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ABSTRACT: Thirty-eight percent of protein structures in the Protein
Data Bank contain at least one metal ion. However, not all these metal
sites are biologically relevant. Cations present as impurities during sample
preparation or in the crystallization buffer can cause the formation of
protein−metal complexes that do not exist in vivo. We implemented a
deep learning approach to build a classifier able to distinguish between
physiological and adventitious zinc-binding sites in the 3D structures of
metalloproteins. We trained the classifier using manually annotated sites
extracted from the MetalPDB database. Using a 10-fold cross validation
procedure, the classifier achieved an accuracy of about 90%. The same neural classifier could predict the physiological relevance of
non-heme mononuclear iron sites with an accuracy of nearly 80%, suggesting that the rules learned on zinc sites have general
relevance. By quantifying the relative importance of the features describing the input zinc sites from the network perspective and by
analyzing the characteristics of the MetalPDB datasets, we inferred some common principles. Physiological sites present a low
solvent accessibility of the aminoacids forming coordination bonds with the metal ion (the metal ligands), a relatively large number
of residues in the metal environment (≥20), and a distinct pattern of conservation of Cys and His residues in the site. Adventitious
sites, on the other hand, tend to have a low number of donor atoms from the polypeptide chain (often one or two). These
observations support the evaluation of the physiological relevance of novel metal-binding sites in protein structures.

■ INTRODUCTION

More than one third of the entries in the Protein Data Bank
contain at least one metal ion,1,2 while it has been estimated
that no less than 40% of enzymes require metal ions for their
biological function.3,4 Indeed, it is well known that a variety of
metals are essential to life.5,6 The reactivity and physiological
role of metal ions in metalloproteins is largely determined by
the local protein structure environment through the modu-
lation of how the metal is positioned in the active site, of how
it interacts with the substrate and, for redox-active metals, of its
reduction potential.7,8

About 88% of all structures in the Protein Data Bank (PDB)
have been solved by X-ray crystallography.9 There are mainly
two recurring issues that occur in the evaluation of metal-
binding sites (MBSs) in these biomolecular structures:
evaluating the chemical identity of the bound metal ion and
ascertaining whether the observed site is physiologically
relevant or is an artifact due to experimental conditions.
Regarding the first point, it is known that sample preparation
procedures, contamination by unintended metals, or exper-
imental conditions, such as pH or irradiation, can affect the
occupancy of MBSs.10 As an example, particle induced X-ray
emission (PIXE) measurements on a sample set of 32
metalloproteins from structural genomics projects highlighted
the presence of protein-bound metal ions that were not

included in the deposited PDB structure.11 The ambiguity of
the identity of the metal ion present in the MBS can also
hamper the local quality of the 3D environment, leading to
distorted geometries and other inaccuracies.12−15

Various extensive analyses of MBSs are available in the
scientific literature,16−22 which focused on the properties of
well-defined, biologically relevant sites. Instead, in this work,
we will concentrate on the comparison of physiological vs
adventitious MBSs, explicitly addressing the second issue
mentioned in the previous paragraph. As a rule of thumb,
previous literature suggested that adventitious sites tend to
occur at the protein surface and have metal coordination
numbers (CNs) on the lower side of the distribution of CNs
for all sites of a given metal.23,24 To better circumstantiate
these assertions, and possibly quantify them, we used the
annotations of the zinc- and mononuclear iron-binding sites in
the MetalPDB database2 to separate the physiological and
adventitious ones, thereby creating a reference dataset. We
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leveraged this resource to train a classifier only on zinc-binding
sites, using a deep learning (DL) approach.25 DL is becoming
increasingly popular in structural bioinformatics, not only for
the prediction of 3D protein structures26,27 but also to support
the analysis of experimental structures.28 Two relevant recent
examples are the identification of water interaction sites29 and,
even more relevant to this work, the classification of enzymatic
vs non-enzymatic metal ions in proteins.30 Our neural classifier
was able to identify physiological sites for both zinc- and iron-
binding sites, which are both transition metal ions, with very
good accuracy. The analysis of the relative importance of the
different features in driving the performance of the neural
network suggested general properties of physiological MBSs.
In summary, the present work provides the community (i)

with an extensive, organized dataset of annotated physio-
logical/adventitious metal sites, which can be reused in other
structural bioinformatics studies of metalloproteins, as well as
(ii) with a freely available tool enabling non-experts to analyze
new MBSs. Our analysis pinpointed some crucial properties
defining the profile of physiological sites, which may be
generally relevant at least for transition metal ions.

■ METHODS
Preparation of the Dataset. MetalPDB1 contains

information for all metalloproteins archived in the Protein
Data Bank.31 For each metalloprotein, all its MBSs are
automatically extracted according to the following procedure:
for each metal atom in the structure, the non-hydrogen atoms
at a distance smaller than 3.0 Å are identified as its donor
atoms (shown in red in Supporting Figure S1), i.e., the atoms
that bind directly to the metal. The protein residues or small
molecules that contain at least one donor atom are the metal
ligands (shown in cyan in Supporting Figure S1) and
constitute the first coordination sphere of the metal ion. The
full MBS (called minimal functional site in ref 2) is obtained by
including any other residue or chemical species having at least
one atom within 5.0 Å from a metal ligand (shown in pink in
Supporting Figure S1). MBSs describe the local structural
environment around a metal ion or metal cofactor and do not
depend on the overall macromolecular structure.
We started from the clusters of “equivalent sites” already

available in MetalPDB.1 Two sites are equivalent if (i) they are
found in PDB chains with the same structure (based on Pfam
domain composition or on the sequence identity between the
two chains being ≥50%) and, after structural superposition of
the PDB chains, they (ii) are superimposed with the same
metal atoms in the same positions. By construction, each
cluster contains MBSs with a specific metal ion, i.e., metal-
substituted sites are assigned to distinct clusters. This
clustering procedure, which is similar to what is done in ref
30, allows redundancy to be removed from the dataset (with
the exception of proteins having multiple MBS, as described
below).
We made functional annotations available through the

public MetalPDB interface for several of the above sites.2 We
have been producing functional annotations of several of these
sites through a manual protocol since shortly after the first
release of the database in 2012.1 At the end of 2017, the
annotations available through the public MetalPDB interface
covered 17% of all zinc sites and 86% of all iron sites in
MetalPDB.2 In the subsequent years, we have continued to
extend the annotation of all metal sites through the same
manual protocol in order to assemble the present dataset. All

annotations are based on the analysis of relevant scientific
literature, as follows: if the relevant article(s) describe the
function of the metal (zinc or iron in this work), then the site
is annotated as physiological; if no role is described for the
metal but the experimental section reports that it was present
in the purification or crystallization buffer, then the site is
annotated as adventitious; in all other cases, the metal is
annotated as “unknown role”, and that site was not used in this
work. We further discarded all sites with no donor atoms from
the protein. The large majority of the annotations for zinc and
iron sites were motivated by and carried out in specific projects
or collaborations.32−35

First, we randomly extracted one site for each cluster
containing either zinc or individual iron ions (except heme
sites). Then, for each selected site, we extracted the protein
chain to which the site belongs and used it as an input to
PROMOTIF36 and NACCESS37 to respectively calculate
secondary structures and solvent accessibility (without taking
into account the presence of the metal ion) at the residue level.
A multiple sequence alignment (MSA) was generated for each
protein using HHblits v. 338 from the HH-suite39 to search the
UniClust30 v. 2018-8 database40 with the parameters “-diff inf
-id 99 -cov 50 -n 3”. This corresponds to the first stage of the
DeepMSA protocol;41 we did not perform the additional stages
of the procedure, suggested when the depth of the MSA is
relatively low (for Nf < 128), as initial tests on a subset of sites
did now show any appreciable improvement in the final
performance. For each residue of the protein chain, we
included the following groups of features: (i) the profile of
sequence conservation (fractional occurrence of each of the 20
amino acids), where the i-th row of the position-specific
frequency matrix (PSFM) derived from the MSA was used as
the representation of the ith position in the sequence; (ii)
absolute and relative solvent accessibility; (iii) role in the MBS
(2 for metal ligands; 1 for all other MBS residues; 0 for all
other residues in the protein) (iv) secondary structure (helix/
sheet/turn/other). This defined a set of 29 features for each
residue in the protein (Supporting Table S1), leading to an
input matrix of size L × 29 for each MBS, where L is the length
of the protein chain harboring the site. The PSFM contains the
frequency of each of the 20 amino acids at all the positions of
the MSA where the majority of the sequences do not have
gaps.
Note that proteins harboring more than one MBS will give

rise to as many clusters as the number of MBSs. The definition
of MBS in MetalPDB mandates that independent MBSs must
have all distinct metal-binding protein residues. Therefore,
even if a given chain may appear more than once in the dataset,
the features describing the location (group i above) of its
various MBSs and, consequently, the importance that the
neural network gives to all the features along the sequence, will
differ for the different sites.
The list of sites with their annotation is available as

Supporting Information; the latter includes also the values of
the features for all sites.

Neural Classifier. Figure 1 shows the building blocks of
the neural architecture and how they interact with each other.
The input is a sequence S comprising L data points (xt). L is
the length of the protein sequence, xt represents the set of the
n input features for the t-th residue, as described in the
previous section. Thus, the input is an n × L matrix. After
processing all the blocks, the classifier returns a prediction of
the type of MBS that is contained in the protein structure.
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Since we know that the role of the residues in the protein is
strongly influenced by their neighborhood, in the first step, the
classifier extracts information at a local level. The module
Convolutional 1D generates a new representation of the
sequence, S′, where the value of each position is a function of
its neighborhood in S. This is done by performing a
convolutional operation on S using a convolutional filter of
size w (kw), corresponding to the size of the neighborhood that
we take into account. Thus, S′ = {xt′; t = 1, ..., L} where xt′ =
f CONV (xt, kw). As we are in a machine learning context, this
module learns to extract local information from the sequence,
which is done by learning the convolutional function f CONV
and, more specifically, the values of the convolutional filter kw.
A suitable network model to deal with sequential data, such

as S′, is the recurrent neural network (RNN). In RNNs, the
model creates a representation ht for the t-th residue of the
chain, which depends on the representation generated for the
preceding residue, so ht = f RNN (xt, h(t‑1)). This implies that the
representation of each residue depends on all the preceding
ones. This property of the RNN makes it a suitable tool for
extracting a global representation of the input sequence. The
RNN is fed with the output of the convolutional 1D block, S′,
and generates a sequence of residue representations h1, h2, ...,
hL. In practice, we are only interested in the last representation,
hL, which constitutes the global representation of the whole
sequence and, thus, is the outcome of the RNN module.
At this point, we have an array hL representing the input

sequence S, whose size does not depend on the length L any
longer. hL is the input to the final layer of the classifier (fully
connected), whose aim is to associate one of the two classes to
the input sequence S (now represented by hL). This is achieved
by approximating a probability distribution over the classes,
given the input, as the outcome of the layer, y =

[P(physiological|S), P(adventitious|S)]. The resulting pre-
dicted class is the one having the highest probability value as
computed by a linear feedforward layer with two output
neurons.
All the layers described above are neural blocks, whose

functions are learned as in the classical learning process using
the backpropagation algorithm.42 A complete description of
the network architecture, all related parameters, hyper-
parameters, and training strategy is available in the Supporting
Information.

Evaluation of Feature Importance. Si = (xi,1, xi,2, ..., xi, L)
is the i-th row of S, i.e., the ensemble of the values of the ith
feature for all the residues in the sequence. We define a
perturbed version of Si as Si

p = Si + αig, where αi is the
magnitude of the domain of the ith feature and g L∈  is an
array of Gaussian noise N(0,1) samples. We then define: Ytarg =
{y1, ..., yN}, Y = {y1, y2, ..., yN}, Ynoise(i) = {y1, noise(i), y2, noise(i), ...,
yN, noise(i)} where Ytarg contains the target values, Y contains the
predictions with the original input dataset (Si), and Ynoise(i)
contains the predictions generated after the perturbation of the
ith feature for all residues (Si

p). If Acc()∈[0,1] is the accuracy
of the prediction, we define the importance of the ith feature as
Ii = Acc(Ytarg, Y) − Acc(Ytarg, Ynoise(i)). The more sensitive the
model is to variations of the ith feature, the greater is the
impact on the accuracy of the predictions and, hence, the value
of Ii. These statistics were calculated on the test sets of the 10-
fold cross-validation procedure (Supporting Information).

■ RESULTS

Zinc Dataset and Features. We annotated one
representative site for each zinc−protein family in MetalPDB.2

These sites were taken from structures solved using any
technique; for X-ray and cryoEM structures, we did not use a
resolution filter. Our dataset of zinc-binding sites comprised
1944 physiological sites and 3352 adventitious sites.
Our work started from the hypothesis that it is possible to

pinpoint a restricted number of key structural properties that,
together with sequence information, determine the nature
(physiological or adventitious) of the metal-binding site (MBS
hereafter). We thus aimed at building a classifier to predict the
type of MBS, and, in line with our hypothesis, understand/
discover whether a sequential representation of a well-defined
set of features was sufficient to successfully accomplish this
task. We adopted a combination of features focused on the
structural properties and features encompassing the entire
protein sequence. The protein structure provides information
on which protein residues constitute the first coordination
sphere of the metal ion and its local environment (defined in
the binding role features) and on the secondary structure and
solvent accessibility of all protein residues, whereas multiple
sequence alignments (MSA) quantify the conservation of the
protein chain harboring the site. The MBS is a relatively small
portion of the entire 3D structure, and its associated features
can act as a weight for the different parts of the sequence from
the binding role perspective, even though we did not explicitly
instruct the classifier to do so.
To train the neural network, we used all zinc(II) sites in the

dataset; the contribution of the physiological sites to the cost
function of the classifier was scaled up by a 1.7 factor to
account for the imbalance with respect to adventitious sites.
The training involved a k-fold cross-validation43 procedure
(with k = 10) for which the dataset was divided in 10

Figure 1. Scheme of the classifier. The network is composed by three
modules. The convolutional module processes the input data, and its
outcome is then fed to the recurrent module; finally, the fully
connected module generates the estimated class probabilities for the
input site.
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subdatasets, commonly referred to as folds. Each fold is
expected to be representative, from a data distribution
perspective, of the whole dataset. Out of these 10 subdatasets,
one is kept as the holdout dataset and used as the test set, one
is used as the validation set, and the remaining eight folds are
used to optimize the network parameters. In practice, the
parameters are adjusted to optimize the classification of the
validation set. In our configuration, the average sequence
similarity between each fold and all other folds was 22.5% ±
0.1% (which thus corresponds to the average similarity
between any given test set and the corresponding training
set). After optimization, the performance of the model for a
given fold selection is computed based on the classification of
the test set, which has not been used until this point of the
procedure and, thus, is completely new to the classifier. The
procedure is repeated k times by rotating the role of all folds
(training, validation, and test).
Performance of the Zinc(II) Neural Classifier. We

obtained an average accuracy (fraction of all sites that were
correctly identified over the 10 test sets) of 89.9% ± 1.3%. The
sequence similarity of the test sets with respect to the
corresponding training sets was sufficiently low to ensure that
the observed performance was not biased by the occurrence of
close homologues in the different groups. To understand how
the model behaves on the two classes (physiological or
adventitious in this case), we computed the confusion matrix
(Table 1) from which a number of performance metrics can be

derived (Table 2). The MCC value, a measure of overall
performance that is not particularly sensitive to the different
sizes of the positive and negative datasets,44 of 0.780 indicates
that the neural classifier has a balanced performance. More in
detail, our classifier appears to be slightly better at identifying
adventitious than physiological sites. The predictions of

physiological sites had an 11.4% error (false discovery rate,
FDR). This error rate is somewhat higher than the
misannotation rate, which we estimate to be about 5% by
double checking a random selection of 100 sites.
Binary classifiers assign each data point to a class based on

their computed score with respect to a threshold β (typically β
= 0.5 for classifiers using the 0−1 score range as done here).
Thus, for different values of β, we have different associated
confusion matrices. The ROC curve is the set of pairs [1-
TNR(β), TPR(β)] obtained by varying the threshold β.45 In
practice, the ROC curve plots TPR as a function of 1-TNR.
The ideal classifier should have 1-TNR = 0 and TPR = 1
(corresponding to the top-left corner of the plot). The area
under the ROC curve (AUC) quantifies the performance of
the tool; the larger the AUC, which ranges from 0 to 1, the
better. The average ROC curve over the 10-fold cross
validation procedure (Supporting Figure S2) shows that the
behavior of our classifier was very similar for all the folds and
clearly distant from a random classifier. The AUC was 0.940 ±
0.006.
For any given site, the score assigned by the neural classifier

to each of the two output classes can be regarded as the
estimated probability that the site belongs to either class. The
absolute value of the difference between the two scores is thus
a measure of the imbalance with which the classifier predicts a
site to be physiological or adventitious. We refer to this
difference as the “confidence” of the prediction. As shown in
Figure 2, the large majority of zinc(II) sites (88%) are

classified with a confidence higher than 0.85. The error rate of
the neural classifier is also strongly dependent on the
confidence of the prediction. Indeed, low-confidence pre-
dictions have error rates between 30 and 60%, whereas the
error rate for predictions having a confidence between 0.85 and
0.95 is 13% and the rate when the confidence is higher than
0.95 is as low as 5.4%. By grouping together all 4652
predictions with a confidence higher than 0.85, we have an
error rate of 6.9%.
In our protocol, we used the information from the

asymmetric unit of the crystal structure without attempting a
reconstruction of the structure based on symmetry informa-

Table 1. Confusion Matrix of the Performances for the Test
Sets Averaged over the 10-Fold Cross Validation
Procedurea

estimated physiological estimated adventitious

real physiological 1615 TP 329 FN
real adventitious 208 FP 3144 TN

aEach row corresponds to the data points belonging to a certain class
(“real” class, corresponding to physiological/adventitious zinc(II)
sites in this work), whereas the columns show how the model
classified the points (“estimated” class).

Table 2. Performance Metrics Derived from the Results of
Table 1

metric value formula meaning

PPV 0.886 TP/(TP + FP) fraction of positive predictions
that are correct

recall, TPR 0.831 TP/(TP + FN) fraction of all positive sites
that are correctly classified

NPV 0.905 TN/(TN + FN) fraction of negative
predictions that are correct

specificity,
TNR

0.938 TN/(TN + FP) fraction of all negative sites
that are correctly classified

FDR 0.114 1-PPV fraction of positive predictions
that are wrong

MCC 0.780 Matthews’ correlation
coefficient

Figure 2. (Top) Number of predictions for zinc(II) sites with a given
confidence (absolute value of the difference between the score of the
positive and of the negative classes). (Bottom) Error rate of the neural
classifier in each confidence range. The data have been computed
using 0.1 bins.
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tion. Furthermore, for MBSs at a protein−protein interface, we
computed the features using only a single chain even if both
chains were present in the asymmetric unit. This choice was
due to the difficulty of properly building deep multiple
sequence alignments for pairs of interacting proteins. Never-
theless, the performance of the neural classifier for interfacial
sites was marginally lower than for all other sites.
Evaluation of the Results. Since our classifier is a neural

network, it is not possible to rationalize its decisions.46,47

Nevertheless, we tried to obtain some insight by perturbing the
input features in order to evaluate the corresponding impact on
the predictions, thus revealing the importance of each of them
from the network perspective. We did this by adding Gaussian
noise to one feature at the time in the test sets (thus degrading
the quality of the input to the network) and observing the
decrease of classification accuracy (Figure 3). The most

important feature is the identification of which amino acids
belong to the first and second coordination spheres of the
metal (binding role). This is followed closely by information
on the conservation profiles of Cys and His, essentially at the
same level. Other significant impacts are those of solvent
accessibility, either absolute, Abs.Solv.Acc., or relative,
Rel.Solv.Acc.37 The conservation profile of Asn has some
importance. Notably, information on secondary structure
elements has a negligible impact on the performance of the
classifier (Figure 3).
We further analyzed the above results by training the same

neural classifier with a reduced set of input features. For this
experiment, we used the following groups: (i) the sequence
conservation of Cys, His, Asn, and Thr (the four most relevant
residues in Figure 3); (ii) the three binding role features; (iii)
the two solvent accessibility features; and (iv) various
combinations of (i), (ii) and (iii). The results confirmed the
prominent relevance of the binding role information, closely
followed by the conservation of four selected amino acids
(Table 3). This analysis deemphasized the importance of
solvent accessibility. However, it should be noted that we did
not perform a search for the best NN architecture for each

combination of input features, making the results of Table 3 a
lower limit for the performance of the corresponding optimal
network architecture.
Figure 4 shows a visualization of the input data in the form

of a reduced-dimensionality plot of the data representation
learned by the network (i.e., the hL vector generated by the
RNN module), colored based on the input class (Figure 4A)
and predicted class (Figure 4B). The neural classifier achieved
a clear separation between the predicted physiological and
adventitious sites. Thus, from the machine perspective, the
large majority of the points belonging to a given class are closer
to each other than to the points of the other class. This
separation is a very good match to the distribution of the real
data (Figure 4A). This is the result of a complex interplay
among all the features analyzed in the previous sections.
Nevertheless, it is possible to relate the data representation
learned by the network to the experimentally determined
properties of the MBSs, also based on the information on
feature importance. For example, by highlighting the
accessibility of the sites, we observed that low-accessibility
sites lie in the region that comprises the majority of the
physiological sites (Figure 4C).

Application of the Zinc(II) Neural Classifier to Non-
Heme Mononuclear Iron Sites. We applied the zinc(II)
neural classifier to 451 non-heme mononuclear iron sites taken
from MetalPDB in order to investigate whether the differences
between the coordination chemistry of zinc and iron would
significantly affect the performance. We did not take into
account heme proteins because these cofactors have highly
specific characteristics. Iron(II) and iron(III) sites were used
without distinction. The results were good, with 78.6% of the
physiological sites and 78.3% of the adventitious sites correctly
identified (Table 4). The error rate for positive predictions was
10.8%, which is practically the same as for the zinc sites.
Seventy-three percent of the predictions had a confidence
value of 0.85 or more.

Experimental Determinants of the Performance of
the Neural Classifier. Figure 5 shows the distribution of the
features highlighted in Figure 3 for the residues of the zinc(II)
MBSs in the whole dataset. First, we inspected the binding role
of residues in the MBS, which was the most important group of
features. It can be immediately observed that physiological and
adventitious sites differ in the distributions of the number of
metal-binding amino acids (“metal ligands”), as well as for
their average solvent accessibility (Figure 5A,B). Adventitious
sites tend to have a lower number of metal ligands, which are
more solvent-exposed than in the case of physiological sites.
However, the distribution of solvent accessibility values for the
latter sites is relatively wide. When looking at the whole MBS,
physiological sites involve a larger number of residues than

Figure 3. Importance of the input features. The plot shows the
decrease in classification accuracy caused by the perturbation of the
input features of the test sets, measured by the importance parameter
(see Methods) averaged over the ten folds. The 20 amino acids were
perturbed individually. Features describing the binding role of the
residues and their secondary structure were merged.

Table 3. Average Accuracy over the Test Sets of the 10 Fold
Cross-Validation Procedure for Neural Networks Trained
with a Subset of the 29 Features

features
test

accuracy
standard
deviation

conservation of Cys, His, Asn, and Thr 80.9 1.5
binding role 84.5 1.5
solvent accessibility 64.0 4.9
conservation of C, H, N, T plus binding role 86.6 1.6
conservation of C, H, N, T plus solvent
accessibility

75.7 3.3

binding role plus solvent accessibility 84.2 1.9

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00522
J. Chem. Inf. Model. 2022, 62, 2951−2960

2955

https://pubs.acs.org/doi/10.1021/acs.jcim.2c00522?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00522?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00522?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00522?fig=fig3&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00522?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


adventitious sites. Per construction of the MetalPDB database,
the MBS is the ensemble of the atoms in the metal ligands and
any other atom belonging to a chemical species within 5 Å
from a ligand;1 the MBS describes the local 3D environment
around the metal cofactor independently of the protein fold.
The average number of residues in the MBS is 22.3 vs 12.5 for
physiological and adventitious sites, respectively (Figure 5C).
Notably, the amino acids in the second coordination sphere

Figure 4. Data visualization generated with the TSNE dimensionality reduction algorithm. This algorithm produces a representation in an arbitrary
2D space of the distance between the points in the original multidimensional space of the data representation of the neural network. The points
(red: physiological sites; blue: adventitious sites) are colored according to the (top) known class and (center) predicted class. In the bottom panel,
the points are colored based on the average absolute solvent accessibility of the protein residues providing the donor atoms to the zinc(II) ion(s)
regardless of their classification.

Table 4. Confusion Matrix for the Classification of Non-
Heme Mononuclear Iron Sites by the Zinc(II) Neural
Classifier

estimated P estimated N

real P 246 TP 67 FN
real N 30 FP 108 TN
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tend to have the same solvent exposure in both groups of sites
(Figure 5D), with values similar to those of the metal ligands
in adventitious sites. As a result, the average solvent
accessibility of the whole MBS is alike for both types of sites
(not shown).

■ DISCUSSION
We trained a convolutional-recurrent deep neural net-
work48−50 to classify physiological and adventitious zinc(II)-
binding sites (Supporting Figure S3) in proteins using a
consolidated machine learning approach.25 Adventitious sites
are the result of the experimental conditions under which the
protein sample was prepared and crystallized and are expected
not to be populated in vivo. We constructed the dataset for
training and testing the neural classifier using the manually
annotated entries in the MetalPDB database.2 Sequence and
structure comparison methods were used to remove
redundancy from the dataset. Our zinc(II) neural classifier
achieved a satisfactory performance, quantified by a MCC
value of 0.780, which is in line with the performance of other
DL applications in structural biology,29,30 and a AUC of 0.94.
Only about 11% of the sites classified as physiological were
incorrectly assigned, whereas the error rate for the classification
of adventitious sites was slightly better (9.6%). The network
outputs two independently estimated scores for each site,
practically corresponding to the probability that the site is
adventitious and the probability that the site is physiological.
The absolute value of the difference between the two scores
can be taken as a measure of the confidence that the classifier
has in its assignment of a specific site to either class. In fact, the
error rate for predictions with a confidence of 0.85 or greater is
somewhat smaller than for lower confidence values (7% vs 30−
50%). A lower confidence for a given data point reflects the
fact that the point is located close to the surface separating
physiological and adventitious sites (Figure 4), which indeed
corresponds to a lower reliability of the prediction. The neural
classifier featured a satisfactory performance also for non-heme

mononuclear iron sites (78% accuracy), which had not been
used at any stage of its development. This is remarkable given
the negligible protein sequence similarity between the two
groups and the different coordination preferences of zinc(II) vs
iron. For example, in our datasets, the majority of zinc(II) sites
have a coordination of 4, whereas the most common
coordination number for the analyzed iron sites is 6 (e.g.
Supporting Figure S3D). The results on iron sites constitute
both a further validation of the implemented approach and an
intriguing outcome of our work.
The satisfactory performance of the neural classifier allows it

to be used as a tool to validate novel metal sites binding
zinc(II) or mononuclear iron ions, which are both transition
metals. Beyond this achievement, by looking at how the
different features affected the classification, we obtained insight
on the chemical properties of physiological and adventitious
sites. This process was eased by the relatively straightforward
definition of the features we input to the network. Figure 3
shows that pinning down the metal ligands as well as the
protein residues in the MBS constitutes the most important
input to achieve a high-quality classification. Using only these
features to train the network results in an accuracy of 84.5%
(Table 3). From the structural viewpoint, the next most
important property is the solvent accessibility of the metal
ligands. At the sequence level, the conservation pattern of Cys
and His residues are crucial. Information about conservation of
Cys and His, along with Asp and Glu, has been extensively
used for the sequence-based prediction of the occurrence of
metal-binding sites.51−54 Intriguingly, information on Asp and
Glu did not have a significant impact on the performance of
the neural classifier, whereas the conservation of Asn played
some role. The latter finding is difficult to rationalize: the only
indication we have is that Asn is about 1.6 times more
common in the second sphere of physiological sites than
adventitious sites. Based on the above hints, we analyzed in
detail the experimental dataset and were able to define some
specific trends that can constitute rules for the identification of

Figure 5. Comparison of value ranges (adventitious vs physiological) for a selection of the features defined for all zinc-binding sites. (A) Number of
amino acids binding the metal (“metal ligands”). (B) Average absolute solvent accessibility of the metal ligands. (C) Number of residues in the site.
(D) Average absolute solvent accessibility of the residues in the second coordination sphere. Red empty boxes: adventitious sites; blue hatched
boxes: physiological sites. Box plot setup: the box goes from the 25th to the 75th percentile (1st and 3rd quartile, respectively); whiskers are at the
5th and 95th percentile; the minimum and maximum values are shown by crosses; the square in the box corresponds to the mean value.
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physiological sites. These trends support the anecdotal
evidence in the scientific literature that adventitious sites
occur at the protein surface.23,24,55 A likely reason for this is the
fact that the protein is fully folded before the metal ion is
captured e.g., from the crystallization buffer.
In detail, the protein provides less metal ligands in

adventitious sites than in physiological sites; in addition, the
ligands in the former sites show higher solvent accessibility in
agreement with the surface location of adventitious sites
(Figure 5). Consequently, the first coordination sphere of
adventitious sites is more likely to involve water molecules or
other non-proteinaceous ligands and has higher local B-factors,
potentially hampering the detection of all metal ligands.23

Another noteworthy difference among physiological and
adventitious sites, which is also dependent on their different
location within the protein structure, is in the number of
residues in the site. According to the MetalPDB protocol,1 the
MBS comprises the metal ligands together with any protein
residue having at least one heavy atom within 5 Å from any
atom of the ligands. Indeed, using only the information on
which residues are in the MBS (binding role) allows the
classifier to achieve an accuracy of nearly 85% (Table 3). As
they are located deeper within the structure, physiological
MBSs involve, on average, nearly twice the number of residues
than adventitious MBSs.
To evaluate a possible usage scenario for our classifier, we

selected 14 different zinc sites from protein structures released
in 2022. For 11 of these (five physiological and six adventitious
sites), we obtained predictions with a confidence greater than
0.50, which were all correct (Supporting Table S2). Whereas
all the physiological sites had some sequence similarity to
structures already contained in the dataset, the adventitious
sites were all novel. An interesting example is that of a zinc(II)
ion found in the active site of 1,2-β-mannobiose phosphorylase
from Thermoanaerobacter sp. X-514 (PDB entry7FIS), bound
to two protein residues and to the phosphate moiety of a
molecule of the substrate mannose-1-phosphate.56 Enzyme
activity assays show that the zinc ion is a result of
crystallization conditions and is not required for catalysis. In
agreement with this, the neural classifier predicted this MBS to
be adventitious.

■ CONCLUSIONS
We trained a deep neural network to classify zinc(II)-binding
sites in the 3D structures of proteins as physiological or
adventitious. In addition to achieving a very good performance
for such sites, the classifier also had a remarkable accuracy for
non-heme mononuclear iron sites. Using the hints provided by
the analysis of feature importance, we managed to pinpoint
some simple structural features that can be used as rules to
distinguish physiological and adventitious sites. MBSs
involving 20 protein residues or more (as computed by
MetalPDB, Supporting Figure S1) are extremely likely to be
physiological as well as sites with four metal ligands or more
provided by the protein chain. In evaluating this aspect, one
needs to be cautious of the inclusion of additional amino acids
provided by sequence tags inserted, e.g., to facilitate protein
purification (such as poly-His tags), which of course are not
physiologically relevant. Another important parameter is the
solvent accessibility of the metal ligands, although it is not
practical in this case to define a reliable cut-off value because of
the width of the corresponding distributions. Nevertheless,
metal ligands in physiological MBSs tend to have low solvent

accessibility. The above rules should apply at least to “simple”
(mononuclear) sites harboring transition metal ions. Notably,
the classification of complex metal cofactors, such as
polymetallic clusters or organometallic cofactors, should be
more straightforward than what we accomplished here, mostly
because these sites are very unlikely to assemble in the absence
of specific biosynthetic systems or of finely tuned chemical
conditions during sample preparation.
The present classifier is freely available to the scientific

community as a stand-alone tool (see Data and Software
Availability) to enable the annotation of zinc and iron sites in
the newly determined 3D structures of metalloproteins. This
allows researchers to keep pace with the ever-increasing
throughput of structural biology projects and makes functional
analysis of metal sites possible even to non-experts in
bioinorganic chemistry.
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