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Diabetic peripheral neuropathy (DPN) is
characterized by pain and sensory loss,
affecting approximately 50% of patients
(1). Early identification and risk factor
management are key to limiting pro-
gression of DPN. In contrast to retinop-
athy (retinal fundus imaging) and
nephropathy (microalbuminuria) with
early disease detection, the 10-g mono-
filament identifies advanced DPN. Cor-
neal confocal microscopy (CCM) is an
ophthalmic imaging technique that
identifies subclinical corneal nerve loss,
which predicts incident DPN (2) and has
good diagnostic utility for DPN (3). It
also identifies corneal nerve regenera-
tion prior to improvement in symptoms
and nerve conduction studies after si-
multaneous pancreas and kidney trans-
plantation (4). CCM studies have
primarily used manual corneal nerve
analysis (CCMetrics), which, although
highly reliable, is time-consuming with
limited scalability.

Here, we combine a deep learning
(DL) algorithm for fully automated
quantification of corneal nerves in CCM
images along with an adaptive neuro-
fuzzy inference system (ANFIS) to rapid-
ly differentiate patients with (DPN1)
and without (DPN�) neuropathy and
healthy control subjects. Participants
with type 1 diabetes (n = 87) and con-
trol subjects (n = 21) underwent de-
tailed assessment of neuropathy (Table
1). Based on the Toronto criteria, which
combine symptoms, signs, and abnor-
mal nerve conduction, patients were
subdivided into DPN1 (29%) and
DPN� (71%) groups (Table 1). Partici-
pants underwent CCM, and 6–8 central
corneal nerve images/subject were quanti-
fied using our established methodology
(5). DL performance was assessed against
ground truth derived from gold-standard
1) manual CCMetrics and 2) automated
(ACCMetrics) methods to quantify corneal
nerve fiber length (CNFL).

The DL algorithm uses a U-Net–based
convolutional neural network, which
requires smaller training sets for more pre-
cise segmentation. The algorithm was ini-
tially trained on 25% (n = 174 images) of
the data set (affecting approximately 50%
epochs/0.0001 learning rate) for 30 h
(Intel Core i3–6100) and then validated on
the remaining images (n = 534). To optimize
quality, input training images were cropped
to 256 � 256 pixels, binarized, and skele-
tonized, resulting in a segmented output
image, where nerve pixels corresponded to
a value of 1 and nonnerve pixels to 0.

DL-estimated CNFL was comparable
to CCMetrics (1,326 ± 459 vs. 1,269 ±
444 pixels, P > 0.05) and significantly
outperformed ACCMetrics (1,036 ± 385
pixels, P < 0.0001), with higher pixel
detection sensitivity (85% vs. 70%) and
lower false negative rate (15% vs. 30%)
than ground truth. The intraclass correla-
tion coefficient indicated excellent repro-
ducibility for DL segmentation (0.98, P =
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0.0001) and lower but high reproducibility
for ACCMetrics (0.85, P = 0.0001).

ANFIS harnesses the learning ability
of convolutional neural networks and
the logic-based reasoning of fuzzy sys-
tems and was deployed to classify par-
ticipants into DPN1, DPN�, or healthy
control subjects (Fig. 1A and B). A multi-
class model for ANFIS was constructed
using “one versus all” and “one versus
one” classifiers. The first classifier was
trained to differentiate control (labeled 0)
from DPN� (labeled 1) and DPN1 (la-
beled 2) participants using a one-versus-
all approach. The second classifier was
trained to differentiate DPN� from
DPN1 participants using a one-versus-
one approach. Both classifiers were
trained at 20 epochs (step size, 0.1; step
increase size, 1.01). Based on CCM im-
ages, ANFIS classified 43% of participants
as DPN1 with excellent reliability (Cohen
k = 0.86, P < 0.0001). Receiver operating
characteristic curve analysis showed the
following capacity for discriminating 1)
DPN� from control subjects: area under

the curve (AUC) = 0.86 (95% CI
0.77–0.94, P < 0.0001) with 84% sensitiv-
ity/71% specificity; 2) DPN� from DPN1:
AUC = 0.95 (95% CI 0.91–0.99, P <
0.0001) with 92% sensitivity/80% specific-
ity; and 3) control subjects from DPN1:
AUC = 1.0 (95% CI 0.99–1.0, P < 0.0001)
with 100% sensitivity/95% specificity (Fig.
1C and D). Model size analysis showed that
the combined segmentation (DL)–classifica-
tion (ANFIS) system occupied 38 megabytes.

We show that automated DL image
segmentation has excellent agreement
with manual expert analysis for the
quantification of corneal nerves. This is
important, as rapid and accurate auto-
mated quantification is key for success-
ful deployment of CCM in large-scale,
multicenter studies and clinical trials of
disease-modifying therapies in DPN (4).
Furthermore, we show that DPN classifi-
cation with ANFIS was highly accurate
for discriminating control from DPN�
and particularly DPN1 subjects, sur-
passing previous diagnostic outcomes
(3). Indeed, the ANFIS model identified

corneal nerve loss in patients deemed
to have no DPN based on the Toronto
criteria, which relies on nerve conduc-
tion and misses early small nerve fiber
involvement (5). Patients with DPN were
older, and given that increasing age is as-
sociated with corneal nerve loss, that may
have contributed to the outcomes of this
study. In conclusion, this artificial intelli-
gence model could discriminate patients
with DPN from control subjects with almost
perfect diagnostic outcomes, indicating the
considerable potential of CCM in screening
for DPN.
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Table 1—Demographic and clinical characteristics based on Toronto classification of DPN

Value by patient type

Variables Controls DPN– DPN1 P value

n 21 62 25

Age (years) 44.9 ± 11.1 41.4 ± 14.8 62 ± 10.8a,b <0.0001

Diabetes duration (years) 25.9 ± 18.9 45 ± 11.2b <0.0001

HbA1c (mmol/mol) 36.1 ± 4.8 67.2 ± 16.1a 65.0 ± 15.1a <0.0001

HbA1c (%) 5.4 ± 0.4 8.3 ± 1.7a 8.1 ± 1.8a <0.0001

BMI (kg/m2) 27.4 ± 4.2 26.1 ± 4.7 27.3 ± 4 NS

BP systolic (mmHg) 127.1 ± 21.3 131.6 ± 18 147 ± 26.2a,b 0.007–0.004

BP diastolic (mmHg) 72.7 ± 9.0 70.6 ± 8.9 73.6 ± 10.2 NS

ACR (mg/mmol) 0.7 ± 0.5 2.4 ± 6.4 11.9 ± 17.7a,b 0.0008–0.0007

eGFR (mL/min/L) 84.3 ± 8.4 86.6 ± 10 62.3 ± 28.1a,b <0.0001

TC (mmol/L) 5.2 ± 0.7 4.4 ± 0.8a 4.4 ± 0.9a 0.005–0.0008

Triglycerides (mmol/L) 1.4 ± 0.6 1.1 ± 0.7 1.3 ± 0.7 NS

NSP 0.4 ± 1.1 2 ± 3.3 7.9 ± 6.7a,b <0.0001

NDS 0.3 ± 0.5 1.4 ± 1.7a 7.1 ± 2a,b 0.01–0.0001

VPT (V) 5 ± 3.3 8.1 ± 6 29.5 ± 11.8a,b <0.0001

SSNA (mV) 22.6 ± 10.1 12.3 ± 6.9a 4.2 ± 2.9a 0.0006–0.0001

SSNCV (m/s) 51.2 ± 5.3 45.6 ± 4.4a 40 ± 5.2a,b 0.0002–0.0001

PMNA (mV) 5.7 ± 2.1 5.6 ± 7.7 1.5 ± 1.2b 0.02

PMNCV (m/s) 48.5 ± 4.3 43.6 ± 3.3a 36.1 ± 6.1a,b <0.0001

CNFLCCMetrics (pixels) 1,849 ± 213.5 1,311 ± 326.9a 934.2 ± 479.8a,b <0.0001

CNFLDL (pixels) 1,756 ± 188.2 1,264 ± 319.7a 872 ± 468a,b <0.0001

CNFLACCMetrics (pixels) 1,492 ± 168.4 1,021 ± 279.9a 686.7 ± 356.3a,b <0.0001

Data are expressed as mean ± SD. ACR, albumin-to-creatinine ratio; BP, blood pressure; eGFR, estimated glomerular filtration rate; NDS, neu-
ropathy disability score; NSP, neuropathy symptom profile; PMNA, peroneal motor nerve amplitude; PMNCV, peroneal motor nerve conduc-
tion velocity; SSNA, sural sensory nerve amplitude; SSNCV, sural sensory nerve conduction velocity; TC, total cholesterol; VPT, vibration
perception threshold. aSignificantly different from control subjects. bSignificantly different from DPN� patients.
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Figure 1—A: The hierarchical ANFIS classification model. CCM images from the training subset are fed into an initial neuro-fuzzy inference system
(INFIS), and the results are evaluated on the first validation data set. The best-performing cutoff points are determined by subsequent fuzzy infer-
ence systems (FIS), and performance of the final system is evaluated on the second validation set. B: The hierarchical ANFIS prediction workflow is
then applied to classify DPN based on the extent of CNFL loss. C: Representative CCM images from a healthy control and DPN� and DPN1
patients. D: Receiver operating characteristic curve analysis for identification of DPN by ANFIS based on DL segmented CCM images.
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