
Variability in docking success rates due to dataset preparation

Christopher R. Corbeil • Christopher I. Williams •

Paul Labute

Received: 23 December 2011 / Accepted: 3 April 2012 / Published online: 8 May 2012

� The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract The results of cognate docking with the pre-

pared Astex dataset provided by the organizers of the

‘‘Docking and Scoring: A Review of Docking Programs’’

session at the 241st ACS national meeting are presented.

The MOE software with the newly developed GBVI/WSA

dG scoring function is used throughout the study. For 80 %

of the Astex targets, the MOE docker produces a top-

scoring pose within 2 Å of the X-ray structure. For 91 % of

the targets a pose within 2 Å of the X-ray structure is

produced in the top 30 poses. Docking failures, defined as

cases where the top scoring pose is greater than 2 Å from

the experimental structure, are shown to be largely due to

the absence of bound waters in the source dataset, high-

lighting the need to include these and other crucial infor-

mation in future standardized sets. Docking success is

shown to depend heavily on data preparation. A ‘‘dataset

preparation’’ error of 0.5 kcal/mol is shown to cause fluc-

tuations of over 20 % in docking success rates.

Keywords Docking � Scoring � Errors � MOE �
GBVI/WSA

Introduction

Docking methods have now been in existence for over

35 years, starting with Levinthal et al.’s use of docking to

predict possible conformations of hemoglobin fibers [1].

Since then many docking programs have been developed

[2], primarily for protein–ligand docking in the context of

small-molecule structure-based drug discovery. While

docking programs have become widespread, many issues

remain unresolved such as the proper treatment of protein

flexibility, solvation and ultimately, the accurate prediction

of binding affinities [3–6]. To monitor improvements and

the current status of the field, it has become popular to

compare various docking methods with studies aimed at

assessing the accuracy and limitations of the different

programs and protocols. [7–10]. However, despite a large

number of comparative studies, it still remains difficult to

determine which programs and protocols result in overall

performance improvements. Many studies have shown that

docking success rates are heavily dependent on many

variables, ranging from the scoring function being used [7],

the target being investigated [8], the input for docking [9,

10], and even the metrics used to determine success in the

study [11]. As a result, it can be a challenge to compare

results from different validation studies, which often

present contradictory conclusions.

One major stumbling block to the advancement of

protein–ligand docking validation has been the lack of a

standard test set agreed upon and used by the entire com-

munity. The absence of such a set is one reason why it can

be difficult to compare or even reproduce published

docking results, because access to the primary data used in

the computational experiments is often limited [12]. The

need for validation test sets has been partially addressed in

other computational chemistry fields through competitions

such as CSAR (Community Structure–Activity Resource)

for binding affinity prediction [13, 14], CASP (Critical

Assessment of protein Structure Prediction) [15–23] for

protein structure prediction and CAPRI (Critical Assess-

ment of PRediction of Interactions) [24–27] for protein–

protein docking. In these events the data is curated by the
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organization and given to the participants (blinded or not)

who then asses how their methods perform. The use of

standard community tests sets in these competitions makes

direct comparison of validation studies straightforward.

To overcome the lack of organized competitions and

standardized test sets in protein–ligand docking, efforts

have been made to publish datasets, such as Astex [28], and

DUD [29], for use when conducting docking and/or bind-

ing affinity prediction experiments. However, even when

docking studies use these published sets, it can be difficult

to compare or reproduce results, because the researchers

often significantly process and manipulate the data before

using them as input for docking programs. The details of

these manipulations are often subtle, and can have a pro-

found effect on results; a small change in a hydroxyl rot-

amer in the binding pocket, or the inclusion or deletion of a

bound water, can have huge effects on docking perfor-

mance [30]. Unfortunately, exclusion of any of these small

details from a methods section can make it difficult or

impossible to reproduce published results.

With no standing organization to produce standardized

datasets and to run competitions for protein–ligand dock-

ing, it is left up to individuals to organize fair and un-

biased events [8, 13, 31–33]. One such event occurred in

the ‘‘Docking and Scoring: A Review of Docking Pro-

grams’’ session during the 241st ACS national meeting in

which we participated. The ultimate goal of this event was

to assess the current status of docking programs. The ses-

sion consisted of using the Astex Diverse Set [28] for pose

prediction and the DUD set [29] for virtual screening

accuracy. In a standardization effort the organizers of the

competition prepared the input data themselves, and asked

the participants to use the structures ‘‘as-given’’. This

would hopefully remove biases associated with dataset

preparation and evolve some standardized datasets. The

organizers also defined how the results should be reported,

to minimize difficulties in comparisons that arise from

using different success metrics.

This paper presents the results of our participation in this

session and covers four major points of discussion:

1. Development of a new scoring function, GBVI/WSA

dG.

2. The results of cognate docking with MOE using the

ACS-Astex set input ‘as-given’ and after in-house

manipulations.

3. Detailed analysis of docking failure cases, which point

out errors and inconsistencies in source test datasets.

4. The effect of dataset preparation on docking error, and

the effect of error on docking success rates.

The MOE docking architecture provides a standardized

docking workflow that divides docking into a series of pro-

tocols, each of which can be modified and adjusted

independently of the others. Thus it provides a good starting

platform to compare the effect of each aspect of the docking

workflow on the final results. To this effect, we developed a

new scoring function, which was easily plugged into the

existing MOE architecture for this study. We elected to

develop a new scoring function instead of using existing

functions because (a) we wanted to test a scoring function

developed and trained on data not in the ACS-Astex set, (thus

removing the bias of a scoring function trained to recover the

Astex crystallographic pose) and (b) we wanted a simple

force field-based scoring function with fewer terms, which

will have a smaller probability of being over-fitted compared

to more complex scoring functions [34].

The results of cognate docking to the ACS-Astex set are

presented, both using the data ‘as-given’, as suggested by

the competition organizers and after in-house manipula-

tions. The performance improvements along with details

and justification of the in-house input manipulations will be

discussed.

Special attention is given to the docking failures, espe-

cially in cases where failure should be expected because of

problems with the source data, such as bad contacts and

incorrect chirality. We show that even the highly-curated

ACS-Astex dataset used in this study has several problems,

despite being of modest size and having been examined by

experts in the field. This highlights the real technical and

scientific difficulties in preparing protein–ligand validation

test sets. Based on experiences in this study, recommen-

dations for dataset preparation are put forth.

Finally, the estimated errors in docking that result from

differences in structure preparation are shown to signifi-

cantly affects docking, giving rise to differences in success

rates greater than 20 %.

Materials and methods

Development of a force-field based scoring function

Dataset preparation

For training and testing of the GBVI/WSA dG (General-

ized-Born Volume Integral/Weighted Surface area) scoring

function, the SIE [35] and CSAR-NRC HiQ [13, 30]

datasets where used respectively. The SIE set is comprised

of 99 curated protein–ligand complexes with affinities

spanning 10 orders of magnitude (-2 to -15 kcal/mol).

The CSAR set is comprised of 343 high-quality, curated

protein–ligand complexes with affinities spanning 12

orders of magnitude (1 to -17 kcal/mol).

Each set was downloaded from their respective sources

[13, 35]. The structures were then minimized using the

MMFF94x force-field with reaction-field electrostatics
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(Din = 1, Dout = 80) using a flat bottom tether (10.0 kcal/

mol, 0.25 Å) which was applied to all atoms. All refine-

ments were done in MOE [36].

Scoring function expression and model

The protein–ligand binding free energy is calculated using

a formalism similar to that of SIE.

ECoul:
Inter and EvdW

Inter represent the columbic and van der Waals

contribution to binding respectively. These terms were cal-

culated using the MMFF94x force field using an 8–10 Å

cutoff distance, with a dielectric constant of 1 calculated

using MOE. The electrostatic solvation contribution, DGR
Bind,

is the change in reaction field energy upon binding. It is

calculated using a continuum dielectric model with an inte-

rior dielectric constant of 1 and an exterior dielectric of 80.

Reaction field energies were calculated using GB/VI [37]

which estimates the free energy of hydration as a classical

electrostatic energy plus a cavitation energy using a volume

integral London dispersion energy. The DGnpsol
Bind term repre-

sents the change in non-polar solvation (van der Waals and

cavitation cost) upon binding. The DGnpsol
Bind can be approxi-

mated using a weighted solvent-accessible surface area

(DSAweighted), scaled with at proportionality factor, c.

DGnpsol
Bind ¼ cDSAweighted

Surface patches are weighted based on depth of the pocket,

therefore down-weighting changes in exposed surfaced

area (see Fig. 1).

a, c and c are constants that were fit to the affinity values

of the 99 complexes of the SIE dataset. Fits were done

using partial least squares regression in the MOE QSAR

module. Additionally the scaling factor for electrostatic

interaction was empirically set to 2/3 which yielded higher

accuracy then the ideal theoretical value of 1/2 [38].

Preparing the ACS-Astex dataset

The ‘as-given’ ACS-Astex dataset

The initial dataset was prepared by the organizers of the

ACS session and given to participants to use ‘‘as-given’’

[39]. Despite the organizers’ instructions, close inspection

of the supplied data indicated that additional preparation was

required. The PDB IDs of all the problem complexes are

listed in Table 1, divided into sections based on three

common types of problem. In 39 cases, the stereo configu-

ration in SD file atom blocks were inconsistant with the

supplied 3D geometries, and had to be reset. In 19 cases it

was necessary to add hydrogens to co-factors. In 27 cases

hydrogens were missing from alternate location B and were

therefore added. Furthermore, in some cases alternate

locations with the highest occupancy were not chosen for the

receptor; instead the first alternate location ‘‘A’’ was used. In

total, 58 out of 85 complexes required some minimal prep-

aration. Lastly, the organizers identified 3 sites for 1TZ8

where site 2 and 3 are due to crystal contacts and therefore

were removed from our statistics. These minimal prepara-

tions were discussed with the organizers and were deemed to

be within the spirit of using the complexes as-given. This set

of minimally-prepared structures will be henceforth referred

to as the ‘‘as-given’’ set.

The ‘modified’ ACS-Astex dataset

Upon closer examination of some of the complexes it was

noted that the hydrogen bond network was not optimal and

therefore further optimization was warranted. Two exam-

ples demonstrating the need for re-optimization are 1MMV

and 1V4S (see As-Given Structures in Fig. 2). In 1MMV the

given structure had the hydroxyl of Tyr562 oriented toward

a Trp561 creating a clash. In addition either the carboxylate

of the Asp597 or the ligand should be protonated to create a

hydrogen bond. In the case of 1V4S the orientation of the

hydroxyls of a Ser64 and Tyr215 where not positioned

correctly and in one case caused clashing with the ligand.

To create an in-house ‘prepared’ version of the ACS-

Astex dataset, the SEQRES records from the original PDB

files were downloaded [40] and used to cap chain termini

and chain breaks with ACE and NME groups. The PDB IDs

of structures requiring capping are listed in Table 2. The

hydrogen bond networks were re-optimized using Proton-

ate3D [41], which optimizes hydroxyl and thiol rotamers,

His/Asp/Glu tautomers, acid/base/metal ionization states,

and Asn/Gln/His flips (see Protonate3D Structure in Fig. 2).
Fig. 1 Solvent-accessible surface colored by pocket depth weight for

1YGC
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The structures were then energy minimized in MOE to a

gradient of (0.05 kcal/mol/Å) using the MMFF94x force-

field with reaction-field electrostatics (Din = 1) and flat-

bottom tethers (10.0 kcal/mol, 0.25 Å) applied to each atom.

This minimization is quite constrained and results in an

average heavy atom RMSD from the initial coordinates of

0.23 Å for protein atoms (both in the binding pocket and the

entire receptor) and 0.18 Å for ligand atoms. This set of

minimally-prepared structures will be henceforth referred to

as the ‘‘modified’’ set.

The ‘corrected’ ACS-Astex dataset

After the session transpired at the ACS meeting, 3 struc-

tures from the ACS-Astex set (1GPK, 1HVY and 1S3V)

were identified as containing an inverted stereocenter in the

original dataset given to the participants compared to

the original PDB structure. Thus, docking results that use

the corrected version of these ligands (where the stereo-

centers were set to be the same stereochemistry as in the

PDB) will be referred as the ‘‘corrected’’ set.

Docking methodology

MOE docking architecture

The MOE-Dock architecture consists of four major com-

ponents: (1) ligand-conformation generation (2) optional

Fig. 2 Examples of hydrogen bond network errors in ACS-Astex Set. The As-Given represent the initial structures given to participants by the

organizers, while Protonate3D structures are the structure after using Protonate3D to re-optimize the hydrogen bond network

Table 1 Complexes requiring additional preparation

Inconsistent stereo configuration

1GKC 1L7F 1R55 1VCJ

1GM8 1M2Z 1R58 1W1P

1GPK 1MMV 1R9O 1W2G

1HP0 1OF1 1S19 1X8X

1HVY 1OF6 1S3V 1XM6

1HWI 1OYT 1SQ5 1YGC

1HWW 1P2Y 1SQN 1YQY

1K3U 1P62 1TT1 1YV3

1KE5 1Q1G 1UML 1YWR

1KZK 1R1H 1V0P

Co-factors with incorrect number of hydrogens

1G9V 1KZK 1Q1G 1W1P

1HWI 1M2Z 1Q4G 1W2G

1IA1 1MMV 1R9O 1XM6

1J3J 1OPK 1T9B 1XOQ

1JJE 1P62 1TZ8

Alternate locations missing hydrogens

1GM8 1OPK 1T9B 1XOZ

1HNN 1OQ5 1TZ8 1Y6B

1HP0 1Q4G 1UOU 1YV3

1IA1 1R1H 1VCJ 1YWR

1KZK 1S19 1W1P 1Z95

1L2S 1S3V 1X8X 2BR1

1N46 1T46 1XOQ
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pharmacophore filtering (3) ligand placement and scoring

in the pocket, and (4) flexible receptor and ligand refine-

ment with re-scoring. In this study, ligand conformation

generation was accomplished by supplying the docking

engine with an ensemble of prepared ligand conformations

generated using the Conformation Import application [36],

with default parameters modified as follows to increase the

number of conformations: filters were removed, fragment

strain and total strain limits where set to 10 kcal/mol, and

the maximum number of outputted conformations was set

to 10,000. The resulting ensemble was then minimized

using MMFF94x and partial charges were assigned to the

atoms.

The binding site region was defined using the crystal-

lographic ligand for all datasets. Since the purpose of the

study was to demonstrate the upper limit of docking

accuracy on the simple problem of self-docking, the default

‘‘Rigid Receptor’’ protocol was used [36], as opposed to

flexible receptor/induce fit options. Ligand placement was

performed using the Triangle Matcher protocol, which

defines the active site using a-spheres [42] similar to both

the a-spheres in the MOE-SiteFinder application and the

spheres generated by DOCK [43]. Ligands are placed by

superposing triplets of ligand atoms onto triplets of a-

spheres, followed by removing poses which clash with the

protein. The search is exhaustive for small molecules.

The top 1,000 poses produced from placement were then

scored using the London dG scoring function [36].

DGLdG ¼ cþ Eflex

þ
X

h�bonds

chbfhb þ
X

metal�lig

cmfm þ
X

atomsi

DDi

Here c, chb and cm are constants which have been trained on

over 400 protein ligand complexes. Eflex is a topological

estimate of ligand entropy. Both fhb and fm are measures of

geometric imperfections of protein–ligand and metal–

ligand interactions. DDi is the desolvation energy term

which is approximated using a volume integral London

dispersion similar to that found in GB/VI [37]. The top 30

poses as ranked by London dG are kept and minimized

using MMFF94x within a rigid receptor. The resulting

poses are then scored using the new GBVI/WSA dG

scoring function described previously.

Ligand placements were assessed with the root-mean-

squared-deviation (RMSD) between the heavy atoms of the

predicted pose and those of the crystal structure. The per-

cent success (% success) for placement was defined as the

number of systems where the RMSDs to the crystal

structure of a docked pose is less than a given threshold.

Results and discussion

GBVI/WSA dG scoring function development

The SIE set was selected for training the scoring function

because the SIE scoring function formalism is similar to

that of the proposed GBVI/WSA dG scoring function.

Additionally, the SIE scoring function has been shown to

be predictive in various tests and applications [44–51],

demonstrating the usefulness of the SIE functional form,

and the use of its corresponding set for training of GBVI/

WSA dG. The CSAR dataset was used to test the scoring

function due to its increased size, range and number of

protein families. Additionally the CSAR set has been

applied to many scoring functions, enabling easy compar-

ison, and has proven to be a challenging set [14].

Training of the GBVI/WSA dG scoring function on the

SIE dataset resulted in a mean-unsigned error (MUE) of

1.35 kcal/mol which is significantly better than the null

model, where the average affinity of the set is used as the

predictor (MUE = -2.38 kcal/mol; see Table 3). The

GBVI/WSA dG scoring function also performs slightly

better than any of its components or combination thereof.

The results for GBVI/WSA dG also compare well with

Table 2 Complexes requiring capping of chain termini or chain

breaks

Complexes requiring capping of chain termini

1GKC 1MEH 1Q41 1V48

1GM8 1 MMV 1R55 1V4S

1GPK 1 MZC 1R9O 1W1P

1HNN 1N1M 1S19 1W2G

1HP0 1N2J 1SJ0 1XM6

1HWI 1N2V 1SQN 1XOQ

1HWW 1N46 1T46 1XOZ

1IG3 1OF1 1T9B 1Y6B

1J3J 1OF6 1TT1 1YGC

1JD0 1OPK 1TZ8 1YQY

1JJE 1OQ5 1U1C 1YV3

1JLA 1OYT 1U4D 1YVF

1K3U 1P2Y 1UML 1YWR

1LPZ 1P62 1UNL 2BM2

1LRH 1PMN 1UOU 2BR1

1M2Z 1Q1G 1V0P 2BSM

Complexes requiring capping of chain breaks

1GPK 1N46 1SJ0 1V48

1HP0 1NAV 1SQ5 1W2G

1HWI 1OF1 1SQN 1XM6

1J3J 1OF6 1T46 1XOQ

1JLA 1OYT 1T9B 1Y6B

1KE5 1P62 1U1C 1YV3

1L2S 1PMN 1U4D 1YWR

1MEH 1Q41 1UOU 1Z95

1MMV 1R9O 1V0P 2BR1
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those of SIE (MUE = 1.34 kcal/mol) for the training set

[30].

Application of the GBVI/WSA dG scoring function to

the CSAR-NRC HiQ (see Table 4, Fig. 3) set gave rise to a

MUE of 2.09 kcal/mol which are slightly better than the

null model (MUE = -2.42 kcal/mol) and mirror SIE’s

results on the same dataset (MUE = 1.98 kcal/mol). The

slight degradation in performance when moving from

training to testing was deemed acceptable, and GBVI/WSA

dG was used for the remainder of the study. Although the

MUE is significant when compared to binding energies, it

should be noted that accurate continuum solvation energies

can only achieve MUEs in the range of 1.5–1.8 kcal/mol

[33]; therefore one should not expect the accuracy of a

scoring function such as GBVI/WSA dG to be greater than

one of its components.

Cognate docking with ACS-Astex sets

The cognate docking experiments were performed with

MOE and the newly developed GBVI/WSA dG scoring

function using the ‘‘Rigid Receptor’’ protocol. The input

data-sets described in the ‘‘Methods’’ section were used; the

ACS-Astex ‘as-given’, ACS-Astex ‘modified’ and ACS-

Astex ‘corrected’ sets. The results of docking with the three

data-sets are reported in Fig. 4 as the % success for the ‘top

1’ and ‘top 30’ poses at four different RMSD thresholds

-0.5, 1.0, 1.5 and 2.0 Å. The % success for the ‘top 1’ is the

percentage of systems where the top-scoring docked pose

has an RMSD to the crystal pose less than the RMSD cut-off,

while % success for the ‘top 30’ is the percentage of systems

where any pose in the top 30 docked poses has an RMSD to

the crystal structure less that the cut-off.

At the 2 Å RMSD threshold docking with the ACS-

Astex ‘as-given’ dataset resulted in 68 % success for the

top 1 and 87 % for the top 30 poses. The 19 % difference

Table 3 Results of various scoring function models on SIE training

set

MUE (kcal/mol) RMSE (kcal/mol) R2

GBVI/WSA dG 1.35 1.61 0.70

SIE 1.34 1.76 0.65

NULL 2.38 2.96 0.00

vdW 1.89 2.33 0.38

Ele 2.37 2.96 0.00

WSA 1.57 1.88 0.59

vdW ? Ele 1.43 1.74 0.65

vdW ? WSA 1.49 1.82 0.62

Ele ? WSA 1.58 1.88 0.60

Table 4 Results of various scoring function models on CSAR-NRC

HiQ set

MUE (kcal/mol) RMSE (kcal/mol) R2

GBVI/WSA dG 2.09 2.73 0.30

SIE 1.98 2.49 0.38

NULL 2.42 3.04 0.00
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in percent success between the top 1 and top 30 poses are

indicative that we have more scoring failures than place-

ment failures. Since force fields are sensitive to system

preparation this result initially motivated the creation of the

modified and corrected versions of the ACS-Astex set.

Docking with the ACS-Astex ‘modified’ dataset resulted

in increased % success for the top 1 and top 30 poses at all

RMSD thresholds. At the 2 Å threshold the % success is 80

and 91 % respectively for the top 1 and top 30 poses. After

the ACS-session the organizers discovered that 3 of the 85

structures (1GPK, 1HVY and 1S3V) had inverted ligand

stereochemistry when compared to the PDB structures.

These inversions were present in the input data given to us

by the organizers [39]. Incorporating these corrections and

re-docking improved the % success rates even further.

After re-docking with the corrected ligand stereochemistry

1GPK and 1S3V successfully docked with better scores

and RMSDs (RMSD of top 1: 1GPK = 0.31 Å, 1S3V =

0.39 Å), while 1HVY remained unimproved for the top 1

pose. However, docking the corrected 1HVY ligand did

produce a pose under 2 Å RMSD in the top 30 (RMSD of

top 30 = 1.39 Å), and thus improved the top 30 result.

Overall, docking with the ‘modified’ ACS-Astex data

improved results over the ‘as-given’ data, and the stereo-

chemical corrections improved results further still (docking

success rates: top 1 = 80 %, top 30 = 91 %). Further-

more, the difference in the % success between the top 1 and

top 30 poses is smaller for the corrected set (11 % for

correct set vs 19 % as-given), suggesting scoring has

improved by using the corrected versus the as-given set.

The improvement in docking results going from the ‘as-

given’ to the ‘modified’ and ‘corrected’ datasets is also

reflected in the pose RMSD statistics give in Table 5,

which reports the mean, median, standard deviation, min-

imum and maximum of pose RMSDs across three data-

sets. For the ‘as-given’ dataset the median RMSD for top 1

and top 30 poses are 1.21 (mean = 2.05 Å) and 0.73 Å

(mean = 1.06 Å) respectively. The median RMSDs

improve when the ‘modified’ and ‘corrected’ dataset are

used for docking, with top 1 pose median RMSDs dropping

to 0.88 and 0.87 Å respectively for the modified and

corrected sets, and top 30 pose median RMSDs dropping to

0.67 and 0.64 Å.

The decrease in median RMSD for the top 1 pose

between the ‘as-given’ and ‘corrected’ data-sets reflects

improvements in scoring achieved by using the ‘corrected’

versus the ‘as-given’ data-set. This increase in docking

accuracy by using optimized structures as input has been

seen with other docking programs [7] which recommend

optimizing the protein structure in the presence of its

cognate ligand prior to docking [52–55]. Even though

heavy atom refinement prior to docking biases the binding

pocket to its cognate ligand, in our case the changes upon

refinement are small (less than 0.23 Å RMSD for the

pocket) and well within the resolution of the crystal

structures used. Since the purpose of this session was to

assess the highest possible level of accuracy in self-dock-

ing, the refinement protocol seemed acceptable, especially

because it is common practice in other self-docking pro-

tocols. Additionally a previous study [7] has shown that

while refinements can improve accuracy in cognate dock-

ing, they do not affect cross-docking accuracy, suggesting

that relaxing the protein biases self-docking results, but not

cross-docking results.

Detailed analysis of docking failures

Known structural problems with the Astex set

For purposes of this study a docking failure is defined as

cases where the top scoring pose has an RMSD to the

crystal structure of greater than 2 Å. Based on this crite-

rion, 17 out of 85 ACS-Astex complexes (20 %) would be

considered failures. The PDB codes and details of the

failure are reported in Table 6. Failure cases will be

examined in detail to highlight the types of problems we

encountered.

Nearly half of the failure cases (8) were due to place-

ment failure, where the docker was unable to generate any

pose under 2 Å RMSD. In six other cases, failure was due

to scoring, because a pose was generated under 2 Å but it

was not scored as the top pose.

Table 5 Statistical performance of MOE on As-given, Modified and Corrected ACS-Astex sets for best scoring and lowest RMSD in top 30

Top 1 Top 30

As-given Modified Corrected As-given Modified Corrected

Mean 2.05 1.30 1.27 1.06 0.91 0.88

SD 2.06 1.16 1.15 0.94 0.74 0.72

Median 1.21 0.88 0.87 0.73 0.67 0.64

Min 0.16 0.13 0.13 0.16 0.13 0.13

Max 8.58 4.96 4.96 5.10 3.04 3.04
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The organizers identified many structural errors present

in 22 complexes which normally exclude them being

selected as part of a docking set. These problems include

complexes which contain poor electron density of the

ligand and/or binding pocket residues, alternate location of

residues close to binding pocket and possible crystal

packing interactions with the ligand. Surprisingly only 2 of

the 22 problem structures docked unsuccessfully and made

it to the failure list. This included 1HVY which was

identified as having crystal packing interactions with the

ligand and 1Y6B which was identified as having an alter-

nate location of a residue in the binding site. To see if

1HVY failed due to exclusion of the crystal packing

interactions, symmetry-related residues with at least one

atom within 10 Å of any atom in the asymmetric unit were

created. This new structure was then used for re-docking of

the 1HVY ligand. In the case of 1Y6B, it was re-docked

using the lower occupancy conformation of CYS1043. In

both cases re-docking did not yield a successful result. This

suggests that the identified structural problems were not

causing the failures to produce successful docking results.

Case studies of docking failures

Further examination of the 17 failures suggested that many

could be attributed to a lack of bridging water molecules,

metal binding interactions and predictions in solvent-

exposed regions of ligands.

Of the 17 complexes which failed to dock successfully, 8

fail due to the lack of bridging water molecules (these are

noted in Table 6). Failure due to bridging water effects is a

well-known issue in the field of docking [2, 3, 56, 57], which

is addressed in some docking programs by allowing dis-

placement of water or by treating water as part of the receptor

[58–63]. However, for this study they were deleted by the

organizers and could not be re-added by the participants.

One example of a crucial bridging water in the ACS-Astex

set is PDB code 1G9V (shown in Fig. 5), where the crys-

tallographic pose of the ligand (green) clearly interacts

through 2 bridging water molecules with a lysine and

an arginine. Because the waters are not present in the

ACS-Astex set, the docking engine cannot generate a single

pose under 2.0 Å RMSD (Top 30 = 2.24 Å RMSD) and

therefore favors interacting directly with the arginine

(Top 1 = 2.51 Å RMSD).

Another example of a crucial water molecule is in PDB

code 1XM6, where a water molecule tightly bound to a

metal blocks ligand access to the metal. The ligand does

not coordinate to the zinc in the crystal structure, due to

difficulty associated with displacing the water upon ligand

binding. With the water absent, a pose that resembles the

crystal structure is generated (Top 30 = 0.5 Å RMSD) but

it scores 0.5 kcal/mol higher in energy than the best scoring

pose (Top 1 = 2.40 Å RMSD) which binds to the zinc. The

exclusion of the crystallographic water from this complex

is the root of this docking failure even though it is not

bridging between the ligand and receptor. To accurately

model this system one should not only include the water

but be able to accurately model the displacement of the

water and the associated displacement cost.

Predicting metal interactions is a recognized issue in the

field of docking and scoring [2]. While there are methods

which identify free coordination sites on a metal [7, 64, 65],

identifying how or if the ligand binds remains difficult. This

is exemplified with 1HP0 where in the crystal structure, the

ligand coordinates through the O2’ and O3’ of the sugar,

while the best scoring pose coordinates through O3’ and O5’.

In fact the lowest RMSD pose found (Top 30 = 1.03 Å

RMSD) is only 0.02 kcal/mol higher in energy then the best

scoring pose (Top 1 = 2.93 Å RMSD).

Another common docking failure is the scoring of sol-

vent exposed regions of the ligand such as with 1N2V. In

the crystal structure the butyl group of the ligand is solvent

exposed making no strong interactions with the protein.

While we can generated a good pose (Top 30 = 1.14 Å

RMSD) it is over 0.5 kcal/mol higher in energy than the

best scoring pose (Top 1 = 2.23 Å RMSD). The docked

pose is favoured because the butyl group is placed into a

pocket which is filled with water in the crystal structure.

Overall, many of the failures cases can be attributed

either missing information in the curated dataset or the

accuracy of the scoring function. Although the competition

and the dataset produced are steps in the right direction, the

Table 6 Docking failures on corrected ACS-Astex set

PDB code Failure type Minimum RMSD

(Å)

Present in binding

site

Top 1 Top 30 Water Metal

1g9v Placement 2.51 2.24 X

1gm8 Placement 3.20 2.69 X

1hp0 Scoring 2.93 1.07 X

1hvy Scoring 2.13 1.39 X

1jd0 Scoring 4.96 1.68 X

1l2s Scoring 3.65 0.80

1mzc Placement 3.66 2.92 X

1n2v Scoring 2.23 1.14

1oq5 Scoring 3.47 1.00 X

1owe Scoring 3.18 1.09 X

1q1 g Scoring 2.28 1.91 X

1r58 Placement 2.86 2.84

1sq5 Placement 4.96 2.55 X

1xm6 Scoring 2.40 0.50 X X

1y6b Placement 4.72 2.97

1ygc Placement 3.04 3.04 X
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results here suggest that future curated docking datasets

need to contain all the information from the crystal struc-

ture. The results also demonstrate the necessity of includ-

ing crystallographic waters to predict the correct pose in

some cases. While the addition of crystallographic waters

have been shown to increase docking accuracy, it must be

noted that there is no improvement when including them

for binding affinity predictions [34].

Effect of dataset preparation errors on docking

success rates

Even though a respectable success rate was achieved on

ACS-Astex set, this was only achieved by preforming

additional preparation to the structures that were initially

given. This additional preparation accounted for an increase

in 11 % accuracy when compared to running on the ‘as-

given’ set. This suggests that the GBVI/WSA dG scoring

function is sensitive to minor modifications in the protein

environment which is typical of any force-field based scoring

function. This sensitivity can have a dramatic effect on the

accuracy of docking and binding affinity predictions. As an

example, Sulea et al. found that correcting multiple structural

problems in the CSAR set resulted in decreasing the MUE by

0.5 kcal/mol for SIE [30].

To accurately distinguish between active and decoy

ligands in virtual screening, there must be good separation in

predicted binding affinities between actives and decoys. In

the case of pose prediction one needs significant separation

in energy between good (B2 Å RMSD) and bad ([2 Å

RMSD) poses. In other words the further the pose is from the

crystal structure the higher in energy it should be. On

average, in reference to docking using MOE on the ACS-

Astex set, good poses are within 1.07 kcal/mol of best

scoring pose, while bad poses are 2.74 kcal/mol. This dif-

ference of 1.67 kcal/mol may seem large when compared to

the 0.5 kcal/mol error associated with dataset preparation

but is close to the limit of accuracy of the GBVI/WSA dG

scoring function (MUE on training set = 1.4 and 2.1 kcal/

mol on testing set). In fact by examining the number of

docking poses versus their relative energy difference with

the best scoring pose, the good and bad poses overlap sig-

nificantly (see Fig. 6). This suggests that even if we can

always generate a good pose (no placement failures), we will

not always be able to identify it (scoring failure) since many

poses are similar in energy and competing with the best

scoring pose.

To assess the error associated with re-ranking of com-

peting poses, an error perturbation analysis was performed.

The analysis was done by introducing a uniform distributed

random error of ± 0.25 kcal/mol to all poses and repeated

for 10 000 iterations. The 0.5 kcal/mol energy window was

selected to approximate the error associated with dataset

preparation and how this can affect our docking success

rate. After the introduction of the error the docked poses

were re-ranked. The best scoring pose was then identified

and used to generate the statistics for each complex (see

Table 7) and the dataset as a whole.

Fig. 5 Examples of various self-docking failures on ACS-Astex modified set. Charcoal crystal structure pose, Cyan docked pose
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Overall performance is degraded when accounting for

the possibility of re-ranking due to error (which is expec-

ted). The error perturbation allows estimation of the effect

of data preparation or force field error on docking success

rate. Within one standard deviation of the average RMSD

for a complex, the success rate at 2 Å RMSD can vary from

72 to 95 % (see Fig. 7). Of note is that the lower bound is

similar to the docking success rate when using the ACS-

Astex ‘as-given’ set. The error perturbation demonstrates

that minor changes in dataset preparation and the scoring

differences that result can have a dramatic effect of the

success rate of docking. It also suggests why it may be

difficult to accurately compare virtual screening recall rates

from docking programs, since there are no standard pro-

tocols for dataset preparation in docking, and differences in

data preparation can result in scoring differences that can

significantly affect recall rates.

Conclusion

The MOE docking engine with the newly developed GBVI/

WSA dG scoring function was found to produce a top-

scoring pose within 2 Å of the X-ray structure for 80 % of

the Astex targets. For 91 % of the targets, a docked pose

less than 2 Å from the X-ray structure was produced within

the top 30 poses. Docking performance increased signifi-

cantly when reasonable modifications to the source data,

such as re-optimizing the hydrogen bond network, capping

chain breaks and termini, relieving steric clashes, and other

minor changes, were applied. Many cases of docking

failures were found into be caused by the absence of bound

waters in the source data, suggesting waters and other

bound species should be included in future standardized

sets.

Despite great efforts by experts in the field to prepare

the data for this competition, significant problems with the

data were still found, highlighting how difficult (and

painful) it can be to compile, curate and maintain a docking

test set. The number of errors and the details surrounding

each error case suggest that the probability of a single

person flawlessly preparing and maintaining an entire

docking dataset is low, especially as the dataset becomes

large. Other datasets used as docking standards are also

known to contain errors [29, 66, 67], yet these datasets

continue to be used without being corrected. Thus, the

difficulty in preparing standard docking datasets, coupled

with the heavy dependence of docking results on data

preparation, suggests that a ‘‘data preparation error’’ should

always be include in docking validation studies, at least to

Table 7 Statistical performance of MOE on corrected ACS-Astex set

for single point and docking results after error pertubation of

±0.25 kcal/mol

RMSD (Å)

Single point Error simulation

Mean 1.27 1.35

SD 1.15 1.15

Median 0.87 0.95

Min 0.13 0.24

Max 4.96 4.80

ΔΔ G (kcal/mol)
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solid line and poses with RMSDs greater than 2 Å RMSD are plotted
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indicate the upper and lower bounds of performance. This

work shows that dataset preparation errors as small as

0.5 kcal/mol can cause fluctuations of over 20 % in

docking success rates.

The results of this study suggest a series of recom-

mendations for future docking dataset preparation:

1. Future datasets should consist of only adding addi-

tional data, such as correcting chain termini, capping

chain breaks and adding missing side chains. Infor-

mation such as alternate conformations of residues and

crystallographic waters should also be retained. Any

decision to remove information from the structure

should be decided by the researcher, after retrieving

the curated set.

2. The curated dataset must be updated when an error

is identified and not allowed to propagate. If the

problem is with the experimental data and cannot be

updated, the structure should be removed from the

set.

3. Future datasets should move beyond self-docking

(which was done in this study) since proteins are

dynamic objects and therefore is a best case scenario

only and include multiple structures of the same

protein with different ligands (cross-docking).

4. Benchmarking sets should be prepared, curated and

stored by the community as a whole, such as the

multiple revisions to the CSAR set. Until a common

community built dataset is created, it will be difficult

to draw conclusions from a comparative docking

study.

5. Until a universal docking data preparation protocol is

developed and accepted by the community, docking

studies should always consider the effect of dataset

preparation on docking performance, including esti-

mates of the magnitude of dataset preparation error,

and its effect on the reported docking performance.

When a docking dataset created with these recommen-

dations is available we can better assess docking methods

and move towards creating blinded competitions such as

CSAR, CASP and CAPRI. Through competitions like these

the field of docking will hopefully become more robust and

reliable.
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