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The relevance of phenolic compounds in the human diet has increased in recent years, particularly due to their role as natural
antioxidants and chemopreventive agents in different diseases. In the human body, phenolic compounds are mainly metabolized
by the gut microbiota; however, their metabolism is not well represented in public databases and existing reconstructions. In a
previous work, using different sources of knowledge, bioinformatic and modelling tools, we developed AGREDA, an extended
metabolic network more amenable to analyze the interaction of the human gut microbiota with diet. Despite the substantial
improvement achieved by AGREDA, it was not sufficient to represent the diverse metabolic space of phenolic compounds. In this
article, we make use of an enzyme promiscuity approach to complete further the metabolism of phenolic compounds in the human
gut microbiota. In particular, we apply RetroPath RL, a previously developed approach based on Monte Carlo Tree Search strategy
reinforcement learning, in order to predict the degradation pathways of compounds present in Phenol-Explorer, the largest
database of phenolic compounds in the literature. Reactions predicted by RetroPath RL were integrated with AGREDA, leading to a
more complete version of the human gut microbiota metabolic network. We assess the impact of our improvements in the
metabolic processing of various foods, finding previously undetected connections with output microbial metabolites. By means of

untargeted metabolomics data, we present in vitro experimental validation for output microbial metabolites released in the
fermentation of lentils with feces of children representing different clinical conditions.
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INTRODUCTION

Phenolic compounds are products of the secondary metabolism of
plants’, produced by synthesis through the pentose phosphate,
shikimate and phenylpropanoid pathways?. Their structure consists
of benzene rings with one or more hydroxyl groups, and they can
be simple phenolic molecules (i.e. phenolic acids) or be highly
polymerized in complex compounds (i.e. flavonoids or tannins)>#,
Phenolic compounds are the most abundant natural antioxidants
present in the human diet, and are found in large amounts in foods
of plant origin, including fruits and plant-derived beverages®*°.
There is an increasing body of evidence supporting that
phenolic compounds are potent antioxidants and limit the risk
of several diseases to which oxidative damage is a significant
contributor*%7, In particular, it is well established that introducing
some polyphenols with the diet or as supplements can improve
the health status of people affected by cardiovascular disease, and
this is confirmed by several biomarkers associated to this
condition and by epidemiologic studies®’. For instance, it has
been indicated that a high flavonoid intake is related to a lower
mortality from coronary heart disease and a lower incidence of
myocardial infarction in older men&. In addition, a high dietary
flavonoid intake can reduce the risk of coronary heart disease by
38% in postmenopausal women?. Similar studies about the role of
phenolic compounds in other major diseases, such as cancer,

diabetes and obesity, are growing and increasing the evidence for
the beneficial effects of polyphenols derived from plants for
human health*68-11,

Due to their complex chemical structures, high molecular-
weight polyphenols are not easily absorbed in the small intestine
and reach the colon almost unchanged'?. In the intestinal lumen
area, the microbiota helps to break down these complex
molecules into absorbable phenolic metabolites and increases
the biological availability of polyphenols through their conversion
into smaller and more active compounds'?. Therefore, the gut
microbiota exerts a major function in the bioavailability and
bioactivity of polyphenols, which has a direct influence on human
health, and modifications to the composition of the former affect
the availability of the latter'2 This interaction is quickly becoming
a major research topic in the area of personalized nutrition'>4,

The metabolism of phenolic compounds in the human gut
microbiota remains largely unknown. Universal metabolic data-
bases, such as KEGG'® or the Model SEED database'®, store
reactions from species not present in the gut microbiota, and
pathway extraction is not direct. In a previous work'’, we
addressed this issue and developed AGREDA'’, an extension of
AGORA'S, the most comprehensive collection of metabolic
reconstructions for the human gut microbiota. AGREDA'” provides
a better description of the metabolic pathways of dietary
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compounds, including 114 phenolic compounds of Phenol-
Explorer'®, the largest database of phenolic compounds in the
literature. However, there is still substantial room for improve-
ment. In particular, more than 2/3 of the phenolic compounds
present in Phenol-Explorer'® are not even described in universal
metabolic databases, which makes the definition of their
metabolic pathways more challenging, requiring the use of
different approaches.

Here, we rely on enzyme promiscuity to complete metabolic
pathways of phenolic compounds in the human gut microbiota.
Enzyme promiscuity assumes that enzymes could accept alter-
native substrates and catalyze additional reactions to the ones
annotated in databases?°23, typically referred to as the under-
ground metabolism?*2°, Several algorithms have been developed
to exploit the concept of enzyme promiscuity and predict
synthesis/degradation pathways for metabolites absent in uni-
versal databases?'"232527 They extract reaction rules from known
enzymatic reactions, and use them to describe potential structural
changes in the bonding patterns of substrates and products®’.
Reaction rules are defined to be as generic as possible, so that
they can be applied to different substrates to establish potential
unknown reactions. Possible transformations from the reaction
rules define the so-called extended metabolic network, which
typically suffers from combinatorial explosion?’. Various algo-
rithms address this issue by ranking tentative reactions and
metabolites and adopting an appropriate search procedure to
infer the most relevant pathways?>?’. Here, we used RetroPath
RL?’, a recently released open-source Python package, based on
Monte Carlo Tree Search strategy reinforcement learning, which
significantly improves previous approaches developed by the
same group?®%°,

Using RetroPath RL?’, we analyzed tentative metabolic path-
ways for the phenolic compounds present in Phenol-Explorer'®,
We provide details as to the reactions, metabolites and species
involved in the proposed pathways and evaluate their chemical
and biological plausibility. Then, we integrate these predicted
reactions with our previous metabolic reconstruction of the
human gut microbiota, AGREDA'’, and systematically analyze
the metabolic capabilities acquired in the extended reconstruc-
tion. We assess the impact of our improvements in the metabolic
processing of various foods detailed in the Phenol-Explorer
database'®, finding previously undetected connections with
output microbial metabolites. By means of untargeted metabo-
lomics data, we present experimental in vitro validation for output
microbial metabolites released in the fermentation of lentils with
feces of children representing different clinical conditions.

RESULTS
Construction of AGREDA_1.1

In a previous work, we developed AGREDA'7, a metabolic network
of the human gut microbiota that more accurately describes the
degradation pathways of dietary compounds, including 114
phenolic compounds from Phenol-Explorer'®. Our objective here
is to extend AGREDA'” and fill gaps for the remaining 258
phenolic compounds present in Phenol-Explorer'® via enzyme
promiscuity. Enzyme promiscuity methods extend the metabolic
space by considering that enzymes can accept substrates other
than those present in annotated reactions. Here, we used
RetroPath RL?’, one of the most advanced retrosynthesis
algorithms in the literature that is based on Monte Carlo Tree
Search strategy reinforcement learning®C.

RetroPath RL?’ requires three different input data: sources, sinks
and reaction rules. Sources are phenolic compounds obtained
from Phenol-Explorer'®, and sinks are metabolites involved in
reactions existing in species present in AGORA'® (colored green).
These metabolites were obtained from AGREDA'” and the Model
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Seed Database'® (see Methods section). Reaction rules are generic
structural representations of reactions and define chemical
transformations that can potentially occur. As with metabolites,
we only considered rules coming from reactions annotated to the
species present in AGORA'® and, thus, in the human gut
microbiota. RetroPath RL?’ searches for paths that link source
and sink metabolites through the extended metabolic space
derived from reaction rules. The steps that were followed to apply
RetroPath RL?” are detailed below and summarized in Fig. 1.

We applied RetroPath RL?” to the 372 compounds present in the
Phenol-Explorer database'®. We found putative degradation path-
ways for 303 phenolic compounds. In particular, these pathways
involved 191 phenolic compounds that were not previously
described in AGREDA'”. 86 phenolic compounds out of these 191
were connected to the subset of sink metabolites. The remainder
105 phenolic compounds were linked to metabolites that are not
included in our metabolic database and, thus, were discarded for
further analysis. Full details of reactions and metabolites predicted
by RetroPath RL?” can be found in Supplementary Data 1.

In order to validate the results derived from RetroPath RL?’, we
assessed the predicted reactions for phenolic compounds that
were already present in AGREDA'” (112 out of 303 compounds).
First, we found that 52.8% of these predicted reactions were part
of AGREDA'”. Moreover, for 92.7% of these 112 phenolic
compounds, RetroPath RL?” predicted at least one reaction that
was already in AGREDA'7, meaning that for each metabolite the
algorithm reaches known transformations and proposes new
additional reactions. These results permitted us to be confident
that the RetroPath RL?>’ workflow is able to reach correct
transformations.

Then, we integrated the reactions and metabolites predicted by
RetroPath RL?” with AGREDA"’, following the gap-filling process
and single-species analysis described in the Methods section,
leading to a new version of the human gut microbiota metabolic
network: AGREDA_1.1. To facilitate the comparison, our previous
version of AGREDA is referred to as AGREDA_1.0'". Overall,
AGREDA_1.1 included 133 new metabolites, with 80 new input
phenolic compounds, and 313 new reactions with respect to
AGREDA_1.0"7, with 195 reactions predicted by RetroPath RL?,
obtaining a final network comprising 2735 metabolites and 6257
reactions. Note here that, as in AGREDA_1.0"7, all reactions added
in AGREDA_1.1 have taxonomic annotations to species present in
AGORA'®, Full details of AGREDA_1.1 can be found in Supple-
mentary Data 2.

Input phenolic compounds included in AGREDA_1.1 belong to
15 different sub-classes. In particular, we were able to considerably
improve the description of three large sub-classes: anthocyanins,
isoflavonoids and hydroxycinnamic acids (Fig. 2a). The difference
in coverage of PhenolExplorer’® compounds between
AGREDA_1.0 and AGREDA_1.1 was 28% for isoflavonoids (12 vs
36 out of 86 compounds), 39% for anthocyanins (19 vs 38 out of
49 compounds) and 24% for hydroxycinnamic acids (13 vs 21 out
of 33 compounds) (Fig. 2b). On the other hand, all major phyla of
the human gut microbiota, i.e. Firmicutes, Bacteroidetes, Proteo-
bacteria and Actinobacteria, were involved in the degradation of
these phenolic compounds (Fig. 2c).

Functional analysis of foods in Phenol-Explorer with
AGREDA_1.1

We assessed the relevance of input phenolic compounds added to
AGREDA_1.1 using again the Phenol-Explorer database'®, which
details the nutritional composition for 458 foods. We identified 40
foods that involve at least one of the 80 phenolic compounds
included in AGREDA_1.1 in their nutritional composition (Supple-
mentary Table 1). Specifically, AGREDA_1.1 improved the repre-
sentation of the foods by 2.2 phenolic compounds per food on
average, with a maximum of 10 and a minimum of 1. This allowed
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Fig. 1 Summary of the enzyme promiscuity pipeline. The extended metabolic space analysis connects sources to sinks through reactions
inferred by RetroPath RL?” with rules derived from RetroRules3*. Sources are phenolic compounds obtained from Phenol-Explorer'® (colored
red), and sinks are metabolites involved in reactions existing in species present in AGORA'® (colored green), which were obtained from
AGREDA'? and the Model Seed Database'®. An example predicted reaction by the RetroPath algorithm?” is shown. This reaction transforms
the source Daidzein 4"-O-glucuronide into Daidzein and D-glucuronate, using a rule derived from the annotated reaction that produces Luteolin
and D-glucuronate from Luteolin 7-O-glucuronide. 2D chemical structures were drawn using RDKit>®.

us to describe a wide range of foods more completely, including
coffee beverages, fruits, juices, jams, and vegetables.

Figure 3a shows the subset of phenolic compounds added to
AGREDA_1.1 that takes part in the 40 recipes considered. The
most frequent compounds are 3-Feruloylquinic acid (3FQA) and
5Feruloylquinic acid (5FQA). 3FQA and 5FQA constitute a source of
ferulate, which can be converted into different bioactive
molecules. However, we also predicted their demethylation into
3-Caffeoylquinic acid (3CQA) and 5-Caffeoylquinic acid (5CQA),
respectively, as previously hypothesized in other works, due to the
low levels of 3FQA and 5FQA observed in plasma®' (Fig. 3b). In the
foods analyzed, 3CQA and 5CQA could not be reached with the
previous version of AGREDA'’, and, thus, their output microbial
metabolites were neglected. This same pattern is observed in the
degradation of several input phenolic compounds added to
AGREDA_1.1, as discussed in detail below.

Note here that only 18 out of 80 input phenolic compounds
added to AGREDA_1.1 participated in the foods analyzed with
Phenol-Explorer'®. This does not mean that the remainder 62
phenolic compounds are irrelevant. According to Phenol-
Explorer'®, they are metabolites identified in urine and/or plasma
in different experimental studies; however, they were not
considered in the nutrient composition analysis of foods. They
are associated with relevant nutritional supplements, such as soy
milk or red glover supplements (Supplementary Table 2), and, in
many cases, they are conjugated polyphenol metabolites with
insufficient evidence in the literature. Moreover, we checked that
all of these metabolites can be produced as output microbial
metabolites from other added input metabolites in AGREDA_1.1,
in line with the observations found in Phenol-Explorer'®.

For each of the 40 foods considered, assuming that all species in
AGREDA'” take part of the community model, we analyzed the
number of output microbial compounds that can be potentially
derived from the input phenolic compounds present in
AGREDA_1.0"" and AGREDA_1.1 using Flux Variability Analysis
(FVA)*? (see Methods section). On average, AGREDA_1.1 predicted
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172 output compounds that were not captured by AGREDA_1.0"7,
with a minimum of 158 and a maximum of 199. Full details can be
found in Fig. 3¢, which shows the number of output metabolites
predicted by AGREDA_1.0" and AGREDA_1.1 for the foods
analyzed. All the output microbial metabolites reached using
AGREDA_1.0"7 were present in the ones obtained with
AGREDA_1.1. Moreover, the output metabolites we reached with
the new reconstruction included some that were not produced
with AGREDA_1.0"7, but were part of the original network
(see Fig. 3b), with an average of 135 exchanges, a maximum of
154 and a minimum of 123. This means that the knowledge
introduced with this study connected the new phenolic com-
pounds properly, generating the possibility to activate some fluxes
that were previously blocked.

Functional analysis of in vitro lentil fermentation with
AGREDA_1.1
We conducted an analysis similar to the one in our previous
work'” and compared the different microbial output metabolites
predicted by the two versions of AGREDA for in vitro fermentation
of lentils using 24 children’s fecal samples representing four
different clinical conditions, i.e. lean, obese, allergic to cow’s milk
and celiac (see Methods section). We contextualized each version
of AGREDA with the nutritional composition of lentils and the
information of the microbial community of each fecal inoculum
obtained from 16 S rRNA gene sequencing data (further details in
Supplementary Tables 3-4), obtaining 24 context-specific
AGREDA_1.0"7 models and 24 context-specific AGREDA_1.1
models, and predicted the potential list of byproducts that can
be derived in each specific condition via FVA3? (see Methods
section). We validated the results by means of an untargeted
metabolomics approach (see Methods section).

In particular, we focused on output microbial metabolites with a
different predicted result between AGREDA_1.0" and
AGREDA_1.1 in at least one of the 24 samples considered. We
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Fig.2 Main metabolic features included in AGREDA_1.1. a Representation of the different sub-classes of input phenolic compounds added
to AGREDA_1.1. The number of compounds captured by AGREDA_1.1 for each sub-class is detailed in the legend, e.g. ‘Isoflavanoids 24';
(b) Barplot showing the percentage coverage of AGREDA_1.0 and AGREDA_1.1 in terms of phenolic compounds included in Phenol-
Explorer'®. The number at the top of the bars is the total number of phenolic compounds for each sub-class, e.g. 86 compounds for
Isoflavanoids; (c) Contribution of different phyla to the reactions added to AGREDA_1.1. The number of reactions added to AGREDA _1.1
present in each phylum is also provided in the legend, e.g. ‘Firmicutes 175" Source Data are provided as a Source Data file.

identified a total number of 63 metabolites that presented
differences between the two models. Results obtained from the
metabolomics data for the 63 metabolites accross the 24 samples
can be found in Fig. 4 (further details in Supplementary Table 5).
We found a significant relationship between the predicted
metabolites and the in vitro metabolomics data for both
metabolic models, but we improved considerably the p value of
the association in AGREDA_1.1 (two-sided Fisher test p value:
0.00094 vs 0.02, respectively; Fig. 4). We can therefore conclude
that the newly elucidated compounds and associated metabolic
pathways remarkably improve our undestarding of the human gut
microbiota metabolism and allow us to predict microbial-derived
byproducts that are not considered in the current state of the art.

DISCUSSION

Phenolic compound metabolism mainly takes place in the gut
microbiota and the associated output metabolites have been
shown to be beneficial for the health of people affected by
different diseases. This fact has attracted the interest of
researchers in developing methods that predict output metabo-
lites that can be derived from different input phenolic compounds
in the human gut microbiota. Constraint-based modeling, driven
by genome-scale metabolic networks, constitutes a promising
strategy to address this question.

npj Systems Biology and Applications (2022) 24

However, current metabolic reconstructions of the human gut
microbiota only partially detail the metabolism of phenolic
compounds, which limits the application of constraint-based
modeling approaches. In a previous work, we substantially
improved the coverage of degradation pathways of phenolic
compounds in the human gut microbiota and integrated them
with AGORA'8, obtaining a more complete reconstruction called
AGREDA'’. Using this knowledge base, in this article we use an
enzyme promiscuity approach to complete further the metabo-
lism of polyphenols in the human gut microbiota.

Enzyme promiscuity refers to the ability of enzymes to accept
different substrates and conduct different chemical transforma-
tions to the ones annotated in metabolic databases®s. In recent
years, several models have been developed to assess the
application of enzyme promiscuity. The present study applies
the RetroPath RL?” algorithm that uses a Monte Carlo Tree Search
strategy of reinforcement learning to predict putative reactions
related to the molecules of interest. RetroPath RL?’ is one of the
most advanced retrosynthesis algorithms in the literature, which
improves previous approaches developed by the same group?®2°,

The RetroPath RL2’ workflow was applied to predict in the
human gut microbiota the metabolic space of the phenolic
compounds available in Phenol-Explorer'?, the largest database of
phenolic compounds in the literature. RetroPath RL?’ found
degradation routes for approximately 200 compounds that were
not part of previous reconstructions; however, we could only

Published in partnership with the Systems Biology Institute
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Data file.

reliably integrate 80 of these phenolic compounds with the
AGREDA reconstruction'’, leading to an updated version of the
metabolic network of the human gut microbiota, termed
AGREDA_1.1. In this process, we applied the same bioinformatic
tools employed in the construction of AGREDA'’, adding 133
metabolites and 313 reactions to the metabolic network. More-
over, we conducted different quality checks to guarantee a high
level of confidence in the predicted reactions: significant recovery
of previously annotated reactions with RetroPath RL%’, taxonomic
annotation to species in the human gut microbiota, intermediate
metabolites annotated to chemical databases, mass balance and
manual curation.

Even though we improved the representation of the phenolic
compounds of Phenol-Explorer'® notably (as shown in Fig. 2b), we
are still far from the complete coverage of the database. Other
techniques may need to be considered in order to gain a better
understanding of this particular region of the gut microbiota’s
metabolic space, whether that comes in the form of a new
algorithm that exploits enzyme promiscuity or some other
literature sources to extend the metabolic space.

In addition, our predicted reactions enhance the representation
of the foods from Phenol-Explorer'® in the metabolic network,
increasing the number of inputs and outputs that can be
associated with the composition of foods. Interestingly, the new
subset of input phenolic compounds added to AGREDA_1.1 allows
us to reach output microbial compounds that were not possible
with AGREDA_1.0"7 in the different foods analyzed. The biological
relevance of these output microbial metabolites was confirmed
with the untargeted metabolomics data, obtained from lentils
fermentation with feces of children representing different clinical
conditions.

Published in partnership with the Systems Biology Institute

Despite these positive results in the lentils fermentation study,
we found a high number of false positives for few predicted
output metabolites, e.g. protocatechualdehyde (see Fig. 4). This
limitation is due to the under-determination in flux prediction in
genome-scale metabolic models, but it does not invalidate the
predicted metabolic pathways with RetroPath RL?’. Our predictive
computational approach, which considers that an output meta-
bolite is not present in the sample if the maximum flux through its
exchange reaction is zero, could be little restrictive for certain
metabolic pathways (see Supplementary Fig. 1). The availability of
meta-transcriptomics and meta-proteomics data would be very
informative to break this under-determination and increase the
accuracy of our predictive approach.

In our opinion, enzyme promiscuity and computational predic-
tion algorithms can improve and accelerate the description of the
human metabolism and the mutual relationship between human
gut microbiota and diet, namely by introducing predicted
pathways of important nutritional compounds that have not yet
been characterized. The proposed methodology and the
AGREDA_1.1 metabolic network presented in this article can drive
further the representation of relevant classes of compounds
within the diet further, increasing the accuracy of personalized
nutrition approaches.

METHODS

Enzyme promiscuity analysis with RetroPath RL%’

The RetroPath RL algorithm?’, a tool developed in Python and executable
through the UNIX shell, requires three different input data. In order to
generate them, we first built a metabolic database of reactions that are
potentially present in the human gut microbiota. In a previous work'’, we
constructed a universal database by merging AGORA'® and the Model
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Fig.4 Comparison between the predictions of AGREDA_1.017 and AGREDA _1.1 with in vitro experiments. Representation of the presence
of 63 output microbial compounds predicted in AGREDA_1.0"” and AGREDA_1.1 to derive from the fermentation of lentils with children feces
and measured with an untargeted metabolomics approach. “AFF2’ “AFF3’ “AFF4’ “AFF5’ “AFF6" and “AFF7” denote samples 2, 3, 4, 5, 6 and 7
from children allergic to cow’s milk, respectively; “CFF17 “CFF27 “CFF3’ “CFF4} “CFF5’ “CFF6” and “CFF7” denote samples 1, 2, 3, 4, 5, 6 and 7
from celiac children, respectively; “LFF27 “LFF3’ “LFF4" and “LFF6" denote samples 2, 3, 4 and 6 from lean children, respectively; “OFF1} “OFF2/
“OFF3' “OFF4’ “OFF5’, “OFF6” and “OFF7” denote samples 1, 2, 3, 4, 5, 6 and 7 from obese children, respectively; TP true positives, TN true
negatives, FP false positives, FN false negatives. Source Data are provided as a Source Data file.

SEED database'®. Here, we also included reactions available in the
RetroRules database®*, specifically designed to work with retrosynthesis
algorithms. We kept reactions with taxonomic evidence to species present
in AGORA'® and with available InChl (IUPAC International Chemical
Identifier) identifiers for their associated metabolites, as required by
RetroPath RL?’. We obtained 9846 reactions and 6382 metabolites.

We used two approaches to obtain the InChl identifiers for metabolites.
On the one hand, we used the KEGG database'® and the HMDB database®’,
from which the InChl ID, the molecular structures in MOL files or the
SMILES string were extracted. Where necessary, we then used RDKit*® to
turn these structures or SMILES into InChl strings. On the other hand, we
used the Phenol-Explorer database'® to get the InChl strings directly for
phenolic compounds.

Input data for RetroPath RL?. RetroPath RL?’ distinguishes between sink
and source metabolites. In our case, source metabolites are those present
in the Phenol-Explorer database'® (372 compounds) and sink metabolites
are those present in the metabolic database described above (6382
compounds). We introduced the InChl identifiers of the compounds in the
source and target set into RetroPath RL?’.

In addition, RetroPath RL?” needs reaction rules, which constitute generic
representations of reactions and their underlying structural changes in
bonding patterns. In particular, RetroPath RL?’ requires the rules in the
community-standard SMARTS (SMILES arbitrary target specification)
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formalism. We extracted them from the RetroRules database34, where they
are defined with different levels of specificity depending on the atom
distance to the reaction center (reaction diameter). In addition, we manually
generated the rules for a set of 236 reactions present in AGREDA'’, which
were previously extracted from the literature and involve specifically other
phenolic compounds. The creation of the rules was carried out using the
online rule generator present in the RetroRules®® website. Once we
discarded reaction rules without taxonomic evidence to species present in
AGORA'®, we introduced a total of 49498 reaction rules into RetroPath RL?’.

Parameters of RetroPath RL?”. Once the sources, sinks and reaction rules
were defined, we adjusted various parameters available in RetroPath RL%’.
First, we fixed the biosensor setting, which specifically searches for
pathways that connect unknown compounds of interest (sources) to target
compounds (sinks)?®*?”. In addition, following the recommendations of
RetroPath RL%’, we considered reaction diameters from 6 to 16 to control
the level of promiscuity in the extended metabolic space. Moreover, the
internal cut off scores of RetroPath RL%’, biological and chemical, were
fixed to 0.1 and 0.6, respectively, in order to maintain a balance that would
neither be too restrictive, nor would it compare molecules that were too
dissimilar (see Supplementary Fig. 2 for further details). Finally, RetroPath
RL?’ provides several parameters to terminate the search process. Here, for
each phenolic compound, we fixed a maximum number of iterations,
itermax = 1000, and computation time limit, time_budget = 28,800 s.
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Analysis of RetroPath RL?’ results. We applied RetroPath RL?” in the
conditions described above to each polyphenol present in the source set.
RetroPath RL?’ returns full scope output, which presents different
predicted pathways of the source compound under study. The predicted
pathways could be disconnected from our metabolic database. This occurs
when their target (end) metabolite is not present in the sink set once the
maximum number of iterations and/or the time limit described above is
reached. To address this issue, we selected pathways that are connected to
our metabolic database. This task was done in an automatic manner for
each source compound under study.

At the end of this process, we manually curated the results of the whole
workflow. Since RetroPath RL?>’ works with mono-substrates rules, we
needed to study the predicted equations in order to have balanced
molecular components and atoms. Hence, we extracted the template
reactions that RetroPath RL?’ used to propose the new predicted reactions
and we analyzed the chemical structure of the equations, adding the
missing substrates (see Supplementary Note 1). Furthermore, we applied
the python ChemPy?” package to balance the new equations at the atomic
level and obtain the stoichiometry of the reactions. With this workflow, we
obtained 292 predicted reactions for a total of 86 phenolic compounds
and 64 predicted metabolites.

Update of the AGREDA reconstruction

In order to integrate the phenolic compounds into the AGREDA
reconstruction'’, we first added the predicted reactions and metabolites
obtained from the RetroPath RL?” workflow into the universal database
used in that work. This universal database contains all the reactions in
AGORA'®, the Model SEED database'® and literature knowledge, including
their taxonomic annotation to the species in AGORA'™ (present in the
human gut microbiota) and functional annotation (EC number).

Then, we applied the same gap filling strategy as the one implemented
in the AGREDA reconstruction'’. This step is necessary because predicted
reactions from RetroPath RL>” may connect to metabolites present in the
universal database but not in AGREDA'”. The connection to AGREDA'” is
done by minimizing the inclusion of reactions without taxonomic and
functional annotation from the universal database mentioned above. In
particular, we used the FastCoreWeighted implementation from the
COBRA Toolbox?*®3°, This algorithm requires the definition of a core,
which represents a set of target reactions that must be functional in the
final model. We applied the algorithm sequentially for each phenolic
compound, defining the core equal to the reactions present in AGREDA'”
plus the reactions predicted by RetroPath RL%.

Finally, we integrated AGREDA'” and the reactions FastCoreWeigthed®
added to the core at each iteration. Since the algorithm might have added
some reactions without any taxonomical information, we removed them
and applied fastFVA32 to eliminate blocked reactions. Additionally, we
applied a single-species analysis, as done in the AGREDA reconstruction'’,
in order to avoid possible dead-end metabolites in the metabolic model of
each organism and include transport reactions if we have sufficient
evidence for them. Next, we applied fastFVA3? to the metabolic model of
each organism involved in AGREDA and eliminated blocked reactions. At
the end of the entire process, we were able to introduce in the
reconstruction 80 out of the 86 phenolic compounds whose degradation
was predicted by RetroPath RL?’. In total, we added 133 metabolites and
313 reactions to AGREDA'?, obtaining a final network made up of 2735
metabolites and 6257 reactions, which we call AGREDA_1.1.

Metabolic capabilities of AGREDA in different contexts

For the various analyses conducted in the Results section, in contrast to our
previous work'”, where a mixed-bag network community model was used,
we built a compartmentalized network community model with the
different versions of AGREDA. In these community models, each species
is considered as an independent compartment and the metabolite
exchange between different species can be captured. Flux Variability
Analysis (FVA) was applied to characterize the metabolic capabilities of the
human gut microbiota in different contexts®?. Particularly, we focus on
elucidating different output microbial metabolites derived from the diet.

In vitro digestion-fermentation of lentils

Lentils were submitted to in vitro digestion®® and fermentation
resembling the physiological processes along the gastrointestinal tract. Four
groups of children (lean, obese, celiac and allergic to cow’s milk) were used as
fecal donors to check the effect of different kinds of gut microbiotas.

39-42
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Regarding in vitro digestion, 5 g of sample were weighed into a screw-
cap 50 mL tube. In vitro digestion consisted of three steps: oral, gastric and
intestinal. Five milliliters of simulated salivary fluid with 150 U/mL of alpha-
amylase were added and mixed into the 50 mL tube carrying the sample
and kept at 37 °C for 2 min. Secondly, 10 mL of simulated gastric fluid with
4000 U/mL of gastric pepsin were added to the mix, the pH lowered to 3
and kept at 37 °C for 2 h. Enzyme activity was halted by immersion in ice
for 15 min. Tubes were centrifuged, the supernatant (fraction available for
absorption at the small intestine) collected and the pellet (fraction not
digested that would reach the colon) used for in vitro fermentation. Salt
composition of simulated fluids can be found in Supplementary Table 6.

Fecal samples from three donors of each children population (8-10
years old, 95 % percentile and they had not taken antibiotics in the last
three months) were used for the in vitro fermentation. Common exclusion
criteria were diagnosis of chronic gastrointestinal disorders or any other
chronic disease or special diet other than those specific for celiac or allergic
children, as well as having taken antibiotics or probiotics three months
before the start of the study. Recruitment of the study participants was
done via the pediatric unit at the hospital in Athens (Greece). Parents were
given an informed consent as well as information and questionnaires for
inclusion/exclusion criteria. The study was approved by ethics committee
at the University General Hospital in Athens.

Fecal material was pooled by donor group (lean, celiac, allergic and
obese children) to account for inter-individual variability. In vitro
fermentation was carried out at 37°C for 20h, in oscillation. For this
purpose, 0.5 g of the pellet obtained after in vitro gastrointestinal digestion
were used, as well as 10% of the supernatant. Fermentation medium
composed of peptone (14g/L, cysteine 312mg/L, hydrogen sulfide
312mg/L and resazurin 0.1% v/v) was added to the fermentation tube
at a volume of 7.5 mL. A fecal inoculum was made from fecal material by
mixing it with PBS at a concentration of 33%. Two milliliters of inoculum
were added to the fermentation tube. Afterwards, nitrogen was bubbled
into the tube until reaching anaerobic conditions (transparent solution as
opposed to pink when oxygen is dissolved). After 20 h at 37 °C, microbial
activity was halted by immersion in ice for 15 minutes and tubes were
centrifuged to collect the supernatant (fraction available for absorption at
the large intestine), which was stored at —80°C until further analysis.
Blanks carrying water instead of sample were included in the in vitro
digestion as well as in the in vitro fermentation.

Untargeted metabolomics

Fermented extracts were filtered prior to UPLC injection (2.5 pL). A quality
control sample was randomly prepared and injected during analysis. This
control was performed to attenuate the resulting analytical variation and
to monitor the stability of the system.

MassLynx v4.1. software was used to control the complete system. The
system included a time of flight-mass spectrometer detector (SYNAP G2
from Waters Corp., Milford, MA, USA) coupled to LC equipment ACQUITY
UPLC M-Class System (Waters Corp., Milford, MA, USA). The UPLC column
used was a Poroshell 120, SB-C18 (Agilent Technologies, Palo Alto, CA,
USA). The mobile phases used were A acidified water and mobile phase B
acetonitrile. A linear gradient was applied maintaining a fixed flow rate of
0.6 mL/min and 25°C throughout the gradient. Mass spectrometry (MS)
analyses were carried out in full-scan mode using an electrospray interface.
All MS data were acquired using LockSpray to ensure mass accuracy and
reproducibility. The molecular masses of the product ions and precursor
ion were accurately determined with leucine encephalin.

Raw data were processed with MassLynx v4.1 software (Waters, USA)
according to the “find-by-formula” algorithm. To achieve a higher
confidence in metabolite identification, the spectral isotope pattern was
used together with accurate mass information. The data were analyzed
based on their coefficient of variation with the quality-control sample.
Phenol-Explorer 3.6 and Human Metabolome Database were used as
references for compound identification. The identification was carried out
as established by the COSMOS Metabolomics Standards Initiative (http://
cosmos-fp7.eu/msi). Finally, potential metabolites that exceeded the mass
accuracy detection threshold, showed significantly different trends from
the control (fecal fermentation without lentils) and had plausible peak
characteristics in the chromatogram were considered as possible
fermentation markers for the different conditions.
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DATA AVAILABILITY

The 16 S rRNA sequencing data were obtained from https://www.ebi.ac.uk/ena/
browser/home under accession code PRJEB40603, being summarized in Supple-
mentary Table 4. The metabolomics data are provided in Supplementary Table 5.
The rest of the data employed in this study can be obtained from the following
databases: (i) Metabolic models: AGORA (https://www.vmbh.life/), The Model SEED
(https://modelseed.org/), AGREDA (https://github.com/tblasco/AGREDA); (ii) Meta-
bolites and Chemical rules: PubChem (https://pubchem.ncbi.nim.nih.gov/), Human
Metabolome Database (https://hmdb.ca/), RetroRules (https://retrorules.org/),
i-Diet (http://www.i-diet.es/), Phenol-Explorer (http://phenol-explorer.eu/), MolDB
(https://moldb.wishartlab.com/). The source data underlying Figs. 2a-c, 3a and ¢,
and 4 are provided as a Source Data file.

CODE AVAILABILITY

The source code to generate AGREDA_1.1 can be found in https://github.com/
francesco-balzerani/AGREDA_1.1.
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