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Characterization and individual trait analysis of the focal liver lesions (FLL) is a challenging task in medical image processing and
clinical site. The character analysis of a unconfirmed FLL case would be expected to benefit greatly from the accumulated FLL
cases with experts’ analysis, which can be achieved by content-based medical image retrieval (CBMIR). CBMIR mainly includes
discriminated feature extraction and similarity calculation procedures. Bag-of-Visual-Words (BoVW) (codebook-basedmodel) has
been proven to be effective for different classification and retrieval tasks. This study investigates an improved codebook model for
the fined-grained medical image representation with the following three advantages: (1) instead of SIFT, we exploit the local patch
(structure) as the local descriptor, which can retain all detailed information and is more suitable for the fine-grained medical
image applications; (2) in order to more accurately approximate any local descriptor in coding procedure, the sparse coding
method, instead of 𝐾-means algorithm, is employed for codebook learning and coded vector calculation; (3) we evaluate retrieval
performance of focal liver lesions (FLL) using multiphase computed tomography (CT) scans, in which the proposed codebook
model is separately learned for each phase. The effectiveness of the proposed method is confirmed by our experiments on FLL
retrieval.

1. Introduction

Liver cancer is one of the leading causes of death world-
wide. The development of medical imaging techniques, such
as computed tomography (CT) and magnetic resonance
imaging (MRI), gives more and more detailed information
about the inner structure of human body. This detailed
information prospects the possibility of early detection for
some types of liver lesions, while early diagnosis and treat-
ment is the most effective way to reduce the liver cancer
death. On the other hand, multiphase contrast enhanced
CT scan is generally employed as the primary technique
for detection and characterization of liver lesions, due to
the clinical observation that different types of liver lesions
exhibit different visual characteristics at various time points
after intravenous contrast injection. In multiphase contrast

enhanced CT scan procedure, the transition of visual features
over time is captured from CTs scanned before and after
contrast injection. The noncontrast enhanced (NC) phase
image is obtained from scans before injection and three more
phases’ images are scanned at different times after contrast
injection, including arterial (ART) phase, portal venous (PV)
phase, and delayed (DL) phase, scanned at 25∼40 s, 60∼
75 s, and 3∼5 minutes after contrast injection, respectively.
Due to the development of medical imaging techniques
and the availability of the multiphase CT scans, medical
volumes have become of higher and higher resolution and
larger-scale, which prospects more accurate diagnosis while
simultaneously leading to heavy burden to radiologists and
medical experts for interpreting the CT images. On the other
hand, with the ICT technology, it also becomes potential
for medical experts to share more and more medical data
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Figure 1: The proposed CBMIR system for FLLs retrieval.

and the corresponding diagnosis and treatment experiences.
However, with the accumulated large-scale medical data with
experienced clinical cases, how to search the most similar
cases to a query sample (only medical image) for assistance
in making decisions of diagnosis and treatment becomes an
important and challenging task in both academic and clinical
sites. This study concentrates on the similar case retrieval of
focal liver lesions to a CT image query with multiphase CT
scans.

Characterization of liver lesions is gaining more and
more research attention recently, where most work focused
on the discriminated feature representation of the medical
volume images. In [1], a CBIR system was proposed for
retrieving the similar cases for three types of liver lesions
by using global features and local features based on image
density and texture. In [2], two attributes ofmargin sharpness
extracted from sigmoid curves, including the intensity differ-
ence between a lesion and its surroundings, and the sharpness
of the intensity transition across the lesion boundary are used
for distinguishing different types of lesions. The method was
evaluated in both simulations and CT scans of liver and lung
lesions and competitive results were achieved. Tomake use of
contrast enhancement features of CT scans, various methods
were proposed onmultiphasemedical images.Quatrehomme
et al. proposed to perform classification using visual features
and law measures on multiphase CT images to classify five
types of liver lesions. Roy et al. [3] used 4 kinds of features,
including density, temporal density, texture, and temporal
texture, which are derived from four-phase medical images
to retrieve the most similar images in five types of liver
lesions. The texture features are six coefficients computed
from 3D gray-level cooccurrence matrix (GLCM). What is
more, the tumors are partitioned into three subvolumes to
capture spatial information and the algorithm is accelerated
by performing parallel computing on the three subvolumes.
Although the related work manifests the potential of retriev-
ing the similar cases of a query FLL input, most of them only
exploited low-level features such as intensity, texture, and
simple shape descriptors, and thus there still is large space to
improve the retrieval performance for real applications. The
Bag-of-Visual-Words (BoVW) method has been successfully
applied to many natural image classification and retrieval
tasks [4–8]. Derived from a few representative triple-phase
slices, the Bag-of-Visual-Words (BoVW) with SIFT local
features, intensity, texture, and shape-based features is used

to distinguish three lesion types [9]. Yang et al. [10] has also
used BoVW for retrieval of focal liver lesions in three types.
Recently, Diamant et al. [11] presented an improved auto-
mated liver lesion classification method using single-phase
(PV)medical images based onK-means clustering technique.
All the above-mentioned methods exploited low-level fea-
ture or BoVW-based middle-level features for retrieval or
classification of different types of FLLs and have proven the
potential capability to FLL characterization and clinical appli-
cations. Therein, the middle-level feature, BoVW, presented
the promising retrieval performance of FLLs [9–11] compared
to low-level features. However the widely used BoVW-based
model for medical image representation basically (1) applies
the handcrafted SIFT as local features, which would lead to
some tiny structure loss and is unsuitable for the fine-grained
medical images; (2) uses K-means for codebook learning
and coded vector calculation, which approximates any local
descriptor using one learned visual word only and leads to
large reconstruction error; (3) extracts middle-level feature
using one-phase data only, which may be inapplicable for
some types of FLL cases. Therefore, there still is large space
for improving the performance for FLL characterization and
representation.

In this study, we explore an improved sparse codebook-
based feature representation for multiphase CT volume
images and apply the extracted middle-level features for
retrieving FLLs to assist diagnosis decision-making of dif-
ferent types of FLLs. The proposed FLL retrieval system is
shown in Figure 1, where we concentrate on the discrimi-
nated feature extraction from multiphase CT volumes using
the improved codebook model. In the proposed codebook
model, instead of using SIFT as the local descriptors, which
are calculated as the histograms of the quantized orien-
tation and can effectively represent the distinguished part
of a specific object in general images, we directly exploit
the local patch as the local descriptor, which can retain
all detailed information and is more suitable for the fine-
grained medical image application. Furthermore, in order to
more accurately approximate any local descriptor in coding
procedure, the sparse coding method, instead of K-means
algorithm, is employed to overcomplete codebook learning.
Experiments on five types of FLL retrieval show that the
proposed feature extraction method can achieve promis-
ing retrieval performance compared with state-of-the-art
methods.
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The rest of this paper is organized as follows. Section 2
introduces the proposed codebook model for multiphase
medical image representation and the used coding strategy:
sparse coding for more accurate approximation of any local
descriptor. Section 3 talks about the dataset, experiments
settings, and experimental results with different parameters.
Finally, we conclude the paper in Section 4.

2. The Sparse Codebook Model of
Local Structures for Medical Image
Representation

Typically, the codebook model, BoVW representation,
involves four major steps: (1) key-point detection for inter-
ested image regions; (2) local descriptor extraction for rep-
resenting the interested image regions around key points;
(3) coding via quantizing the local descriptors in terms
of a predefined dictionary (also called codebook), which
generally learned from a large amount of prepared local
descriptors with K-means algorithm; (4) pooling operation
by accumulating the coded feature vectors into a fixed-length
representation feature of an image. The local descriptors in
the conventional BoVW model generally employed SIFT,
which is calculated as the histogram of the quantized ori-
entation and can effectively represent the distinguished part
of a specific object in general images. However, this study
concentrates on extraction of middle-level features for the
fine-grainedmedical FLL data, and the rough quantization of
orientation in SIFTwould lead to a lot of detailed information
loss, which may not orient the effective representation of
the interested image regions for a medical FLL image.
Furthermore, the conventional BoVWmodel used K-means
algorithm to learn the codebook (set of visual words) and
approximated any local descriptor with only one visual word,
which would lead to large reconstruction error. Therefore,
this study proposes a sparse codebook model oriented for
fine-grained FLL image representation, where the local patch
of the interested image region is directly used as the local
descriptor for retaining all detailed texture and the sparse
coding, instead of K-means algorithm, is employed for code-
book learning and coding any local descriptors. Furthermore,
we also combine the codebook-based feature representations
of multiphase CT volumes. The proposed sparse codebook
model with local structures is shown in Figure 2.

2.1. Local Descriptors for Representing the Interested Image
Regions. Recent research [12, 13] in the computer vision field
showed that it is possible to discriminate between textures
using pixel neighborhoods such as a small patch, an 𝑙 ×𝑙 pixel region. Awate et al. [14] explored nonparametric
neighborhood statistics and manifested promising perfor-
mance for texture segmentation. Pietikäinen et al. [13, 15]
showed that despite the global structure of the textures,
very good discrimination can be achieved by exploiting the
distributions of such pixel neighborhoods. Therefore, the
exploitation of these microstructures for representing images
in the distributions of local descriptors has gained much
attention and has led to state-of-the-art performances [13, 15,
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Figure 2: Proposed sparse codebook model with local structures.

16] for different classification and segmentation problems in
computer vision. As we know different types of FLLs mainly
manifest different intensity variance, which means that there
are different textures for different types of FLLs. Thus, this
study explores the local patches (texture structures) as local
descriptors in the codebook model.

Given an image 𝐼 and the patch region with size 𝑙 × 𝑙
centered at the 𝑖th pixel, we directly use intensities, 𝐼𝑗𝑖 , 𝑗 =1, 2, . . . , 𝑙 × 𝑙, of all pixels in the patch regions as a local
descriptor y𝑖 = [𝐼1𝑖 , 𝐼2𝑖 , . . . , 𝐼𝑙×𝑙𝑖 ]. The representation of a pixel
directly uses the neighboring pixels’ intensities, which not
only considers the intensity but also retains the variation in
intensity (texture) without any detained structure loss and
thus would adapt to the fine-grained medial FLL retrieval
application. In our study, we take the 𝑙 × 𝑙 local patches of all
pixels in amedical image as the local descriptor set for coding.

2.2. Codebook Learning Algorithm: From K-Means to Sparse
Coding. Given a set of prepared local descriptors,Y = [y1, y2,. . . , y𝑁], the codebookmodel firstly learns a small set of visual
words (prototype features) for coding any local descriptor. A
common strategy for codebook learning in the BoVWmodel
usually applies the K-means algorithm. A family of signals
Y = {y𝑖}𝑁𝑖=1 can be represented by the nearest neighbor in a
codebookD = [d1, d2, . . . , d𝐾],𝑁 ≫ 𝐾, in which a codeword
d𝑖 is a column vector. The codebook D is learned in the
K-means algorithm by solving the least-square problem as
follows:

argmin
D,x𝑖

𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩y𝑖 −Dx𝑖
󵄩󵄩󵄩󵄩2 ,

s.t. 󵄩󵄩󵄩󵄩x𝑖󵄩󵄩󵄩󵄩0 = 1,
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󵄩󵄩󵄩󵄩x𝑖󵄩󵄩󵄩󵄩1 = 1,
x𝑖 ≥ 0, ∀𝑖,

(1)

where ‖⋅‖0 and ‖⋅‖1 refer to𝐿0-normand𝐿1-norm, separately.
X = [x1, x2, . . . , x𝑁] are the coded vectors for Y. Single
nonzero entry in each coded vector x𝑖 is ensured by the
constraint ‖x𝑖‖0 = 1, ∀𝑖, and the coding weight is always 1,
formulated as the second constraint term: ‖x𝑖‖1 = 1, ∀𝑖. The
K-means is widely used in codebook training because of its
simplicity. However, it is too restricted to approximate signals
properly by allowing only one codeword from the codebook.

As a generalization of the K-means algorithm, the sparse
coding technique employs a linear combination of codewords
for the representation of each signal, which means more
than one nonzero entries in coding, and the weights can be
calculated to be arbitrary values but not limited to 1. The
intuitiveway for the sparse coding problem can be formulated
to optimize the following objective function:

argmin
D,X

‖Y −DX‖22 ,
s.t. ‖X‖0 ≤ 𝛼𝐾,

(2)

where X is the sparse approximation of Y on codebook D. 𝛼
is a sparsity measure, which is a ratio between the number of
nonzero entries in x𝑖 and the total number of codewords in
D. 𝛼 ∗ 𝐾 controls the maximum number of codewords that
can be used for approximation of the input signal y𝑖.

Similar to realization ofK-means algorithm, there are two
stages: sparse coding stage and codebook update stages, in the
codebook learning of sparse coding, as shown inAlgorithm 1.
In consideration of simplicity and efficiency, we employ the
Orthogonal Matching Pursuit (OMP) algorithm for coeffi-
cient calculation and K-SVDmethod for codebook updating
in the two stages, respectively. The detailed implementation
of these two methods is described in the following section.
Furthermore, we also implement the alternating direction
method ofmultipliers (ADMM) for solving our sparse coding
problem, which is an algorithm to solve convex optimization
problems by breaking them into smaller pieces for easier
handling. Please refer to the existing work [17] for details.

2.3. The Implementation Algorithms: OMP and
K-SVD in Sparse Coding

2.3.1. OMP for Coefficient Calculation. With the fixed code-
book, OMP algorithm is a simple and efficient way to solve
the sparse approximation problem, which is NP-hard because
of the overcomplete codebook D. OMP is an iterative greedy
algorithm, in which at each step a column codebook vector is
selected, which is most correlated with the current residuals,
and then the selected column codebook vector is add to
the set of selected visual word set being used for calculating
the coded coefficients, which can be effectively solved with
the least-square problem due to the smaller number of the
selected visual words than the dimension of the input signal
x𝑖.The algorithmupdates the residuals by projecting the input

signal onto the linear subspace spanned by the visual word set
that has already been selected and the algorithm then iterates
until a predefined stop criterion is satisfied.

2.3.2. K-SVD for Codebook Updating. K-SVD was proposed
for generating a dictionary of spare representation, via sin-
gular value decomposition (SVD). It is a generalization of
the K-means clustering method. K-SVD works by iteratively
alternating between coefficient calculation of the input data
based on the current dictionary and updating the atoms in
the dictionary to better fit the data. As introduced above the
coefficient calculation is implemented via OMP algorithm;
this part mainly describes the atom updating procedure,
where each of the codewords will be updated once a time,
assuming that all the other codewords and the coded vector
x𝑖 are fixed. The update of the kth atom is done by rewriting
the penalty term as

‖Y −DX‖2 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(Y −
𝐾∑
𝑗 ̸=𝑘

d𝑗x
𝑇
𝑗) − d𝑘x𝑇𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

= 󵄩󵄩󵄩󵄩󵄩E𝑘 − d𝑘x𝑇𝑘 󵄩󵄩󵄩󵄩󵄩2 ,
(3)

where𝐾 is the total number of codewords and the row vector
x𝑇𝑘 contains the coefficients of all input signals on codeword
d𝑘. E𝑘 represents the reconstruction residuals using all
codewords excepting d𝑘. After adding d𝑘 for approximating
the input signals, we expect that the reconstruction error in
(3) is minimized with the fixed E𝑘, which is formulated as the
following formula:

argmin
d𝑘 ,x𝑇𝑘

󵄩󵄩󵄩󵄩󵄩E𝑘 − d𝑘x𝑇𝑘 󵄩󵄩󵄩󵄩󵄩2 (4)

which can be easily solved by applying SVD. However, x𝑇𝑘
can be filled and the sparsity will be destroyed if simply
SVD is applied on E𝑘. To address this problem, a constraint
function 𝜔𝑘 is defined to remove the zero entries of x𝑇𝑘
and the corresponding elements in E𝑘, achieving x𝑅𝑘 and
E𝑅𝑘 , respectively. Applying SVD on E𝑅𝑘 , E

𝑅
𝑘 = UΔV𝑇, the

codeword d𝑘 is updated by the first eigenvector of U, and
the coefficient vector x𝑇𝑘 is updated by zero padding of the
multiplication of the first column of V with Δ(1, 1).

The above process, SVD on the reconstruction residuals
matrix, is applied 𝐾 times to update the codewords each at a
time. The details of learning codebook by OMP and K-SVD
are shown in Algorithm 1.

2.4. Middle-Level Feature Extraction for Medical Images.
With the prepared training local descriptors Y = [y1, y2, . . . ,
y𝑁], the codebook D = [d1, d2, . . . , d𝐾] can be learned using
the conventionalK-means or sparse coding strategy. In order
to code the local descriptors y𝑚 ∈ {y1, y2, . . . , y𝑀} from any
test image and extract the middle-level feature, we fix the
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(1) Task: Find the optimal codebook that represent the data
samples {y𝑖}𝑁𝑖=1 as sparse compositions. Objective function is:

min
D,X
{‖Y −DX‖2𝐹}, s.t., ‖x𝑖‖0 ≤ 𝛼𝐾, ∀𝑖

(2) Init: Set dictionary matrixD(0) with 𝑙0 normalized columns
(3) while (stopping rule not met) do
(4) Sparse Coding Stage: Compute x𝑖 to approximate example

y𝑖 using OMP, by solving:𝑖 = 1, 2, . . . , 𝑁 minx𝑖 {‖y𝑖 −Dx𝑖‖22}, s.t., ‖x𝑖‖0 ≤ 𝛼𝐾
(5) Codebook Update Stage: update each dictionary atom d𝑘,𝑘 = 1, 2, . . . , 𝐾
(6) - -Define the group of indices corresponding to atom d𝑘,

𝜔𝑘 = {𝑖 | 1 ≤ 𝑖 ≤ 𝑁, x𝑇𝑘 (𝑖) ̸= 0}
(7) - -Compute the overall representation error:

E𝑘 = Y −∑
𝑗 ̸=𝑘

d𝑗x
𝑇
𝑘

(8) - -Obtain E𝑅𝑘 by restricting E𝑘 using 𝜔𝑘
(9) - -Apply SVD: E𝑅𝑘 = UΔV𝑇. Atom d𝑘 is updated by the first

column of U and coefficient vector x𝑇𝑘 is updated by the
first column of Vmultiplied by Δ(1, 1)

(10) - -Padding d𝑘 and x𝑇𝑘 to their original size by 0 according
to 𝜔𝑘

(11) end while

Algorithm 1: Codebook learning via OMP and K-SVD.

codebook D and obtain the coded vector x𝑚 by minimizing
the following cost function:

argmin
x𝑚

󵄩󵄩󵄩󵄩y𝑚 −Dx𝑚
󵄩󵄩󵄩󵄩22 ,

s.t. 󵄩󵄩󵄩󵄩x𝑚󵄩󵄩󵄩󵄩0 ≤ 𝛼𝐾.
(5)

This optimization problem is also implemented by the
OMP method, which is called coding strategy and then𝑀 coded vectors with K-dimension for each image can be
obtained.

Finally, the 𝑀 coded vectors are aggregated to form
a fixed-length feature for image representation by average
operator, which is also called pooling procedure. In our appli-
cation, we apply multiphase CT volumes for FLL retrieval,
and thus we extract the codebook-based feature for each
phase CT image and directly concatenate all features for
multiphase CT representation.

3. Experiments and Results

3.1. Dataset. The proposed codebook model is used to learn
features for retrieval of focal liver lesions (FLLs) from the
dataset which we have constructed with the help of radiol-
ogists. The dataset consists of 5 types of liver lesions, and
there is 137 medical cases in total in the dataset, including
38 lesions in cyst class, 28 cases for both hepatocellular
carcinoma (HCC) and hemangioma (HEM), 22 cases in focal
nodular hyperplasia (FNH), and 21 liver lesions formetastasis
(METS). Due to the fact that most of the medical cases
supplied by radiologists contain only three phases (NC, ART,
and PV), while only small amount of themhave theDL phase,

Type CystPhase

NC

ART

PV

FNH HCC HEM METS

Figure 3: Examples of each lesion type on 3 phases. Rows are images
that belong to same contrast phase, while columns are images from
the same lesion: cyst, FNH, HCC, HEM, and METS.

we choose to use only 3 phases for each case for consistency
concern. Examples of our dataset are shown in Figure 3.

3.2. Intensity Normalization. We found that the intensity
distributions of the same patient are different for the three
phases, as illustrated in Figure 4. This is caused by the
contrast enhancement injection. Though the lesion regions
are obviously enhanced, it is a fact that the other tissues, such
as health liver parenchyma, are also enhanced at the same
time. This breaks down the intensity consistency when com-
bining multiphase data together. Considering this situation,
a simple preprocessing technique is employed: the intensities
are normalized by the average intensity of the surrounding
healthy liver parenchyma. The preprocessing method can
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NC phase ART phase PV phase

Figure 4: Illustration of intensity inconsistency among different phases.

not only avoid the inconsistency of intensity distribution
among different phases, but also address the problems caused
by images captured from different equipment and other
intensity-shift problems. The following experiments are all
based on the intensity normalized images.

3.3. Experiments Settings (Image Representations Based on
BoVW). The image representation based on Bag-of-Visual-
Words technique regards an image as a distribution of local
descriptors, which can be viewed as discrete visual proto-
types. Given a codebook, the occurrence of the descriptors
from an image on the codewords is used to represent the
image, in a histogram-like style. Since the medical images are
commonly taken under standard situations, no meaningful
key points or structures appear in a liver lesion in CT images,
and the intensity plays an important role in diagnosis. In this
work, we use raw patches, which are densely sampled from
every pixel in the lesion region, as the local descriptors of a
medical image.

Then it is important to learn an effective codebook from
the training samples. The simple and efficient algorithm, K-
means, is widely used in this task for natural images. The
proposed codebook learning method based on OMP and K-
SVD algorithms [18, 19] is used in this study instead of K-
means.

We first validated the representation accuracy of sparse
coding comparing to K-means method. In this evaluation,
we used 5000 local patches from training ART images and
approximated them with K-means and sparse coding meth-
ods with codebook size 100 for both.Then the reconstruction
errors (RE) can be calculated for all the selected patches, and
the distributions of the RE of the samples using bothmethods
are plotted in Figure 6. As illustrated in Figure 6, sparse
coding method achieves smaller reconstruction errors than
usingK-means method, whichmeans more accurate approx-
imations, and thus more accurate retrieval performance can
be expected.

Considering the multiphase medical images, codebooks
for each phase are learned separately. Examples of the learned
codebook model for ART phase CT scans are shown in
Figure 5 and the contrast is enhanced for easy view. With the
codebook model for single phase, the retrieval performance
will be discussed in the Results section to emphasize the
usefulness of contrast enhancement for detection of FLLs.

Figure 5: The codebook learned for CT scans on ART phase. The
patch size is 11 × 11, and codebook size is 256.
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Figure 6:Distribution of sampleREusing the proposedmethod and
K-means method.
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Table 1: Construction of confusion matrix.

Actual positive Actual negative
Predicted positive TP FP
Predicted negative FN TN
Precision = TP/(TP + FP).
Recall = TP/(TP + FN).

Due to large amount of descriptors which will cost too
much time for codebook learning, we randomly select 50000
descriptors from training samples for codebook learning.
Since the codebook learning is an unsupervised learning
procedure, the selected descriptor number usually does not
affect the final performance greatly. Then the coefficients of
patches are calculated according to the learned codebooks
responding to the image’s phase in single-phase condition.
The coefficients of patches that belong to the same image
are pooled together to form a feature vector to represent
the image. In our experiments the mean-pooling technique
is used due to its simplicity and efficiency. The feature
vectors of images in each phase are concatenated to the final
representation of a patient case to engage the multiphase
features.

3.4. Performance Evaluation. To evaluate the performance
of the proposed codebook model for retrieval of FLLs,
confusion matrices, Table 1, are built and precision and recall
values are calculated correspondingly. Precision versus recall
curves [20] are used to represent the precision and recall
values, which summarize the pairs of precision and recall
pairs when varying the number of retrieved top similar
samples.

The leave-one-out cross validation method is used in
evaluation. Confusion matrices, as shown in Table 1, are
constructed when t (1 ⩽ 𝑡 ⩽ 𝑇 − 1) most similar
samples are retrieved, where 𝑇 is the total number of medical
cases in the dataset. Then precision and recall are calculated
correspondingly. A precision versus recall curve is obtained
by averaging precision and recall values of all validated
samples at position 𝑡 (1 ⩽ 𝑡 ⩽ 𝑇 − 1).
3.5. Results. Experiments are applied on single-/multiphase
medical CT scans. The retrieval performances using single-
phase data and multiphase data are shown in Figure 7(a).
As shown before in Figure 3, the contrast enhanced phases
(ART and PV) show more distinguishable characteristics
than the non-contrast enhanced phase (NC). Thus it is
reasonable that ART and PV phase have better retrieval
performance than NC, while the two contrast enhanced
phases have similar performance, as shown in Figure 7(a).
The proposed sparse codebook model using multiphase data
provides the best performance with the help of temporal
information in retrieval of liver lesions. There are two ways
to learn codebooks for representation of multiphase data:
joint learning and separate learning. Joint learningmeans that
the corresponding local descriptors of data in each phase are
combined before learning codebooks. Only one codebook is
learned for multiphase data in joint learning. On the other

hand, separate learning learns codebooks for each phase and
the features of CTs in each phase are concatenated for the
final representation of the multiphase data. The compared
performance is also given in Figure 7(a). Considering the
situation that, in medical practice, the multiphase data are
only roughly aligned, and small translations and/or rotations
in soft tissues, such as liver, unavoidably exist, which can
be caused by factors such as the patient’s breath during CT
scanning. Because the multiphase data are not exactly reg-
istered, the joint pixels from different phases may represent
different tissues and thus lead tomismatching combination in
the joint learning. As shown in Figure 7(a), the joint learning
has comparable performance for a few retrieved cases with
separate learning, while the performance reduces fast when
more similar cases are retrieved. Since the separate learning
outperforms the joint learning, separate learning is used in
the rest of the experiments for multiphase data.

Furthermore, the retrieved performance is quiet bad
in using the proposed sparse codebook model with the
NC phase only. In order to investigate the applicability of
the proposed sparse codebook model, we also conducted
experiments with state-of-the-art methods on the NC phase
only, and the compared retrieval results are provided in
Figure 7(b), which illustrated that the proposed patch-based
sparse coding (SC) method gets the best performance while
all the methods have very poor performance on NC phase
data only.

We compared our method to other alternative methods.
We implemented the intensity-based method, which means
that we used the mean intensity of the focal liver lesion
region to represent the image. Then each medical case is
featured by a vector that has 3 elements, one from each
phase (NC, ART, and PV). We also realized the codebook
learning byK-means clustering technique, which refers toK-
means-basedmethod, with one hundred clustering centroids.
In this realization, the training samples are raw patches,
which are the same as the training samples in our proposed
method. The retrieval performance comparison is shown in
Figure 8: the intensity-based method has comparable results
which emphasizes the importance of intensity in focal liver
lesion recognition; the proposed codebook model has the
best performance while the K-means-based method only
performs slightly better than the intensity-based method.

We have also used the Local Binary Pattern (LBP) to
capture the local texture features of focal liver lesions. Each
image is represented by a histogram with 256 bins from
calculating the LBP patterns. And themedical case is featured
by a 768-dimensional vector, which is a concatenation of the
three 256-bin histograms for each phase of medical image.

We also used the retrieval accuracy at top 𝑡 retrieved
samples to evaluate the performance of different methods.
Table 2 shows the retrieval accuracy of the proposed method;
comparing with that of three other methods, when 𝑡 is at
the top (𝑡 = 1, 3, 5, 10, 20), most similar medical cases are
retrieved.TheK-means-basedmethod gets best performance
when only one case is retrieved and the proposed sparse
codebook model can achieve best performance when more
cases are retrieved. The retrieval precisions are very low by
using the LBP-based methods, due to the fact that the local
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Figure 7: (a) Retrieval performance using single-/multiphase data. (b) Retrieval performance of different methods by using only NC phase
data.

Table 2: Retrieval accuracy of different methods at various most
similar numbers of cases being retrieved.

Methods Top 1 Top 3 Top 5 Top 10 Top 20
Proposed method 0.66 0.68 0.65 0.62 0.59
Mean intensity
method 0.61 0.6 0.6 0.6 0.56

K-means based on
local patch 0.72 0.65 0.64 0.61 0.56

LBP method 0.34 0.31 0.32 0.28 0.25

texture feature is not discriminative for different types of focal
liver lesions.

In addition, we also conducted FLL retrieval experiment
with the proposed sparse codebook model using Scale-
Invariant Feature Transform (SIFT) as local descriptors, and
the result is manifested in Figure 8. Figure 8 shows that the
performance of SIFT-based method is very poor and is not
acceptable, which explains that retaining all detail structure
with local patch is more important than the quantized-based
SIFT for the fine-grained medical data representation.

3.6. Parameter Optimization. Previous studies suggested that
the codebook size and the patch size have significant influ-
ence on the performance of image retrieval and categoriza-
tion for natural images. We evaluated the performance for
retrieval of focal liver lesions when varying the patch size,
codebook size, and sparsity measure. In previous section, we
have proved that retrieval based on multiphase medical data
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Figure 8: Comparison of the proposed codebook model with state-
of-the-art methods.

will have the best performance. The following experiments
were performed on multiphase CT scans.

3.6.1. Patch Size. To evaluate the influence of patch size on the
performance of FLLs retrieval, we fixed the other parameters
based on our experience and preliminary results (codebook
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Figure 9: Retrieval performance when varying patch size from 3 to 19.
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Figure 10: Retrieval performance when varying codebook size.

size is set to 100 and sparsity measure is set to 0.1). We have
varied the patch size from 3∗3 to 19∗19with step size 2, and
the results are shown in Figure 9. The retrieval performance
will increase as patch size enlarges, Figure 9(a), when using
small patch size. This might be explained by the fact that
large patches can capture more texture information and
thus represent an image more effectively. The performance
approaches its optimal at patch size 11∗11. When increasing
the patch size even further, the performance gets lower,

since too large patches will capture tissues from surrounding
region, which are regarded as noise and influence the retrieval
accuracy. From this evaluation, the patch size will be set to11∗11 in future experiments to achieve the best performance.

3.6.2. Codebook Size. The codebook size is varied in range
from20 to 100 every 20, when the patch size and sparsitymea-
sure are fixed to 11 ∗ 11 and 0.1, separately. We can see from
Figure 10(a) that there is small improvement in the retrieval
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Figure 11: The retrieval performance with various sparsity mea-
sures, when patch size is 11 ∗ 11 and codebook size is 32.

performance when increasing the codebook size. Similar sit-
uation occurs in the performance of ADMM implementation
method: no obvious improvement with larger codebook size.
We have also explored even larger codebook size, from 100
to 500 every 100, while no better results can be achieved,
shown in Figure 10(b). Considering getting a balance between
retrieval performance and computation time, the codebook
size used in other experiments is determined to be 32.

3.6.3. Sparsity Measure. The sparsity measure, 𝛼, in formula
(2), in this work refers to the ratio between the number
of nonzero entries of a sparse approximation and the total
number of codewords in the learned codebook.𝛼∗𝐾 controls
the maximum number of codewords that can be used for
approximation of the input signal; 𝐾 is the size of codebook.
We evaluate retrieval performance with different sparsity
measure 𝛼, which varies in {0.05, 0.1, 0.15, 0.2, 0.25, 0.3},
when patch size is fixed to 11∗11 and codebook size is fixed to
100 according to our previous experiments.The experimental
results are shown in Figure 11.

3.7. Evaluation of ADMM Implementation Method in Sparse
Coding. All the above experiments of our proposed sparse
codebook model were conducted with the implementation
methods: OMP for coefficient calculation and K-SVD for
codebook updating. We also implemented the sparse code-
book model using ADMM for solving sparse coding opti-
mization problem.The retrieval performance with K-means,
and our proposed sparse codebookmodel withK-SVD/OMP
and ADMM solving methods using codebook size 32 only,
respectively, are provided in Figure 12. As shown in Figure 12,
the sparse coding method based on either ADMM or K-
SVD/OMP optimization methods outperforms the K-means
method. The sparse coding with ADMM implementation is
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Figure 12: Retrieval performance comparison of ADMM imple-
mentation method with the proposed method and K-means
method.
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Figure 13: Retrieval performance of ADMM implementation
method with different codebook sizes.

better than that with K-SVD/OMPwhen only several similar
cases to the query case are retrieved, while the SC with
K-SVD/OMP performs better when more similar cases are
retrieved.

We have also evaluated the performance of the ADMM
method with different codebook sizes, as shown in Figure 13.
The retrieval performance improvement is not obvious when
increasing the codebook size. Considering the time efficiency,
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Figure 14: Illustration of retrieval results (top three retrieved examples) for one example from each class.

the codebook size used in performance comparison with
other methods, Figure 12, is determined to be 32.

3.8. Illustration of Top Retrieved Results. The top three
retrieved samples for one example from each focal liver lesion
class are shown in Figure 14. The retrieval is performed

using the proposed codebook model with parameters that
are all optimal, which have been proved in previous section.
The three rows of images show the representative slices of
the corresponding focal liver lesion on different phases. The
first columns are the query samples while the following
three columns are the top three retrieved samples using the
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leave-one-out cross validation. We can see that the retrieved
samples have very similar appearance with query samples.
What is more, similar enhancement characters are shown
between the query and retrieved samples. However, there are
some cases where the top retrieval sample does not belong
to the same class as the query sample, for example, the 3rd
retrieved sample belongs to HCC for the query example from
METS class.

4. Conclusion

In this work we present a codebook model for retrieval
of focal liver lesions using three-phase contrast enhanced
CT images. The proposed method is evaluated on a dataset
with 137 medical cases comprising five types of focal liver
lesions. The leave-one-out cross validation is applied in
construction of confusion matrices for retrieval of each
medical case. Codebook is learned for medical cases in each
phase separately. And thus the middle-level features based
on the proposed sparse codebook model can be extracted
from each phase data and the concatenated vector of all
phase features is used as the representation of the multiphase
medical data. Experimental results show that retrieval based
on multiphase data achieved best performance while using
only one contrast enhanced CT image can also get reasonable
results. In future works, we will extend the linear analysis
to multilinear analysis of the medical data to capture core
information. Since the vectorization of local descriptors is
unavoidable in linear analysis, the spatial structure is always
destroyed. We want to apply the tensor technique which
analyzes the input signals without unfolding and thus keep
the structure for better representation of high-dimensional
medical data. With improved accuracy in future works, we
intend to develop a content-based image retrieval system to
assist in medical education and clinical practice.
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