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ABSTRACT: We investigate the performance of a class of compact
and systematically improvable Jastrow−Slater wave functions for the
efficient and accurate computation of structural properties, where the
determinantal component is expanded with a perturbatively selected
configuration interaction scheme (CIPSI). We concurrently optimize
the molecular ground-state geometry and full wave functionJastrow
factor, orbitals, and configuration interaction coefficientsin varia-
tional Monte Carlo (VMC) for the prototypical case of 1,3-trans-
butadiene, a small yet theoretically challenging π-conjugated system.
We find that the CIPSI selection outperforms the conventional scheme
of correlating orbitals within active spaces chosen by chemical intuition:
it gives significantly better variational and diffusion Monte Carlo
energies for all but the smallest expansions, and much smoother
convergence of the geometry with the number of determinants. In
particular, the optimal bond lengths and bond-length alternation of butadiene are converged to better than 1 mÅ with just a few
thousand determinants, to values very close to the corresponding CCSD(T) results. The combination of CIPSI expansion and
VMC optimization represents an affordable tool for the determination of accurate ground-state geometries in quantum Monte
Carlo.

1. INTRODUCTION

Quantum Monte Carlo methods are a class of ab initio
approaches which solve the interacting Schrödinger equation
stochastically. The most widely used variants of QMC are the
variational (VMC) and diffusion Monte Carlo (DMC).
Thanks to their favorable scaling with the number of particles
and the ease of parallelization, they have often been employed
to benchmark electronic properties, in particular, total energies
of relatively large molecules as well as solids. Recently, it has
been shown1,2 that it is possible to compute derivatives of the
energy at the same computational cost per Monte Carlo step as
evaluating the energy itself, also when employing large
determinantal expansions in the commonly used Jastrow−
Slater QMC wave functions. Consequently, one can compute
all derivatives necessary for the optimization of the structure of
a system very efficiently and, simultaneously, of the variational
parameters in the wave function, as was demonstrated on the
structural optimization of short polyenes with expansions
comprising over 200 000 determinants.2 These developments
also allow us to thoroughly explore the sensitivity of QMC
calculations to the choice of the Slater expansion, namely, the
set of orbitals which one must correlate and the truncation of
the active space. It was shown that an instructed guess of the

orbitals based on chemical intuition can lead to significant
variations in VMC energies and structures of a molecule as
small as butadiene even when employing large expansions in
the presence of a Jastrow correlation factor.2

To overcome the limitations of an a priori approach in the
choice of the orbital set and achieve a compact description of
the determinantal component in QMC, a promising alternative
is to employ a selected CI algorithm such as the CIPSI
(configuration interaction using a perturbative selection done
iteratively) method. CIPSI was originally introduced by Huron
et al. in 19733 and continually tested,4−10 improved,10−13 and
assessed in comparison to full-CI (FCI) expansions10,14,15 in
combination with a variety of orbital descriptions.16 In the past
few years, there has been renewed interest in the development
of selected CI approaches17−22 to accurately calculate the
ground- and excited-state energies of small molecules,
establishing the competence of these approaches for
benchmarking applications. The use of these expansions has
however only been marginally explored within the QMC
framework,23−28 where it was shown to yield very good DMC
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energies at the price of employing large CIPSI wave functions.
Good selection in multideterminantal expansions is also likely
to improve the accuracy and efficiency in the phaseless
auxiliary-field Monte Carlo method.29

Here, we complement the perturbatively selected CIPSI
determinants with a Jastrow factor and VMC optimization of
the full wave function (Jastrow parameters, orbitals and CI
coefficients), and investigate the ability of the resultant
Jastrow−CIPSI wave functions to obtain accurate molecular
geometries in VMC, as well as corresponding VMC and DMC
energies, with relatively compact expansions. We focus on the
butadiene molecule, where an accurate estimation of the bond
length alternation (BLA) is theoretically quite challenging,
demanding a proper description of correlation effects, both
static and dynamic. As mentioned above, significant variations
in energies and structural parameters were observed in VMC
when correlating different sets of σ and π orbitals in a fully
optimized Jastrow-Slater wave function:2 with a large
expansion comprising over 45 000 determinants in a restricted
active space, good agreement with coupled cluster with singles,
doubles, and perturbative triples in the complete basis set limit
(CCSD(T)/CBS) was obtained in the bond lengths. This
number of determinants is however surprisingly large for the
description of the ground state of such a small system. Indeed,
we find here that a determinantal description with CIPSI yields
a much smoother convergence in the structural parameters and
QMC energies when the size of the expansion is systematically
incremented. Correspondingly, very accurate values for these
physical properties are already obtained with only a few
thousand determinants.
To construct the CIPSI component of the QMC trial wave

functions, we follow two different schemes: one where we
systematically “expand” the wave function by adding important
determinants at every step, and the other where we first
generate an extremely large wave function and subsequently
“truncate” it to obtain requisite sizes. For a fixed size of the CI
expansion, the “truncation” scheme is expected to be more
accurate than the “expansion” one since the overlap of the
wave function with the FCI wave function is larger. The
difference can be important in systems where the CI
coefficients change dramatically with the number of determi-
nants in the wave function,30 but generation of the large wave
function to initiate “truncation” might not be entirely feasible
for larger systems where the “expansion” scheme would
therefore represent a computationally less expensive route. For
small systems such as butadiene, however, we can employ both
strategies and, consequently, draw an assessment of their
relative performance. Here, we find that the truncation scheme
provides a faster and smoother convergence of the bond
lengths of butadiene, while the convergence of the VMC
energies is comparable for both schemes. We note that we are
looking at extremely small variations in the structural
parameters (well below mÅ) when comparing and establishing
the convergence. Finally, while we primarily employ multi-
configurational self-consistent field (MCSCF) canonical
orbitals in the CIPSI algorithm and as starting orbitals in
QMC, we additionally test the use of natural orbitals. Rather
peculiarly, expansions with natural orbitals commensurate in
size with those with canonical orbitals consistently converge to
slightly higher VMC energies.
The paper is organized as follows. In section 2, we describe

the CIPSI algorithm and the functional form of the Jastrow-
Slater wave functions and, in section 3, we report the

computational details. The numerical results obtained for the
structural optimization of butadiene and a comparison with
our previous Jastrow−CAS results2 are given in section 4.

2. METHODS
CIPSI is an iterative CI selection algorithm that allows us to
perturbatively select determinants from the FCI space. Starting
with an initial reference wave function, additional determinants
are added to the expansion based on their effective second-
order energy contribution which is required to be greater than
a fixed or an iteratively modifiable threshold. Selection
iterations can be performed until a target number of
determinants is reached or until some other selection criterion
is met.31 In the process, the quality of the wave function is
systematically improved and converges toward the FCI
solution.
A step-by-step description of the CIPSI algorithm is

provided in refs 23, 25, 26, and 32 The scheme is briefly
reiterated here. The reference wave function is composed of a
linear combination of Slater determinants, Di , spanning a
space, S:

∑ψ =
∈

c D
D S

i iCIPSI
i (1)

Typically, this reference wave function is initially the single
determinant with the lowest energy, which is also the case here.

At every iteration, the many-body Hamiltonian, ̂ , is
diagonalized in the reference space S to obtain the variationally
minimized energy Eref and the corresponding ci coefficients.
Then, all the determinants Dj outside of this reference space

that are connected to S by ̂ are generated, and their
individual contributions to the energy are estimated with the
Epstein−Nesbet33,34 perturbation theory,

δ
ψ

=
⟨ ̂ ⟩

− ⟨ ̂ ⟩
E

D

E D D
j

j

j j

(2) CIPSI

2

ref
(2)

If |δEj
(2)| is greater than a given threshold, determinant Dj is

selected for the next iteration. Summing all these contributions
gives EPT2, namely, the second-order perturbative energy
correction to Eref, and the CIPSI energy of the current iteration
is given by

= +E E ECIPSI ref PT2 (3)

Finally, all the selected determinants are added to the reference
space S for the next iteration.
For the generation of different lengths of the CIPSI

component of the QMC wave function, one could either
follow (a) an “expansion” scheme where we repeat the above
process as many times as necessary, thereby systematically
increasing the size of the wave function, or (b) a “truncation”
scheme after generating a very large CIPSI wave function,
typically to a point where the CIPSI energy (eq 3) is
reasonably converged. The large wave function created for the
second scheme can contain millions of determinants and one
needs to reorder them in decreasing order of the absolute value
of their CI coefficients and then truncate the expansion,
keeping their coefficients the same as in the large CIPSI wave
function. This strategy is said to be a better starting point for
VMC optimization as the determinant coefficients are from a
near FCI calculation.26 We use complete active space SCF

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00393
J. Chem. Theory Comput. 2018, 14, 4176−4182

4177

http://dx.doi.org/10.1021/acs.jctc.8b00393


(CASSCF) orbitals for the majority of these calculations;
however, (c) the use of natural orbitals obtained from a large
CIPSI calculation is another aspect of our investigation.
In the expansion scheme, we choose to impose that the wave

function is an eigenstate of the S2 operator. Therefore, after
each selection, we apply all possible spin flips on the selected
determinants keeping the number of α and β electrons
unchanged. All spin-flipped determinants which are not already
present in the set of selected determinants are added. This
larger set of determinants spans the same space as all the
configuration state functions to which the selected determi-
nants belong. Consequently, when the Hamiltonian is
diagonalized in this larger basis of determinants, the
eigenfunctions are also eigenfunctions of S2. Note that, in
the truncation scheme, the truncation is made in the
determinant space, so the truncated wave functions are not
eigenfunctions of S2. Hence, the comparison of the two
schemes is not exactly one to one.
After generating the CIPSI expansion, we introduce a

positive Jastrow correlation factor and construct the
Jastrow−CIPSI wave function as

∑ψ ψ= =
=

c D
i

N

i iCIPSI
0

det

(4)

where explicitly describes electron−electron and electron−
nucleus (two-body, ‐2 body) and electron−electron−nucleus
(three-body, ‐3 body) correlations35 while imposing the
electron−electron cusp conditions. Ndet represents the number
of determinants in the CIPSI wave function spanning the space
S.

3. COMPUTATIONAL DETAILS
The QMC calculations are carried out with the program
package CHAMP.36 We employ scalar-relativistic energy-
consistent Hartree−Fock pseudopotentials and the cc-pVTZ
Gaussian basis set specifically constructed for our pseudopo-
tentials.37,38 In particular, we perform all calculations with the
cc-pVTZ basis set and test the convergence of the results with
the cc-pVQZ basis set. To generate the Slater component of
the QMC wave functions, CIPSI calculations are performed in
Quantum Package39 using canonical orbitals obtained from a
CAS(10,10) MCSCF calculation for the ground state of
butadiene carried out with the program GAMESS(US).40,41

All parameters (Jastrow, orbital, and CI coefficients) are
variationally optimized in VMC using the stochastic

reconfiguration method42 in a conjugate gradient implementa-
tion.43 Most calculations are performed with a two-body
Jastrow factor and the impact of the electron−electron−
nucleus terms on the energy is tested for a few cases. Exploiting
the low-numerical-scaling computation of energy and wave
function derivatives,2 the ground-state geometry of butadiene
is simultaneously optimized with the wave function following
the path of steepest descent and an appropriate rescaling of the
interatomic forces. To avoid spikes in forces, an improved
estimator of the interatomic forces is used in all calculations,
which is obtained by sampling the square of a modified wave
function close to nodes.44 In the DMC calculations, we treat
the pseudopotentials using the so-called T-move scheme45 and
employ an imaginary time step of 0.015 au. As shown in the
Supporting Information (SI), this time step yields DMC
energies converged to better than 0.1 mHartree for a simple
Jastrow−CIPSI wave function with only two determinants and
is therefore appropriate for all wave functions of higher quality
considered in this work.
We employ Gaussian0946 to perform CCSD(T) geometry

optimization in combination with our pseudopotentials and in
all-electron calculations in the frozen core (FC) approximation
with the cc-pVXZ (X = D, T, Q, and 5) and aug-cc-pVXZ (X =
D, T, and Q) basis sets. For CCSD(T) geometry optimization
without the FC approximation, we use the PSI4 code47 with
the cc-pCVXZ, cc-pwCVXZ, and corresponding augmented (X
= D, T, and Q) basis sets. The results of these optimizations
and their extrapolations to the CBS limit are detailed in the SI.

4. RESULTS AND DISCUSSION

We investigate the merits of the choice of a CIPSI expansion to
describe the Slater component of a QMC wave function when
optimizing the ground-state geometry of butadiene over the
conventional CAS description. We start all structural
optimizations with the Jastrow−CIPSI wave functions from
the same initial MP2/cc-pVQZ optimized geometry and, as
described above, variationally optimize the Jastrow parameters,
CI coefficients, and orbitals simultaneously with the geometry
in VMC. Post convergence of the VMC energy and
stabilization of the bond lengths, we perform 40 additional
iterations and average these geometries. A final VMC and
DMC energy calculation is done on this average geometry with
the wave function obtained in the last iteration. As detailed in
the SI, reoptimizing the wave function on the average
geometry leads to equivalent energies within the statistical
error.

Table 1. Optimal Ground-State Structural Parameters of Butadiene and Corresponding VMC and DMC Energies (au) with
Increasing Number of CIPSI Determinants Obtained in the Truncation Schemea

bonds (Å) energies (au)

no. det no. param CC CC BLA VMC DMC

1 749 1.45595(28) 1.32415(11) 0.13180(30) −26.24310(32) −26.30426(28)
2 782 1.44596(20) 1.33025(14) 0.11571(29) −26.24912(32) −26.30681(14)
8 822 1.45244(28) 1.33245(15) 0.11999(50) −26.25644(31) −26.31044(26)

128 1594 1.45778(12) 1.33564(20) 0.12214(20) −26.26562(30) −26.31223(24)
1024 5514 1.45632(22) 1.33493(08) 0.12139(25) −26.28829(26) −26.31908(20)
2048 7726 1.45626(15) 1.33456(09) 0.12170(17) −26.29386(25) −26.32147(16)
5114 12147 1.45549(08) 1.33434(11) 0.12115(07) −26.29980(24) −26.32424(09)
15469 24818 1.45491(06) 1.33406(08) 0.12085(10) −26.30880(22) −26.32873(22)
32768 44265 1.45487(25) 1.33414(21) 0.12072(37) −26.31194(12) −26.32928(20)

aThe total number of optimized parameters in the wave function is listed. The statistical error is given in parentheses.
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We primarily focus our discussion on the use of the
“truncation” scheme for the CIPSI-determinant selection since,
unlike the expansion scheme, no added selection criterion has
been used. An initial CIPSI wave function is constructed
including as many as 1.17 million determinants and then
truncated to generate a set of determinantal expansions of
increasing size. The results are summarized in Table 1 and
illustrated in Figures 1 and 2, where the final VMC and DMC

energies, and corresponding structural parameters are plotted
against the size of the CIPSI expansions. We also compare our
results with previous QMC calculations2 of the structural
optimization of butadiene, which employed various CAS
expansions: a CAS(4,4), CAS(4,16), and CAS(4,20) correlat-
ing four π electrons in the orbitals constructed from the 2pz,
3pz, 3dxz, 3dyz, and 4pz atomic orbitals; a CAS(10,10)

consisting of 6 σ and 4 π electrons in 10 bonding and
antibonding orbitals; a truncated RAS(10,22) that includes
single and double excitations in additional 12 π and δ orbitals
over the CAS(10,10) space. Since the cc-pVTZ and cc-pVQZ
basis sets yield VMC and DMC energies compatible to better
than 2 and 0.2 mHartee, respectively, and structural parameters
differing by less than 0.4 mÅ (see SI), we can directly compare
our cc-pVTZ calculations with the results obtained with the
optimization of Jastrow−CAS wave functions in the cc-pVQZ
basis.
As shown in Figure 1, a CIPSI wave function with roughly

100 determinants yields a VMC energy which is only about 1
and 4 mHartree higher than the energies of the CAS(10,10)
and RAS(10,22) expansions consisting of 15 912 and 45 644
Slater determinants, respectively. Unlike the Jastrow−CAS
case, where the energies are scattered around a relatively flat
value, CIPSI expansions of increasing size yield a monotonic
decrease in the VMC energy, with our largest considered
expansion of 32 768 determinants amounting to an energy
which is about 40 mHartree lower than the best RAS(10,22)
value. In fact, the VMC energy obtained with our largest CIPSI
expansion is within 5 mHartree of the seemingly converged
DMC energy obtained with the Jastrow−CAS wave functions.
Therefore, a smart selection of determinants from the
approximate FCI space helps us attain much lower VMC
energies in comparison to CAS expansions over conventionally
used active-space definitions, which instead lead to the
inclusion of many determinants with little contribution to
the energy.
The behavior of DMC parallels the VMC results with the

energy of the Jastrow−CAS wave functions being lowered by
about 8 mHartree when the size of the wave function is
increased from 1 to 20 determinants, and stagnating afterward
as shown in Figure 1. The Jastrow−CIPSI wave function yields
a DMC energy which is comparable with the Jastrow−CAS
case when the CIPSI expansion has only about 100
determinants, while the largest CIPSI expansion gives a
DMC energy 12 mHartree lower than the truncated RAS-
(10,22) case. We also note that the estimate of the FCI limit in
the current basis set on the initial geometry is about −26.275
hartree (see SI) and, therefore, as much as 37 and 54 mHartree
higher than our best VMC and DMC energies. Our best DMC
energies are also superior to the CCSD(T) optimized values
obtained with a quintuple-ζ basis set (see SI).
Importantly, the use of CIPSI expansions (in combination

with a Jastrow factor and the optimization of all wave function
parameters) is not only beneficial in terms of the quality of the
final total energies: the smooth and monotonic convergence of
the VMC and DMC energies with the number of determinants
demonstrates the effectiveness of such an approach in
identifying energetically relevant determinants in a systematic
manner. These important excitations are not easily accessible
through manual selection as demonstrated by the energy
plateau one reaches in constructing very large expansions based
on an a priori choice of an apparently reasonable set of active
orbitals. Besides being completely automated, this feature of
the CIPSI scheme is also crucial for obtaining a smooth
convergence of the structural properties (to better than 1 mÅ)
with the number of determinants as discussed next.
In Figure 2, we illustrate the variation of the carbon−carbon

single and double bonds and of the bond length alternation
(BLA) obtained with the Jastrow−CIPSI expansions. The
convergence of the bond lengths and BLA is smooth with the

Figure 1. Convergence of the VMC and DMC energies on the
optimal geometry with the number of determinants in the CIPSI
expansion (red). Previous results2 obtained with Jastrow−CAS wave
functions are also presented (blue).

Figure 2. Convergence of the single bond (C−C), double bond (C
C), and bond length alternation (BLA) (Å) with the number of
determinants in the CIPSI wave function (red). Previous results2

obtained with a Jastrow−CAS wave function are presented in blue.
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increase in the size of the wave function. While the double
bond is already converged to better than 0.5 mÅ with little
over 2000 determinants, the single bond and, consequently,
the BLA show a somewhat slower convergence and reach the
same level of accuracy with about 5114 determinants. We
stress however that we are here looking at extremely small
differences while establishing the degree of convergence. For
all practical purposes, the BLA is already converged to better
than 1 mÅ within the limits of statistical error with just over
1000 determinants, again proving the ability of CIPSI
expansions to obtain optimal geometry descriptions with a
very small set of determinants. Besides overcoming the non-
uniform convergence of the structural parameters when
expanding the wave function on different active spaces, these
calculations also confirm the need for a rather subtle
multireference description for such conjugated systems.48,49

The converged single bond length is in excellent agreement
with the CCSD(T)/CBS value of 1.455 Å obtained with the
same pseudopotentials used in the QMC calculations (see SI).
Our double bond is instead less than 0.003 Å smaller than the
corresponding CCSD(T)/CBS value, consequently resulting
in a difference of about 0.002 Å on the BLA.
To investigate the impact of the inclusion of three-body

terms in the Jastrow factor, we add them to the CIPSI wave
functions with 2048 and 5114 determinants and reoptimize all
wave function parameters on the fixed average geometries we
have determined with the two-body Jastrow factor. These
optimizations result in the VMC and DMC energies presented
in Table 2. While there is an expected gain in the VMC
energies, the DMC energies are equivalent within the statistical
error of 0.2 mHartree to the energies obtained with a two-body
Jastrow factor. Consequently, given the quality of our
determinantal component, a two-body Jastrow recovers most
of the missing dynamical correlation contribution and is
sufficient for our purposes.
All results presented so far have been obtained by selecting

the CIPSI determinants out of a much larger CIPSI wave
function according to the “truncation” scheme. The VMC
energies obtained with the “expansion” scheme where one
constructs CIPSI expansions of increasing size are compared
with the “truncation” scheme in Figure 3. Both schemes lead to
very comparable convergence in the energy as a function of the
number of determinants in the Jastrow−CIPSI wave function
and to compatible converged structural parameters. However,
as shown in the SI, the variation of the bond lengths and BLA
is not as smooth as in the truncation case. This difference
probably arises from the added requirement of having an
eigenstate of S2 in the expansion scheme. In fact, if we follow
the expansion scheme without this requirement and construct
a wave function of 5114 determinants, we obtain an optimal
VMC single and double bonds of 1.45564(26) and
1.33496(11) Å, respectively, and a BLA of 0.12068(26) Å.
The VMC energy converges to −26.29960(24) au. These
results are in good agreement with the corresponding values
obtained with the truncation scheme.

Finally, we explore a potentially better orbital description in
terms of natural orbitals obtained from a CIPSI calculation
instead of the canonical orbitals resulting from a CAS(10,10)
self-consistent calculation as done above. To this aim, we
determine the natural orbitals for a very large CIPSI wave
function of 2 million determinants and construct three
expansions of roughly 2000, 5000, and 15 000 determinants
with the truncation scheme. Surprisingly, we consistently
obtain higher VMC energies compared to the expansions
generated with canonical orbitals. The reason behind this
observation is unclear. The bond lengths and BLA obtained
with 5000 determinants are in excellent agreement with the
corresponding values for the truncated canonical set of
comparable size but the other test cases do not provide as
compatible values. The results of these calculations are given in
the SI.

5. CONCLUSION
We demonstrated the excellent performance of compact
perturbatively selected CIPSI determinantal expansions in
obtaining significantly lower VMC and DMC energies as
compared to conventional active space definitions for the
challenging case of butadiene. With the use of these wave
functions, we were able to obtain converged ground-state
structural parameters with the use of only a few thousand
determinants. We tested two different schemes for the
selection of the CIPSI expansions either by constructing a
large CIPSI wave function and then truncating it (“truncation”
scheme), or by considering successive sets of determinants in
the CIPSI construction (“expansion” scheme). We found that
the two representations are rather equivalent in terms of
energy but that the truncation scheme possibly leads to a
somewhat smoother convergence of the structural parameters
with the size of the CIPSI expansion. CCSD(T) calculations
with the same pseudopotentials yield a CBS estimate of the
carbon−carbon single bond in very good agreement with our
converged value but a double bond and corresponding BLA

Table 2. Effect of the Inclusion of Three-Body Jastrow Terms ( ‐3 body) on the Total VMC and DMC Energies (au)a

no. det EVMC EDMC ΔEVMC ΔEDMC

2048 −26.29908(15) −26.32162(20) −0.00522(29) −0.00015(26)
5114 −26.30333(23) −26.32412(16) −0.00353(33) 0.00012(18)

aΔE denotes the gain in energy with respect to the values obtained with a two-body Jastrow factor ( ‐2 body). The structures optimized with the
two-body Jastrow factor are used.

Figure 3. Optimal ground-state VMC energies obtained with
Jastrow−CAS and Jastrow−CIPSI wave functions constructed with
the “expansion” and “truncation” schemes.
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smaller by about 0.002 Å. We do not expect any significant
change in the bond lengths upon inclusion of additional
determinants, in view of their weak variations observed over a
wide range of the number of determinants already considered.
Our study therefore shows that the automated selection of

determinants from a CIPSI wave function is an extremely
suitable and less cumbersome alternative for the fast
optimization of ground-state geometries in QMC than a
choice based on correlating electrons in active spaces
constructed from energetically low-lying orbitals. The latter
results in large expansions with many determinants which
contribute little to the energy and to the convergence of the
structural parameters. The use of CIPSI-based wave functions
in combination with the low-scaling algorithms for simulta-
neous wave function and geometry optimization opens the way
to the accurate and efficient QMC optimization of large
molecular systems.
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