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The control of physiological arousal can assist in the regulation of emotional state.
A subset cortical and subcortical brain regions are implicated in autonomic control
of bodily arousal during emotional behaviors. Here, we combined human functional
neuroimaging with autonomic monitoring to identify neural mechanisms that support
the volitional regulation of heart rate, a process that may be assisted by visual
feedback. During functional magnetic resonance imaging (fMRI), 15 healthy adults
performed an experimental task in which they were prompted voluntarily to increase
or decrease cardiovascular arousal (heart rate) during true, false, or absent visual
feedback. Participants achieved appropriate changes in heart rate, without significant
modulation of respiratory rate, and were overall not influenced by the presence of visual
feedback. Increased activity in right amygdala, striatum and brainstem occurred when
participants attempted to increase heart rate. In contrast, activation of ventrolateral
prefrontal and parietal cortices occurred when attempting to decrease heart rate.
Biofeedback enhanced activity within occipito-temporal cortices, but there was no
significant interaction with task conditions. Activity in regions including pregenual anterior
cingulate and ventral striatum reflected the magnitude of successful task performance,
which was negatively related to subclinical anxiety symptoms. Measured changes in
respiration correlated with posterior insula activation and heart rate, at a more lenient
threshold, change correlated with insula, caudate, and midbrain activity. Our findings
highlight a set of brain regions, notably ventrolateral prefrontal cortex, supporting
volitional control of cardiovascular arousal. These data are relevant to understanding
neural substrates supporting interaction between intentional and interoceptive states
related to anxiety, with implications for biofeedback interventions, e.g., real-time fMRI,
that target emotional regulation.
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Introduction

States of physiological bodily arousal, including increased heart rate, are integral to the expression
of negative emotions, including anxiety, and feed back to intensify affective feelings. Interventions
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that specifically target physiological arousal can diminish anx-
iety symptoms and emotional reactivity (Bonn et al., 1972).
Physiological relaxation techniques, with or without biofeedback,
contribute to strategies for anxiety management, often along-
side cognitive behavioral therapy (Borkovec and Costello, 1993).
Further, the intentional regulation of emotional states engages
brain regions implicated in the control of peripheral as well
as central arousal (Buhle et al., 2014). However, physiological
arousal itself also accompanies non-emotional behavioral states,
notably physical activity, which do not typically evoke negative
feelings. One explanation for this discrepancy lies in the pre-
dictability and sense of control of internal physiological state
mediated by the autonomic nervous system (Paulus and Stein,
2006; Seth, 2013).

Autonomic responses are integrated with emotional andmoti-
vational behaviors. Correspondingly, brain regions controlling
behavior also directly or indirectly influence internal bodily
arousal states via the autonomic nervous system. These bodily
changes are themselves linked to activation within discrete brain
regions. For example, stimulation of the human insula can evoke
visceromotor changes (Penfield and Faulk, 1955; Oppenheimer
et al., 1992) and insula damage may result in autonomic dysreg-
ulation (Oppenheimer et al., 1992; Meyer et al., 2004; Jones et al.,
2010). Neuroimaging evidence also implicates regions including
insula, anterior cingulate, and amygdala in interoception (sens-
ing and representing the physiological state of the body) and
accompanying feelings states (Damasio, 1994; Craig, 2002, 2009;
Critchley et al., 2004; Harrison et al., 2010).

These same set of brain regions contribute to brain net-
works that are also implicated in executive, cognitive, and social
functioning (Seeley et al., 2007; Sridharan et al., 2008; Limongi
et al., 2014). Connectivity within such networks appear dynam-
ically related to changes in peripheral cardiovascular state: thus,
during the resting state, increases in heart rate variability fluc-
tuate with increases in connectivity from dorsal anterior cin-
gulate and amygdala to other cortical (cingulate insula and
dorsolateral prefrontal cortex) and subcortical (basal ganglia
and midbrain) centers (Chang et al., 2013). Cardiorespiratory
effects similarly, contribute to connectivity strength within the
‘default mode’ network (encompassing medial prefrontal/rostral
cingulate and medial parietal lobe). Removal of variance from
physiological bodily responses diminishes experimental sensitiv-
ity to task-related changes in brain activity (van Buuren et al.,
2009). Nevertheless, these passive relationships raise important
questions regarding the functional impact of such heart-brain
interactions.

The neural mechanisms supporting this link between periph-
eral arousal and emotional feelings have attracted therapeutic
attention. Biofeedback of brain activity (neurofeedback) has been
explored in this context: here, the immediate explicit (visual)
presentation of changes in neural activation or connectivity
can be used as a ‘training signal’ that enables a participant
to learn to wilfully modulate neural responses to affect asso-
ciated psychophysiological processes. For example, interven-
tions that target insular cortex (or connected brain regions)
have been explored in the management of affective symptoms
and chronic pain disorders. Anterior insula in particular, has

been the target of neurofeedback studies using real-time func-
tional magnetic resonance imaging (fMRI; e.g., Caria et al.,
2007; Frank et al., 2012). Autonomic biofeedback tasks (using
peripheral response) can also be used to extend knowledge
about neural substrates supporting the functional integration
of cognition and internal bodily states of arousal: the pro-
posed role of anterior insula as the substrate for (emotional)
feeling states arising from internal visceral states (Craig, 2002,
2009; Critchley and Harrison, 2013), predicts that this region
is likely to be involved in the volitional/intentional regulation
of physiological state. Similar arguments apply also to closely
connected regions such as anterior cingulate cortex, which is
implicated in both emotional autonomic arousal and emotion
awareness (Lane et al., 1998). In fact, anterior cingulate cortex
is observed to be activated during performance of electroder-
mal biofeedback tasks (Critchley et al., 2001, 2002a; Nagai et al.,
2004a).

In the present paper, we focused on the control of heart rate.
At rest, heart rate modulation is achieved through changing the
balance between both sympathetic and parasympathetic drive,
hence it is closely related to baroreflex mechanisms that underlie
heart rate variability. We chose to focus on identifying regional
brain centers contributing to the active/intentional regulation of
heart rate (arguably, a more intuitively accessible physiological
response than heart rate variability). We tested the notion that
both sensing internal bodily states and regulating these states acti-
vate cortical regions such as insula, where ascending interoceptive
representation appear to be integrated with conscious percep-
tion (Critchley et al., 2002b; Gianaros et al., 2012; Gray et al.,
2012). We investigated the ability to wilfully modify heart rate,
in the presence of biofeedback (visual feedback of their actual
heart rate), no feedback, or false feedback. A key prediction was
that the insula, alongside anterior cingulate cortex, and dorsal
brainstem, would be engaged during biofeedback regulation of
heart rate. Thus, we predicted that the presence and veracity of
the feedback would modulate both behavior (successful perfor-
mance of the task) and associated neural activity within brain
regions supporting regulation and representation of autonomic
bodily responses. Ultimately, we were motivated by a perceived
relevance to emotional regulation and anxiety (e.g., Clark, 1986;
Beck and Clark, 1997; Paulus and Stein, 2006; Dunn et al., 2010;
Domschke et al., 2011). Hence participants also completed an
anxiety inventory to test the prediction that effective autonomic
regulation (i.e., successfully increasing and decreasing heart rate)
would be related to reduced levels of anxiety. To our knowl-
edge, this is the first study to investigate the effect of feedback on
the modulation of heart rate while using fMRI to map the neu-
ral representations. A further novel aspect is the exploration of
the relationship between anxiety symptoms and the capacity for
volitional autonomic regulation.

Materials and Methods

Participants
Fifteen right-handed, healthy participants (Five male), mean age
25 ± 10 years, were enrolled. All participants were screened
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to exclude neurological and psychiatric disorders. The study
was approved by the Brighton and Sussex Medical School
Research Governance and Ethics Committee. Each participant
was fully informed and gave written consent to take part in
this neuroimaging study entitled ‘Biofeedback control of heart
rate.’

Experimental Design
Participants knowingly engaged with an experimental task
involving intentional modulation of heart rate. The experiment
involved six task conditions within a 2 × 3 factorial design. One
factor was the objective, i.e., direction of intended heart rate
change, where participants were required to try to increase or
decrease their heart rate as an index of cardiovascular arousal
[‘arousal’/increase and ‘relaxation’/decrease. The use of terms
arousal and relaxation to refer to these physiological/autonomic
changes, associated with increased sympathetic and decreased
parasympathetic effects, is well established within the literature
(e.g., from our own laboratory Critchley et al., 2000a,b, 2001,
2002a)]. The second factor, presence and veracity of visual feed-
back had three levels (true feedback – which accurately reflected
heart rate; false feedback – randomly fluctuating information
and absent feedback – no feedback given). Each condition was
performed twice by each participant and presented in pseudo-
random sequences that avoided immediate repetition of the same
task condition.

Heart rate and breathing rate were monitored continuously
throughout the tasks. The biofeedback signal of physiological
relaxation and arousal was represented by a visible thermometer
with a blue bar that reflected heart rate (Figure 1). The start-
ing point (near top or bottom) and approximate sensitivity was
tailored for each participant by task condition. In the relaxation
conditions, participants were instructed by a cue to try to make
the bar go down by physiologically relaxing, conversely in the
arousal task participants were instructed to make the bar rise
by becoming more physiologically aroused. Thus the nebulous
terms relaxation and arousal were operationalized, as in previous
studies, to refer to heart rate decreases and increases, respectively.
In the false feedback condition, the bar fluctuated following a
smooth random walk. In the no-feedback condition there was no
bar, with only the outline of a thermometer displayed. All par-
ticipants knew that the purpose of the study was to control their
own heart rate. Participants were informed that the thermometer
reflected their heart rate, where a rise in heart rate was displayed
as a rise in the level depicted on the thermometer which sig-
naled an increase in physiological arousal. Similarly, participants
were told that a drop in heart rate was displayed as a lowering of
the level depicted on the thermometer which in turn signaled a
reduction in physiological arousal, which we termed ‘relaxation.’
They were advised (when possible) to use the feedback and were
also told that, during scanning, the feedback would be altered
or removed for some trials, which might make it harder for
them to achieve the required increase or decrease in arousal/heart
rate. Practice trials were performed before scanning, in which
participants were given only true heart rate feedback and were
instructed to make to bar go down by relaxing and to make the
bar rise by increasing the level of arousal, operationalized tomean

heart rate, and reinforced by this practice session. These instruc-
tions were carried over to their performance within the scanner.
Here again, the instruction to volitionally increase heart rate was
displayed by the visual cue ‘AROUSAL’ and the instruction to
volitionally decrease heart rate was displayed by the visual cue
‘RELAXATION’ at the start of each 90 s block (replacing the text
shown in the upper part of Figure 1). The false feedback con-
ditions were not explicitly distinguished from the true feedback
conditions.

Participants were naïve to the biofeedback exercise before the
day of the experiment (i.e., in contrast to previous biofeedback
tasks they were not over-trained). In the instructions, Participants
were explicitly instructed not to close their eyes (a natural behav-
ior when trying to relax) and told to try and maintain a constant
breathing rate. Task conditions alternated between relaxation and
arousal conditions with feedback blocks presented in a pseudo-
random manner. Each block lasted for 90 s (Figure 1).

Physiological Monitoring
Each participant was monitored during fMRI using pulse oxime-
try (Nonin 8600FO, Nonin Inc., Plymouth, MN, USA) with the
sensor taped to the middle finger of the left hand. The fibreop-
tic cable was passed through the guide tube from the Faraday
cage of the MRI scanner room to the control room where the
analog outputs of the apparatus were fed via an A/D converter
(CED1401) to a computer running Spike 2 Software (Cambridge
Electronic Design, Cambridge, UK) and to a stimulus-control
computer running Matlab (MathWorks, Nantick, MA, USA).
The biofeedback components of the tasks (Figure 1) were run
on this computer using Matlab scripts developed in-house: the
signal was low-pass filtered at 1 Hz and processed with a peak-
picking algorithm yielding beat-by-beat heart ratemeasurements.
The resulting signal was epoched in the [−0.5,5] s peristimu-
lus range and averaged across trials. Respiratory motor function
was recorded within the MRI environment via respiratory bands,
a technique referred to as remote pressure sensor respiratory
plethysmography (Caldiroli and Minati, 2007). Again the signal
was low-pass filtered at 1 Hz and processed with a peak-picking
algorithm yielding breathing rate measurements (Figure 2).

Behavioral Analysis
A 3 × 2 repeated measures ANOVA [feedback (True, None,
False) × objective (Relaxation, Arousal)] was performed with
heart rate as the dependent variable. A second ANOVA was
conducted using breathing rate as a dependent variable. Each
participant was debriefed to establish what particular strategies
may have been used when performing the task. After debrief-
ing participants also completed the Beck Anxiety Inventory (BAI,
Beck et al., 1988). While none of the participants were above
the clinical threshold for anxiety, scores were compared against
performance on the biofeedback tasks.

Neuroimaging Data Acquisition and Analysis
Each participant underwent neuroimaging on a Siemens Avanto
1.5 Tesla magnetic resonance imaging scanner. The participant
was placed in the scanner with their head gently, yet firmly
restrained within the head coil using vacuum cushions. During
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FIGURE 1 | Visual display of feedback ‘thermometer.’ There were six task
conditions within the experiment which embodied a 2 × 3 factorial design.
The factors were (1) the direction of intended heart rate change
(increase = ‘arousal’/and decrease = ‘relaxation’) and (2) the presence and
veracity of visual feedback (true feedback accurately reflecting heart rate; false
feedback, i.e., random fluctuation and absent feedback). Each condition was

performed twice by the participant and presented in pseudorandom sequences
that avoided immediate repetition of the same task condition. Participants were
instructed to use arousal to make the thermometer level rise in the increased
heart rate conditions and relaxation in the lower in the heart rate conditions.
Below are tabulated the biofeedback task conditions undertaken during the
course of the experiment.

performance of the biofeedback tasks, T2∗-weighted echo planar
data were acquired with near complete brain coverage (bi-
commissural orientation for 21 slices, 5 mm thickness, no gap,
TR = 2000 ms, TE = 50 ms, in-slice resolution 2 × 2 mm,
matrix 80 × 128). A T1-weighted whole brain, high resolu-
tion structural scan was obtained at the end of the scanning
study (magnetization-prepared rapid gradient-echo sequence,
0.9 mm isotropic voxels; TR = 1160 ms, TE = 4.44 ms, FoV
230 mm × 230 mm, matrix size 256 × 256, 50 slices) and used
to co-register the functional dataset and screen for potential
anatomical abnormalities.

Neuroimaging time-series datasets were analyzed as a block
design using statistical parametric mapping (SPM8; Wellcome
Trust Centre for Neuroimaging, UCL, UK) implemented in
Matlab. Functional scans were realigned to correct for partici-
pant movements, slice-timing corrected, and co-registered with

individual anatomy. Subsequently, all scans were transformed
into MNI space. The scans were smoothed using an 8 mm
full width at half maximum Gaussian filter. Two separate anal-
yses were carried out: the first analysis tested for relation-
ships between regional (blood oxygenation-level dependent,
BOLD) activity and the different task conditions. The sec-
ond analysis tested for regional activity sensitive to physiolog-
ical fluctuation (heart rate and breathing rate) over the whole
experiment.

In the first analysis, a design matrix modeled the six condition
regressors for each participant, i.e., true_relaxation, true_arousal,
none_relaxation, none_arousal, false_relaxation, false_arousal.
There was no significant effect of the task conditions on head
movement. Nevertheless, to improve sensitivity to neuraly medi-
ated signal changes during the experiment, six movement regres-
sors from the initial functional realignment were included in the
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FIGURE 2 | (A) Heart rate fluctuations over the scanning duration, peaks correspond to increased heart rate/arousal blocks, troughs correspond to decreased heart
rate/relaxation blocks. (B) Breathing rate fluctuations over time. Arrow indicates passage of time. Data illustrated from a representative single participant.

design matrix as nuisance variables. The statistical maps were
then entered into a second-level (i.e., group) random effects anal-
ysis, where a 2-way factorial analysis was employed to determine
the presence of main effects and interactions between feedback
and objective on regional activity at the population level. In the
second analysis, an individual design matrix was created for each
participant that included heart rate and breathing rate as regres-
sors of interest. Again, movement parameters were included as
nuisance regressors. These statistical maps were entered into

second-level (i.e., group) analysis and one-sample t-tests were
used to evaluate the significance of the effect of heart rate and
breathing rate on regional neural (haemodynamic) response.
In the neuroimaging results, activations which survive family-
wise error (FWE) correction (p < 0.05) at the cluster level are
reported, unless otherwise stated. Descriptions of anatomical
location were determined using the anatomical toolbox for SPM
(Eickhoff et al., 2005) and in addition the atlas of Duvernoy
(1991).
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Results

Behavioral Results
Heart rate changed in accordance with the task instructions:
across participants, heart rate averaged 76 bpm for the intended
arousal condition compared to 72 bpm for the intended
relaxation blocks. Thus task objective had a significant effect
on heart rate, F(2,14) = 19.2, p < 0.01, η2 = 0.58, with
(see Figures 2 and 3A). Surprisingly, however, there was no
suprathreshold main effect of feedback type on heart rate across
participants and no overall interaction between objective and
feedback on heart rate. This suggests that as a group, participants
were able to increase or decrease their heart rate according to
the objective, but the presence of feedback did not significantly
impact performance. There was a trend for heart rate to increase
more in the accurate biofeedback condition during the intended
arousal conditions (Figures 2A and 3A).

FIGURE 3 | (A) Plots the group effects of objective and feedback on heart
rate. There was a significant main effect of objective (p < 0.05) but no
interaction of objective and feedback. (B) Breathing rate, no significant main
effects or interactions were found. Error bars show SEM.

Using breathing rate as the dependent variable, we observed
no significant main effects or interactions of objective and/or
feedback on breathing rate, indicating that overall participants
were able to modulate heart rate without significantly changing
their breathing rate (see Figures 2B and 3B).

Participants’ ability to volitionally regulate their heart rate,
measured by percentage heart rate change in the intended direc-
tion (prompted increase or decrease) was negatively correlated
with anxiety scores on the BAI, r = −0.58, p < 0.05. This sug-
gests that participants who were less able to regulate their heart
rate during this experiment experienced more anxiety symptoms
(Figure 4).

Neuroimaging Results
Main Effect of Objective (Cardiovascular
Relaxation/Arousal) on Brain Activity
The main effect on brain activity of intending to decrease heart
rate was assessed by comparing relaxation and arousal tasks.
Clusters of increased activity were observed in the right ven-
trolateral prefrontal cortex) and in the right inferior parietal
lobule (see Figure 5A). Conversely, the main effect of intend-
ing to increase heart rate was assessed by conducting the reverse
contrast, comparing arousal against relaxation conditions: this
revealed greater activity within the left caudate, left midbrain,
left posterior central gyrus, left cerebellar vermis, and a clus-
ter encompassing regions of right amygdala and anterior insula
(Table 1).

Main Effect of Feedback Type on Brain Activity
We first tested for a main effect of receiving veridical biofeedback
across relaxation and arousal conditions (True > None + False).
The presence of true biofeedback was associated with enhanced
activation within the right occipito-temporal gyrus (Brodmann
area 37). To ascertain whether this activation reflected biofeed-
back per se, or if it was driven by a visual representation of the

FIGURE 4 | Shows a significant negative correlation (r = −0.58) in
performance on the task (given as average percent heart rate change
across objective conditions when in the correct direction) and scores
on the Beck Anxiety Inventory (BAI) scale (completed on the day of
scanning).
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FIGURE 5 | (A) Neural activation for the contrast relaxation >arousal
observed in the right ventrolateral prefrontal cortex and right
intraparietal lobule. (B) A plot of the contrast estimates at peak
ventrolateral prefrontal voxel for objective and feedback type.
Interestingly, the difference in relaxation and arousal for each feedback
condition appears to mirror that observed in the behavioral data.
(C) Neural activation for the contrast arousal >relaxation across

different brain slices shows increased activation in the caudate,
midbrain, and the insula/amygdaloid complex. Color bar corresponds to
color maps on brain images which reflect the t statistic. (D) Neural
activation which significantly correlates with ability to perform the task
objective as measured by average percent change in heart rate.
Increased activation shown for regions close to the midline within
pregenual anterior cingulate, ventral striatum, and primary visual cortex.

moving thermometer, we performed separate contrasts of inter-
est (Table 2). Significant activity was observed in the same region
of the occipital-temporal gyrus for both true feedback and false
feedback when they were compared to no feedback. However,
this region was not activated when comparing true feedback to
false feedback and vice versa. This suggests that this activation
was primarily concerned with visual aspects of the feedback i.e.,
the moving bar. Blocks in which no feedback was received were
associated with activity in left posterior cingulate and left ante-
rior cingulate (p < 0.05 corrected) but interestingly only in the

intended arousal condition (the same effect was not seen for
relaxation).

Modulation of Brain Activity Related to Objective
(Cardiovascular Relaxation/Arousal) By Feedback
Type
By examining the interaction between feedback and objective, we
attempted to identify regions where heart rate relaxation/arousal
related activity was modulated by the type of feedback. There
were no clusters of activity reflecting this interaction at a FWE
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TABLE 1 | Regional activity associated with main effect of task objective:
decreasing heart rate (relaxation) versus increasing heart rate (arousal).

Region Side Coordinates of
peak activity (MNI)

Voxels Peak T
score

(A) Regional brain activity associated with intended heart rate decrease

Ventrolateral PFC Right 46 42 –8 323 5.50

Inferior parietal lobule Right 50–56 48 355 5.15

(B) Regional activity associated with intended heart rate increase

Caudate Left –16 –28 26 366 4.97

Midbrain Left –10 –10 –12 99 4.96

Cerebellar vermis 0 46 2 189 4.91

Amygdala, /insula Right 32 10 –22 172 4.42

TABLE 2 | Regional activity associated with main effects of feedback type
(True/None/False).

Region Side Coordinates of
peak activity (MNI)

Voxels T score

(A) Regional brain activity associated with biofeedback (true feedback)

True > None

Occipito-temporal gyrus Right 50 –66 –2 544 5.81

True > False

NSA

(B) Regional activity associated with no feedback

None > True

Posterior insula Right 38 –18 18 40 3.51*

None > False

NSA

(C) Regional activity associated with false feedback

False > None

Occipito- temporal gyrus Right 46 –66 2 740 5.87

False > True

NSA

NSA, no suprathreshold activity. Clusters reported at p < 0.05 corrected. *SVC,
small volume corrected.

correction (or at a more permissive uncorrected threshold of
p < 0.001). To obtain an impression of how feedback type may
have differentially activated brain regions involved in relaxation
and arousal, individual t-tests were performed to assess the effects
of intended relaxation and intended arousal under each feed-
back condition (Table 3; Figure 5). In these tests, of note are
the observations first; that the absence of feedback during the
intended arousal conditions evoked greater engagement of right
insula/amygdaloid complex, and second; that the presentation
of false or no feedback during the intended relaxation condi-
tion enhanced activation within regions of subgenual cingulate
cortex.

Brain Activity Related to the Magnitude of Successful
Task Performance
We performed a group-level analysis to test for regional activ-
ity correlating with successful task performance, defined as
the average percent change in heart rate across objective
conditions. Regional activity covarying with performance was
observed within pregenual anterior cingulate, angular gyrus,

TABLE 3 | Post hoc tests showing regions of activation associated with
feedback × objective.

Region Side Coordinates
of peak
activity (MNI)

Voxels T score

(1) True Feedback

(A) Heart Rate Increase > Decrease (relaxation > arousal)

Superior temporal gyrus Right 62 –46 –4 136 4.93

Intraparietal sulcus* Right 32 –66 48 318 4.23

vlPFC Right 46 42 –8 117 3.91

(B) Increase > Decrease

Thalamus Right 2 –16 16 74 4.13

(2) No Feedback

(A) Decrease > Increase

Orbitofrontal gyrus/anterior insula* Right 22 28 –8 37 4.68

(B) Increase > Decrease

Insula/amygdala* Right 32 10 –24 72 4.39

(3) False Feedback

(A) Decrease > Increase

Subgenual anterior cingulate Left –12 36 –2 170 4.71

(B) Increase > Decrease

NSA NSA NSA NSA NSA

*Nominal description of region refers to anatomical extent of cluster which may
encompass more than one region, the coordinates of the peak voxel represent the
location maxima of the cluster. NSA, no suprathreshold activity.

middle temporal gyrus, temporal pole, ventral striatum, and
primary visual cortex (calcarine cortices; p < 0.05 corrected;
Figure 5D).

Brain Activity Mapping Heart Rate and Breathing
Rate Across Experimental Conditions
We further tested for regional brain activity related to changes
in heart rate (the primary task objective) and also breathing
rate during each scan. These physiological variables formed the
two single regressors within the same analytic design matrix.
Breathing rate over the course of the experiment was associated
with significant changes within the right insula. This is unlikely
to reflect a consequence of the instruction to try to maintain a
constant breathing rate across increased and decreased heart rate
blocks, since task conditions were implicitly controlled for by
inclusion of heart rate within the same regression analysis. At
an uncorrected threshold only (p < 0.001), heart rate changes
correlated with activity within periaqueductal gray matter, right
caudate nucleus, and right insula cortex.

Discussion

The central regulation of internal bodily states is crucial to adap-
tive behavior, and controlled proximately through autonomic
nervous system and viscerosensory afferents. Most psychologi-
cal models for understanding the interaction between mind and
body underplay organ specificity and patterning across periph-
eral responses (Harrison et al., 2010). Nevertheless, emotional
and motivational feelings are linked to the prediction and sig-
naling of physiological ‘interoceptive’ state (Seth, 2013; Seth and
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Critchley, 2013). Thus, by studying brainmechanisms controlling
autonomic reactivity, specifically those underlying the generation
and feedback representation of changes in internal state, a more
comprehensive integrated neurobiological account of affective
behavior can be achieved.

The present study illustrated neural mechanisms associated
with the volitional modulation of heart rate. Individual task
performance varied across participants; even so, the aim of elic-
iting increases and decreases in heart rate for intended arousal
and intended relaxation, respectively, was achieved by all but
one of the participants. Most strikingly, the activity within ven-
trolateral prefrontal cortex (Brodmann areas 44, 45, and 47;
with peak activation in the lateral orbitofrontal/inferior frontal
gyrus or Brodmann area 47) was enhanced during ‘active relax-
ation’ conditions intended to decrease heart rate. This broad
region is implicated in the cognitive appraisal of emotional events
and corresponding behavioral control (to meet task demands;
Lee and Siegle, 2012). Furthermore, ventrolateral prefrontal cor-
tex receives motivational and emotional information from the
orbitofrontal cortex and subcortical areas (midbrain, hypothala-
mus, and striatum) and, in non-human primates, supports the
computation of the behavioral significance of external events for
goal directed behavior (Sakagami and Pan, 2007). Ventrolateral
prefrontal cortex is likely to influence autonomic function indi-
rectly through influences on a network incorporating visceral
cingulate and insular cortices alongside amygdala and dorsal
brainstem. Previous neuroimaging studies of emotion regulation
also implicate this ventrolateral prefrontal region in the voli-
tional control of physiological arousal (Beauregard et al., 2001;
Critchley et al., 2002a), and during the voluntary suppression of
negative affect during cognitive reappraisal (Phan et al., 2005).
This prefrontal region is also involved in evaluating and gating
the influence of contextual emotional information in decision-
making (Beer et al., 2006); for example, it is engaged when deci-
sions are made in states of high, but not low, urgency, suggesting
that it may suppress anxiety and emotional arousal associated
with risky decision-making (Jones et al., 2011). The present study
extends these data by indicating that ventrolateral prefrontal cor-
tex has a steering role in the intentional regulation of bodily
arousal.

Activation within right inferior parietal lobule was also
enhanced during intentional relaxation/heart rate reduction. This
region is implicated in directed attention toward external stimuli
(Fink et al., 1996), and earlier data suggest a shared neural sub-
strate for selective attention and autonomic arousal (Critchley
et al., 2000b). Interestingly in the present study, this region was
engaged during relaxation conditions particularly when receiving
veridical biofeedback, consistent with its potential role as a sub-
strate for body-centered integration of external feedback signals
with internal arousal state. Conversely, the intention to increase
heart rate through enhancing one’s state of arousal activated
regions within the amygdala, midbrain, and caudate. Amygdala
activation is linked to the generation of transient sympathetic
(electrodermal) response (Phelps et al., 2001; Williams et al.,
2001) and suppression of the baroreflex, allowing blood pres-
sure and heart rate to rise together (Gianaros et al., 2012). The
amygdala contributes to a network of regions including anterior

cingulate cortex, insula and periaqueductal grey matter (PAG),
which mediates cardiovascular reactions to psychological stres-
sors (Gianaros et al., 2004, 2012; Gray et al., 2009; Wager et al.,
2009). Additionally, both caudate and midbrain are implicated
in autonomic nervous system regulation and dysregulation (e.g.,
Beacher et al., 2009; Gray et al., 2009). The present study adds
to this literature by highlighting the capacity for individuals to
engage volitionally this set of subcortical brain regions. While
intentional behavioral responses are typically thought to origi-
nate from processes within prefrontal cortex, the present study
suggests that intentional changes in autonomic arousal state may
also be engendered through more direct recruitment of a select
network of subcortical structures linked tomotivational behavior.

Across task conditions, we showed an interesting relationship
between neural activity and the participants’ success at perform-
ing the instructed directional change in heart rate. This success
was quantified as the magnitude of increase in heart rate dur-
ing the intended increase/arousal conditions and the magnitude
of decrease in heart rate during the intended decrease/relaxation
conditions. Successful performance was associated with activa-
tion across regions including pregenual anterior cingulate, ven-
tral striatum, and early visual cortex (illustrated Figure 5D)
and lateral parietal and temporal cortices and temporal pole.
Interestingly, earlier neuroimaging studies of biofeedback, with
sympathetic electrodermal signals, implicate similar a pregen-
ual cingulate response to task success alongside amygdala/rostral
temporal lobe that also predicting the rate of (successful) phys-
iological relaxation (Critchley et al., 2001). Our present findings
includes the ventral striatum in these processes, suggesting the
presence of a reward (prediction error) signal that bridges the
cognitive intention to perform the task linked to the monitor-
ing of physiological change. The fact that these findings occurred
independently of perturbation in visual feedback also suggests
that anterior cingulate, ventral striatal, and temporal regions are
coupled to internalized interoceptive information.

We observed no formal interaction between visual feedback
and task objective. It was not predicted that the experimental
feedback manipulations would have little impact on task perfor-
mance or associated brain activity. The main feedback-related
observations were of visual cortex activation by true and false
visual feedback, and of enhanced activity within posterior insula
in the absence of feedback. The latter observation is in keep-
ing with the notion of greater attention-driven engagement of
interoceptive process mediated by insula cortex in the absence
of veridical feedback, although previous studies also present this
argument for increases in insula activity evoked by false feedback
(Critchley et al., 2002a). Overall, the volitional control of heart
rate seemed to be a concept that all participants could grasp and
attain from minimal practice with veridical feedback before the
scanning session. However, in the scanner, the feedback appeared
to provide little additional value for the participants to achieve
intended changes in physiological state. Interestingly, this seems
to suggest that heart signals (in contrast to other internal auto-
nomic responses such as electrodermal activity) are more readily
accessible for volitional control, at least for those who score lower
on anxiety measures. Retrospectively, it is an omission that we
did not explore this further by measuring individual differences
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in interoceptive ability using heart rate detection tasks (Garfinkel
et al., 2015). There was some indication from the planned sim-
ple contrasts (presented in Table 3) that the quality of visual
feedback modulated the neuro cognitive strategies employed to
reach the target volitional state of increased or decreased heart
rate. This is consistent with the observation that, with extensive
training, people can become more adept at using biofeedback as
a means to regulate efficiently their arousal state (Nagai et al.,
2004b). Ultimately, the biofeedback manipulation only partially
addressed a secondary question of this study regarding mecha-
nisms for volitional manipulation of heart rate and their neural
correlates.

One hypothesis was that ‘viscerosensory’ insular cortex,
including anterior insula, would contribute to the neural circuitry
supporting the volitional regulation of heart rate, by virtue of its
evident role in the integration of cognitive, exteroceptive, and
interoceptive information, and its relationship to forebrain vis-
ceromotor regions including anterior cingulate and amygdala:
human insula is implicated in autonomic control, interocep-
tive representations, and emotional feelings (Penfield and Faulk,
1955; Oppenheimer et al., 1992; Craig, 2002; Critchley et al., 2004;
Meyer et al., 2004; Harrison et al., 2010; Jones et al., 2010). Yet
it is also clear that the insula does not act in isolation, neither
in its contribution to autonomic regulation, nor as a substrate
for feelings states and interoception. Anterior insula, along with
anterior cingulate and amygdala, is implicated in ‘translating’
interoceptive bodily signals into feeling states (Craig, 2002, 2009;
Critchley et al., 2004; Gray et al., 2007; Singer et al., 2009). It is
also implicated as one cortical hub within a network for salience
and self- representation (Seeley et al., 2007; Sridharan et al., 2008)
and connects with frontotemporal hubs that contribute to con-
textual social as well as emotional behavior (Ibanez and Manes,
2012; Limongi et al., 2014). In these scenarios, anterior insula is
prosed to serve as a comparator within the more distributed pre-
dictive coding of emotion, putatively receiving efference copies
of descending signals from anterior cingulate and prefrontal cor-
tices (Critchley, 2005; Paulus and Stein, 2006; Singer et al., 2009;
Critchley and Seth, 2012; Seth, 2013). It is therefore noteworthy
that in the present study, we did not observe marked engagement
of anterior insular cortex across the different task conditions.
Increased anterior insula engagement when decreasing heart rate
in the absence of a feedback signal is present, but its interpreta-
tion tempered by the absence of an overarching interaction. The
most parsimonious account is that we showed little behavioral
or neural evidence for the integration of exteroceptive feedback
information with interocetive processes toward successful task
performance. Task-related increases in heart rate/arousal pref-
erentially engaged ventrolateral prefrontal cortex, rather than
anterior insula. While activity related to successful task perfor-
mance evoked change within insula, including a region of ante-
rior insula, even this effect was attenuated relative to the activity
observed the pregenual cingulate, ventral striatum and even pri-
mary visual cortex. In earlier biofeedback studies of electrodermal
activity, anterior insula engagement is typically associated with
interference caused by perturbed feedback (e.g., Critchley et al.,
2002a) and there was weak evidence showing a similar effect in
the present study.

We anticipated that scan-by-scan fluctuation in measured
physiological indices, i.e., heart rate and respiration, would be
reflected in changes in neural activity within posterior insula
(implicated as primary interoceptive cortex). We did observe
activity within right posterior insula related to increased respi-
ration and a weaker positive correlation with heart rate change.
However, there was a stronger correlation between heart rate and
activity within both right caudate nucleus and midbrain (PAG).
The integrity of the caudate is linked to autonomic response
tendencies (Beacher et al., 2009). Caudate activity, alongside
insula and dorsal cingulate, predicts heart rate changes to emo-
tional stimuli (Critchley et al., 2005) and at a network level, the
connectivity between caudate, cingulate, insula, and midbrain
is coupled to resting state fluctuations in heart rate variability
(Chang et al., 2013). Together these data suggest a proximate net-
work of brain regions supports the representation of heart rate
signals, which are selectively engaged in their volitional control.
These inferences merit further investigation. Different method-
ological approaches may shedmore light: for example, we focused
on heart rate change (measured with pulse oximetry) as an
intuitively accessible interoceptive response: however, potentially
more accurate methods for mapping the central control of heart
rate involvemeasuring heart rate variability, reflected in changing
intervals between successive heartbeats (on electrocardiography:
R–R intervals). Heart rate variability reflects homeostatic reg-
ulation through sympathetic and parasympathetic axes of the
autonomic nervous system, where high frequency components
index vagus-mediated coupling of cardiac control with respira-
tion (Napadow et al., 2008). Somewhat impressively, participants
were able to induce significant changes in their heart rate while
maintaining a consistent breathing rate, suggesting cognitive
mechanisms are sufficient to fulfill the task objectives, bypass-
ing the need to evoke cardiorespiratory reflexes through explicitly
modulating the rate or depth of breathing. Typically, humans reg-
ulate their breathing in order to become more relaxed, e.g., in
yoga or meditation. In emotional situations involving high phys-
iological arousal, breathing increases to provide muscles with
more oxygen as part of the fight or flight response. Such effects
did not account for task-associated changes in heart rate in the
present study. Nevertheless, while participants were asked to
maintain a constant breathing rate, their breathing fluctuated
across the course of the experiment and was tracked by activ-
ity within right insular cortex. This finding is consistent with
evidence from studies in humans and other animals that map
reciprocal respiratory projections between insula and vagus nerve
(Radna and MacLean, 1981) and which show strong inhibitory
effects of insula stimulation on respiration rate (Kaada and Jasper,
1952; Hoffman and Rasmussen, 1953).

Interestingly, there was a significant negative correlation
between the ability of participants to modulate their heart rate
intentionally and anxiety scores. Those who were rated as more
anxious were less able to meet the task objective (i.e., increase
or decrease their heart rate). Our findings suggest that greater
anxiety is associated with impaired capacity for physiological
control and, by implication, a relatively reduced ability to contain
emotional arousal responses as effectively as their less-anxious
individuals. This observation in a subclinical group qualifies
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evidence showing that individuals with clinical anxiety show
heightened sensitivity to interoceptive cues (Domschke et al.,
2011) and associating autonomic dysregulation with anxiety
disorders (Wilhelm et al., 2001). Self-regulation of autonomic
arousal may be applied as every day countermeasures or in
therapeutic interventions to enhance the regulation of emo-
tions states, notably anxiety. The contribution of bodily arousal
states is well-recognized, highlighting a link between intero-
ceptive processes to anxiety symptoms (Clark, 1986). However,
the simplified hypothesis that individual differences in (height-
ened) interoceptive sensitivity, quantified for example by assess-
ing an individual’s accuracy in detecting own heartbeats at
rest, predisposes to anxiety has limited validity in both norma-
tive and clinical populations. Overrepresentation of individuals
with enhanced interoceptive processing (heartbeat detection) is
observed in populations with anxiety (Pollatos et al., 2007; Dunn
et al., 2010; Terasawa et al., 2013), although the finding is not
always demonstrated (Asmundson et al., 1993; Craske et al.,
2001). This inconsistency reflects a complexity addressed by the
theoretical proposal, backed by data, of dissociable cognitive
dimensions to interoception wherein awareness and subjective
perception/interpretation of bodily response may diverge sig-
nificantly from objective measures of interoceptive sensitivity
accuracy (Garfinkel and Critchley, 2013; Garfinkel et al., 2015).
Discrepancy between these subjective (prediction/interpretation)
and objective (interoceptive accuracy) dimensions is proposed
to give rise to emotional symptoms through ‘interoceptive pre-
diction error’ signaling an impaired sense of control of internal
physiological state (Paulus and Stein, 2006; Seth, 2013). Our
finding, in a subclinical group, that better volitional control of
heart rate predicts lower levels of state anxiety is consistent with
this concept. Equally, the counter-argument that anxiety impairs
non-specifically performance of volitional control tasks must
acknowledge the bidirectional psychophysiological dynamics of
symptom expression.

Human anxiety consists of a complex pattern of cognitive,
affective, physiological, and behavioral changes in response to
threat, loss, or perceived negative outcome (Beck and Clark,
1997). The finding that individuals with greater anxiety are
significantly less able to volitionally modulate their heart rate
without prior training has clinical implications for treatment
approaches. Although, the presence of biofeedback did not sig-
nificantly improve participant’s ability to regulate their heart rate
on this one occasion, heart rate feedback retains potential ther-
apeutic utility for anxiety patients. Visual heart rate feedback
is reported to facilitate exposure treatment of animal phobic
patients (Nunes and Marks, 1975) and auditory heart rate feed-
back enhances claustrophobia treatment (Telch et al., 2000).
Conversely, increased anxiety can be induced by false heart rate
feedback in patients with panic disorder (Ehlers et al., 1988).
Thus, heart rate based biofeedback paradigms have the poten-
tial to enhance ‘interoceptive exposure’ in the management of
anxiety disorders. There is evidence to support the notion that
autonomic biofeedback training may also diminish symptoms
in other patient groups with stress-sensitive neuropsychiatric
and medical disorders, including epilepsy (Nagai et al., 2004a;
Micoulaud-Franchi et al., 2014), tic disorder (Nagai et al., 2009)

and cardiovascular disease (Moravec and McKee, 2011). There is
therefore broader utility of biofeedback approaches in managing
dissociative neuropsychiatric symptoms (Sedeño et al., 2014).

There are limitations to this study: training participants
in performing biofeedback prior to scanning and ensuing all
could carry out biofeedback to a reasonable standard may have
reduced participant variability in task performance and increased
the chance of observing feedback-specific influences. Also, the
instructions for participants to increase or decrease their level
of arousal may have biased them toward engaging mechanisms
that go beyond those necessary purely for the volitional regula-
tion of heart rate. If this were the case, the findings we observed
within the brain (related to the task intention and correlating
with task achievement) may reflect other psychological processes
(e.g., mediating wakefulness or emotionality) that are incidental
to, though not independent of, the participants’ directed regula-
tion of their physiological arousal. However, all participants were
aware that they were only required to increase or decreased their
heart rate in accordance with task instructions. Moreover from
the outset we defined the nebulous terms arousal and relaxation
to refer operationally to cardiovascular arousal and relaxation
(i.e., increased and decreased heart rate). No instructions were
given to change level of alertness, wakefulness, or direct atten-
tion to emotional events. Our study suggests that the volitional
regulation of cardiovascular arousal, at least within the setting
of a neuroimaging experiment, is relatively easy to attain with
minimal practice and no need for active feedback. While we
extrapolate our findings to suggest that these same brain regions
associated with task success may be engaged in similar mecha-
nisms to regulate physiological arousal contributing to anxiety
states, this proposal will require direct empirical validation. At
a technical level, coverage of ventromedial prefrontal cortex dur-
ing the acquisition of echo planar T2∗ datasets was not always
consistent across participants, diminishing our ability to infer the
contribution of this region to the regulation of autonomic state:
previous studies report inverse correlations between ventrome-
dial/orbitofrontal cortex activity and sympathetic arousal (Nagai
et al., 2004b).

To summarize, our data provide evidence for the role of spe-
cific brain regions, notably ventrolateral prefrontal cortex, in
the volitional control of heart rate, with implications for under-
standing, and treating anxiety and stress-sensitive neuropsychi-
atric and physical conditions. These regions are linked to wider
functional brain networks implicated in emotional regulation.
Interestingly we did not provide strong evidence for our predic-
tion that insula cortex was critical to the volitional regulation
of heart rate through biofeedback. However, our participants
were relatively naïve to the use of biofeedback techniques and
their overall task performance was not shaped by the pres-
ence of veridical visual feedback, but reflects the employment of
alternative strategies to implement the directed task objectives.
Nevertheless, we highlight the cortical and subcortical networks
mediating intentional autonomic cardiac control. Understanding
these mechanisms has implications for management of clini-
cal disorders of emotion regulation, and relevance to training
self-management using biofeedback approaches, including neu-
rofeedback with fMRI.
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