-020-8327-3
https://doi.org/10.1186/s12889-020-8327-3
https://doi.org/10.1186/2045-4015-3-13
https://www.health.gov.il/Subjects/vaccines/Pages/default.aspx
https://www.health.gov.il/UnitsOffice/HD/PH/epidemiology/td/docs/360_Influenza.pdf
https://www.health.gov.il/UnitsOffice/HD/PH/epidemiology/td/docs/360_Influenza.pdf
https://doi.org/10.1016/j.vaccine.2014.05.015
https://doi.org/10.1016/j.vaccine.2014.05.015
https://doi.org/10.1371/journal.pcbi.1003643
https://doi.org/10.1371/journal.pcbi.1003643


17. Rosenstock IM. Historical origins of the health belief model. Health Educ
Monogr. 1974.

18. Brewer NT, Chapman GB, Gibbons FX, Gerrard M, McCaul KD, Weinstein ND.
Meta-analysis of the relationship between risk perception and health
behavior: the example of vaccination. Health Psychol. 2007.

19. Chapman GB, Coups EJ. Emotions and preventive health behavior: worry,
regret, and influenza vaccination. Health Psychol. 2006;25:82–90.

20. Chapman GB, Coups EJ. Predictors of influenza vaccine acceptance among
healthy adults. Prev Med (Baltim). 1999;29:249–62. https://doi.org/10.1006/
pmed.1999.0535.

21. Santillana M, Nguyen AT, Dredze M, Paul MJ, Nsoesie EO, Brownstein JS.
Combining Search, Social Media, and Traditional Data Sources to Improve
Influenza Surveillance. PLoS Comput Biol. 2015;11(10):e1004513.

22. Huang X, Smith MC, Paul MJ, Ryzhkov D, Quinn SC, Broniatowski DA, et al.
Examining Patterns of Influenza Vaccination in Social Media. Work Thirty-
First AAAI Conf Artif Intell. 2017.

23. Goldstein BA, Navar AM, Pencina MJ, Ioannidis JPA. Opportunities and
challenges in developing risk prediction models with electronic health
records data: a systematic review. J Am Med Informatics Assoc. 2017.

24. Miotto R, Li L, Kidd BA, Dudley JT. Deep Patient: An Unsupervised
Representation to Predict the Future of Patients from the Electronic Health
Records. Sci Rep. 2016;6:26094.

25. Wu J, Roy J, Stewart WF. Prediction modeling using EHR data: challenges,
strategies, and a comparison of machine learning approaches. Med Care. 2010.

26. Cohen R, Rabin G. National Insurance Institute R and PA. Membership in
Sick Funds 2016 [Hebrew]. Period Surv. 2017;289:104.

27. Israel Ministry of Health. Influenza vaccination, Ministry of Health. Prevention
of seasonal flu and other winter illnesses. 2016.

28. Bloom-Feshbach K, Alonso WJ, Charu V, Tamerius J, Simonsen L, Miller MA,
et al. Latitudinal variations in seasonal activity of influenza and respiratory
syncytial virus (RSV): a global comparative review. PLoS One. 2013;8(2):e54445.

29. Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg
EW, et al. Transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD): explanation and elaboration.
Ann Intern Med. 2015;162(1):W1–73.

30. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: machine learning in python. J Mach Learn Res. 2012.

31. XGBoost documentation.
32. Ke G, Meng Q, Wang T, Chen W, Ma W, Liu T-Y, et al. LightGBM: A highly

efficient gradient boosting decision tree. Adv Neural Inf Process Syst. 2017.
33. Shahrabani S, Benzion U. Workplace vaccination and other factors impacting

influenza vaccination decision among employees in Israel. Int J Environ Res
Public Health. 2010;7:853–69. https://doi.org/10.3390/ijerph7030853.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Shaham et al. BMC Public Health          (2020) 20:222 Page 12 of 12

https://doi.org/10.1006/pmed.1999.0535
https://doi.org/10.1006/pmed.1999.0535
https://doi.org/10.3390/ijerph7030853

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data description and case definition
	Season
	Age group
	Respiratory illness
	Family


	Results
	Descriptive personal patterns
	Descriptive - social patterns
	Predictive modeling

	Discussion
	Conclusion
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

