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Abstract

In this work, we introduce a theoretical framework to describe the scattering from spheres. In our 

proposed framework, the total field in the outer medium is decomposed in terms of inward and 

outward electromagnetic fields, rather than in terms of incident and scattered fields, as in the 

classical Lorenz–Mie formulation. The fields are expressed as series of spherical harmonics, 

whose combination weights can be interpreted as reflection and transmission coefficients, which 

provides an intuitive understanding of the propagation and scattering phenomena. Our formulation 

extends the previously proposed theory of non-uniform transmission lines by introducing an 

expression for impedance transfer, which yields a closed-form solution for the fields inside and 

outside the sphere. The power transmitted in and scattered by the sphere can be also evaluated 

with a simple closed-form expression and related with the modulus of the reflection coefficient. 

We showed that our method is fully consistent with the classical Mie scattering theory. We also 

showed that our method can provide an intuitive physical interpretation of electromagnetic 

scattering in terms of impedance matching and resonances, and that it is especially useful for the 

case of inward traveling spherical waves generated by sources surrounding the scatterer.
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1. Introduction

The study of the electromagnetic scattering from spherical objects has its origin in the work 

of Lorenz and Mie [1] at the turn of the 20th century. Modern formulations [2–5] of what 

has since been referred as “Mie scattering” arose from this outstanding work and has since 
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been applied to light scattering, cancer detection, metamaterial theory and much more [6–

15].

In Mie scattering, the total electromagnetic (EM) field outside the sphere can be expressed 

as the sum of the incident field, which is the field that would be there in the absence of the 

sphere (i.e., the scatterer), and the scattered field. The field that propagates inside the sphere 

is called transmitted field. The EM fields are expressed as a superposition of vector 

harmonics. The EM field dependence on each spherical coordinate is factorized, and the 

radial dependence inside the sphere is defined by means of spherical Bessel functions. To 

guarantee that the EM field is finite at the origin of the coordinate system, which coincides 

with the center of the sphere, only spherical Bessel functions of the first kind are used to 

describe the radial dependence inside the sphere. Outside the sphere, the EM field is 

typically defined by means of a combination of stationary first kind and progressive fourth 

kind spherical Bessel functions. Internal and external fields are linked by the continuity 

conditions.

Despite the elegance and compactness of the Mie analytical formulation, its physical 

interpretation can be challenging, because both scattered and transmitted field coefficients 

are expressed as a combination of Bessel and Riccati–Bessel functions. In an effort to 

improve the physical understanding of the scattering characteristics of spheres, Debye 

proposed to expand each term of the Mie scattering in series [16–19]. Each term of the 

Debye series can be interpreted as the result of a diffraction, reflection, or transmission 

phenomenon at the air–sphere interface. While such formalism improves the physical 

comprehension, its complexity makes it practical only for a limited number of simple 

problems.

Building on Mie scattering theory, extensive work has been done in the last decades to 

provide elegant, closed-form solutions to the problem of scattering from spheres [20,21]. 

Such work has mainly focused on two types of scattering problems: the case of an outgoing 

wave incident on a spherical boundary and that of a standing wave incident on a spherical 

boundary. These problems, well described in [21], have been of great interest because they 

are useful to analyze the two important applicative fields of scattering theory: the scattering 

of lights and the irradiation of antennas. In the first case, the incident wave is modeled as a 

plane wave, whereas in the second case, the source is at the origin and the incident field is an 

outgoing wave. For example, Mie scattering was developed in the framework of light 

scattering theory, using plane waves as incident fields and adopting a number of far field 

approximations for the evaluation of the scattered field. This approach, however, does not 

help understanding complex near-field behaviors, which are important for biomedical 

applications.

In fact, in various diagnostic and therapeutic techniques, a local radiofrequency source is 

used to illuminate a body part, which can be often modeled using a dielectric sphere. 

Although this third type of scattering problems, in which there is an incoming spherical 

wave incident on a spherical boundary, is becoming increasingly relevant, current theoretical 

frameworks only provide limited physical intuition to analyze it. For example, in magnetic 

resonance imaging (MRI), where the interaction of EM fields with biological tissue affects 
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both image quality and patient safety, dielectric spheres have been used as an approximation 

of the human head to simulate the performance of radiofrequency coils [22–24]. While rapid 

analytical approaches based on Mie scattering enable one to explore a large parameter space, 

they provide limited comprehension of the physical variables that govern the EM field 

propagation and should guide the design of MRI detectors and transmitters.

An alternative approach that could be more suitable for this type of problems is to express 

the scattering from the sphere in terms of equivalent transmission lines [25–27]. 

Schelkunoff, in particular, proposed the theory of the transmission of spherical waves [25]. 

This outstanding formulation introduced the basic concepts of impedance and reflection 

coefficient to describe the scattering from a sphere. However, its practical use has been 

considerably limited, mainly due to the mathematical complexity of the impedances and to 

the lack of a simple impedance transfer formula. In fact, the latter is critical for simplifying 

the description and interpretation of boundary condition problems and to relate impedances 

and reflection coefficients in the case of layered spheres.

This work expands the theory of equivalent transmission lines [25] by providing a closed-

form solution to the problem of the scattering of an inward spherical wave on a spherical 

boundary, which has not been fully addressed by previous work. The main difference with 

respect to Mie scattering is that both the EM fields outside and inside the scatterer are 

expressed as a sum of inward (or incident) and outward (or reflected) waves. This field 

decomposition enables interpreting the ratios between field coefficients as reflection 

coefficients, providing an intuitive explanation of the physical phenomena that govern the 

EM field propagation inside the object. In addition, the resulting EM field expressions could 

be interpreted in terms of non-uniform equivalent transmission lines with the sphere center 

represented by an equivalent short load. We introduce an impedance transfer formula, which 

is expected to facilitate the straightforward utilization of our formalism in several applicative 

scenarios.

The remainder of the paper is organized as follows. In Section 2, the classical Mie scattering 

is recalled, whereas, in Section 3, the proposed reformulation is described. In Section 4, the 

two methods are compared. In Section 5, numerical examples are presented to show the 

advantages of the proposed method for the physical interpretation of phenomena that can be 

described in the framework of the Mie scattering. The main results are discussed in the 

concluding session.

2. Mie Scattering

The classical Mie scattering formulation is described in several research and review papers 

[2,4,28] which provide all the physical and mathematical details. In this section, we recall 

only the basic principles and the equations that will be used as a reference to introduce our 

approach.

From Maxwell’s equations, the electric field E can be expressed as the solution of a 

Helmholtz equation:
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∇2E + k2E = 0 (1)

where k is the wavenumber. An identical equation can be derived for the magnetic field. In 

the case of scattering from spherical objects, it has been demonstrated [3,4] that the fields 

can be expressed in terms of the two families of vector harmonics Mnm and Nnm:

Mnm = Bn(kr) iπnm(ϑ)ϑ − τnm(ϑ)φ eimφ (2)

Nnm = 1
kr

d rBn(kr)
dr iπnm(ϑ)φ + τnm(ϑ)ϑ eimφ

+ Bn(kr)
kr n(n + 1)Pn

m(cosϑ)eimφr
(3)

where i is the imaginary, (r, ϑ, φ) are the three coordinates of a spherical coordinate system 

with the origin in the center of the sphere, Bn is a spherical Bessel function of the nth order, 

Pn
m is the associated Legendre polynomial, πnm(ϑ) and τnm(ϑ) are sectorial functions, 

defined as:

πnm(ϑ) = mPn
m(cosϑ)
sinϑ

(4)

τnm(ϑ) = dPn
m(cosϑ)

dϑ
(5)

The spherical Bessel function Bn is the solution of the Bessel equation in spherical 

coordinates and can be written as a combination of static first and second kind spherical 

Bessel functions, or traveling third and fourth kind spherical Bessel functions (also called 

first and second type spherical Hankel functions). In Mie scattering, the total EM field in the 

region outside the sphere is expressed as the sum of an incident field:

Ei = ∑
n = 1

∞
∑

m = − n

n
anmMnm

(1) + bnmNnm
(1)

Bi = k
iω ∑

n = 1

∞
∑

m = − n

n
anmNnm

(1) + bnmMnm
(1)

(6)

and a scattered field:

Es = ∑
n = 1

∞
∑

m = − n

n
cnmMnm

(4) + dnmNnm
(4)

Bs = k
iω ∑

n = 1

∞
∑

m = − n

n
cnmNnm

(4) + dnmMnm
(4)

(7)
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The field that instead propagates inside the sphere (i.e., the transmitted, field) is described 

as:

Et = ∑
n = 1

∞
∑

m = − n

n
enmMnm

(1) + fnmNnm
(1)

Bt = k
iω ∑

n = 1

∞
∑

m = − n

n
enmNnm

(1) + fnmMnm
(1)

(8)

The superscripts (1) and (4) appended to the vector harmonics in Equations (6)–(8) indicate 

the kind of the spherical Bessel functions used for the description of the radial dependence. 

Since the incident and the transmitted fields are defined at the origin, their expressions 

include only spherical Bessel functions of the first kind, which impose that the field is finite 

at the origin. The scattered field is instead outward directed, so it is described as a 

superposition of spherical Bessel functions of the fourth kind (also called spherical Hankel 

functions of the second kind). Note that this notation is based on a eiωt time dependence. If 

the e−iωt notation is used, the outward waves must be described by spherical Bessel 

functions of the third kind.

Since the Mnm and Nnm vectors are orthogonal and, as shown by Equations (2) and (3), the 

Mnm vectors have no radial component, the evaluation of the field coefficients in Equations 

(6)–(8) can be separated in two independent problems. If all the bnm coefficients are null, the 

electric field is orthogonal to the radial direction and the solution is called Transverse 

Electric (TE); if all the anm coefficients are null, the magnetic field is orthogonal to the 

radial direction and the solution is called Transverse Magnetic (TM).

The Mie scattering coefficients are obtained by imposing the continuity of the tangential 

components of the field at the sphere boundary. The complete Mie formulation is available 

in the literature. Here, we recall only the expressions for the scattering coefficients, which 

will be used as a reference to evaluate our method and can be expressed as a combination of 

spherical Bessel functions:

cnm = − anm
jn′ k1a jn k2a − χjn k1a jn′ k2a

ℎn
(2)′ k1a jn k2a − χℎn

(2) k1a jn′ k2a
dnm = − bnm

jn k1a jn′ k2a − χjn′ k1a jn k2a
ℎn

(2) k1a jn′ k2a − χℎn
(2)′ k1a jn k2a

(9)

where a is the radius of the sphere, χ =
k2
k1

 is the refraction index, k1 and k2 are the 

wavenumbers of the external and internal medium, respectively, and the following definition 

for the first derivative of the spherical Bessel functions was used:

Bn′(kr) = 1
kr

d rBn(kr)
dr (10)

For a perfectly conducting sphere, the coefficients reduce to:
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cnm = − anm
jn k1a

ℎn
(2) k1a

dnm = − bnm
jn′ k1a

ℎn
(2)′ k1a

(11)

The above equations represent an outstanding contribution to modern physics, which 

inspired several works in different fields of science [1,28]. However, their physical 

interpretation is not immediate.

3. Proposed Method

We propose a new formulation of the scattering by spheres, in which the EM field is 

expressed in terms of inward and outward waves rather than incident, transmitted and 

scattering waves. Our method, which builds on previous work on equivalent transmission 

lines [20,21,25], develops from the physical consideration that the inward waves focus in the 

origin and the energy they carry is redistributed by the outward waves. In other words, the 

origin can be seen as a sink for the incoming waves and a source of outgoing waves, in 

accordance with the energy conservation principle.

From the mathematical point of view, in the classical Mie scattering, the energy conservation 

principle is respected by forcing the radial dependence of the EM field to behave as 

spherical Bessel functions of the first kind, guaranteeing that the fields are finite in the 

origin. In our approach, we keep the distinction between inward (described by Hankel 

functions of the first kind) and outward (described by Hankel functions of the second kind) 

waves and we fulfill the energy conservation principle by forcing the equality of their field 

coefficients inside the sphere. From the physics point of view, this constraint is nothing but 

an energy conservation criterion and it is coherent with the fact that inside the sphere the 

field behaves as a first kind spherical Bessel function, as described by the Mie scattering. In 

this framework, the outward waves can be viewed as the result of a reflection phenomenon 

happening at the origin and the scattering problem can be described by the non-uniform 

transmission line theory [29], with the origin acting as a perfect reflector.

In the following paragraphs, we describe the proposed formulation for the TE case. The TM 

solution can be calculated with an analogous procedure.

3.1. Problem Formulation

Figure 1 shows a schematic representation of the scattering problem. In Medium 1 (usually 

air), the total field can be expressed as a superposition of inward and outward waves (note 

that no distinction is made between incident and scattered field):
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E1(r) = ∑
n = 1

∞
∑

m = − n

n
E1nm

+ Mnm
(3) + E1nm

− Mnm
(4)

H1(r) = k
iωμ ∑

n = 1

∞
∑

m = − n

n
E1nm

+ Nnm
(3) + E1nm

− Mnm
(4)

(12)

In Medium 2 (i.e., inside the sphere), the fields can also be expressed as a superposition of 

inward and outward waves:

E2(r) = ∑
n = 1

∞
∑

m = − n

n
E2nm

+ Mnm
(3) + E2nm

− Mnm
(4)

H2(r) = k
iωμ ∑

n = 1

∞
∑

m = − n

n
E2nm

+ Nnm
(3) + E2nm

− Nnm
(4)

(13)

with the constraint that the inside the sphere inward and outward coefficients are equal 

E2nm
+ = E2nm

−  to ensure energy conservation.

The fields E1(r) and E2(r) are linked by the continuity conditions, which allow one to 

calculate the coefficients of the series expansion.

3.2. Characteristic Impedance

We can define an impedance term by taking the ratio between the tangential component of 

electric and magnetic fields. From the definition of Mnm and Nnm in Equations (2) and (3), 

for a single wave, the impedance can be expressed as:

Zn klr = iωμ
kl

Bn klr
Bn′ klr

(14)

where the term Bn′ klr  is defined in Equation (10), l ∈ (1, 2) specifies the medium and n is 

the order of the Bessel function.

By observing that the ratio ωμ
kl

= ζl is the characteristic impedance of the l-th medium and 

using the logarithmic derivative of the Riccati–Bessel function:

Bn′ klr
Bn klr

= Dnl (15)

the impedance can be written in a more compact form as Zn klr = i
ζl

Dnl
.

The impedances for the inward and outward waves are different, but their values are closely 

related. In fact, we can evaluate the impedance of the inward wave Zn
(1) klr , by substituting 

ℎn
(1) klr  in place of Bn(klr) in Equation (14), obtaining:
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Zn
(1) klr = iωμ

kl

ℎn
(1) klr

ℎn
(1)′ k1r

= Znl (16)

whereas we can evaluate the impedance of the outward wave Zn
(2) klr  by substituting 

ℎn
(2) klr  in place of Bn(klr) in Equation (14), obtaining:

Zn
(2) klr = iωμ

kl

ℎn
(2) klr

ℎn
(2)′ klr

= Zn
(1) −klr = Znl (17)

Inside the sphere, given the energy conservation constraint E2nm
+ = E2nm

− , and given the 

identity ℎn
(1) k2r + ℎn

(2) k2r = 2jn k2r , the total field (inward plus outward wave) behaves as 

a spherical Bessel function of the first kind. Therefore, by substituting jn(k2r) in place of 

Bn(klr) in Equation (14), we can define the impedance of the total field inside the sphere as:

Zn
(J) k2r = iωμ

k2

jn k2r
jn′ k2r = ZJn2 (18)

In Table 1, the different expressions (16)–(18) that Equation (14) can take for different 

Bessel functions are provided. In the last column, a compact expression that will be used in 

the remainder of the paper is introduced.

3.3. Field Expression: Traveling Form

For each mode of the EM field in the l-th medium, the tangential fields can be expressed as:

Elnm(r) = Elnm
+ ℎn(1) klr + Elnm− ℎn(2) klr

Hlnm(r) = kl
iωμ Elnm

+ ℎn
(1)′ klr + Elnm

− ℎn
(2)′ klr

= Elnm
+

Znl
ℎn

(1) klr + Elnm
−

Znl
ℎn

(2) klr
(19)

If we define a reflection coefficient for the electric field as:

Γn klr = El
−ℎnm

(2) klr
El

+ℎnm
(1) klr

, (20)

we can write the fields in a more compact form:
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Elnm(r) = Elnm
+ ℎn

(1) klr 1 + Γn klr

Hlnm(r) = Elnm
+

Znl
ℎn

(1) klr 1 + Γn klr
Znl
Znl

.
(21)

The impedance of the total field can then be expressed as a function of the reflection 

coefficient by taking the ratio between the electric and magnetic field in Equations (21):

Zn klr = El(r)
Hl(r) = Znl

1 + Γn klr

1 + Γn klr
Znl
Znl

.
(22)

Inside the sphere (l = 2), this corresponds to the impedance in Equation (18). The above 

expression can be easily inverted in order to express the reflection coefficients in terms of 

impedance as:

Γn klr = Zn klr − Znl

Znl − Zn klr
Znl
Znl

(23)

The last equations provide a framework for the physical interpretation of the fields. For 

example, in Equations (21), the electric field is expressed as the product of the term 1 + 

Γn(klr), which accounts for the coherent sum of incident and reflected fields, with the term 

ℎn
(1) klr , which accounts for the radial distribution of the energy. One advantage of the 

proposed approach compared to the classical Mie formulation is that the reflection 

coefficient and the impedance are scalar and physically interpretable engineering quantities, 

as opposed to the coefficients in Equation (9). For instance, impedance and reflection 

coefficient enable to easily evaluate, for each mode, the position of the peak of the electric 

field inside the sphere, providing a powerful tool for, e.g., antenna design optimization. In 

Section V, numerical examples are presented to illustrate applications of the proposed 

methods.

In the equation for the magnetic field (21), the reflection coefficient of the electric field is 

multiplied by the factor Znl/Znl, which is a term with unitary amplitude. At the origin, the 

phase of this term is null; therefore, the magnetic reflection coefficient is equal to the 

electric reflection coefficient.

For kl >> n, the phase of Znl/Znl approaches π, and the reflection coefficient of the magnetic 

field is the opposite of that of the electric field, as it happens for transmission lines. The 

phase of Znl/Znl is plotted against the sphere radius in Figure 2.
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3.4. Field Expression: Stationary Form

The spherical Bessel functions of the third and fourth kind can be expressed in terms of 

stationary spherical Bessel functions as ℎn
(1) klr = jn klr + iyn klr  and 

ℎn
(2) klr = jn klr − iyn klr . Then, the EM field can be written in stationary form as:

Elnm(r) = Elnm
+ + Elnm

− 2jn klr + i Elnm
+ − Elnm

− 2yn klr

Hlnm(r) = kl
iωμ Elnm

+ + Elnm
− 2jn′ klr + i Elnm

+ − Elnm
− 2iyn′ klr

(24)

The corresponding impedance in the l-th medium can be calculated, for each mode, as the 

ratio between electric and magnetic fields:

Zn klr = El(r)
Hl(r) = ZJnl

A0l + itnl
A0l + itnl′

(25)

where

A0l = Elnm
+ + Elnm

−

Elnm
+ − Elnm

− (26)

tnl = yn klr
jn klr

, (27)

and

tnl′ = yn′ klr
jn′ klr

(28)

Equation (25) provides a novel general expression of the impedance in any medium and it is 

particularly useful for the evaluation of the matching condition. For example, in case of 

scattering from multi-layered spheres, it provides an operative expression to evaluate the 

impedance in any layer as a transfer of the impedance in the origin.

As a proof of consistence with Mie scattering, we can see that, inside the sphere, given the 

condition E2nm
+ = E2nm

− , we get that A02 = ∞ and the impedence reduces to the ZJn2 in 

Equation (18). The importance of Equation (25) is further demonstrated by the fact that, at 

the origin, ZJn2 = 0 and this allows interpreting the scattering in terms of equivalent 

transmission lines closed on a short circuit at the origin, as shown in Figure 3.

3.5. Field Coefficients Evaluation

In some applications (for example, when modeling an MRI experiment) an inward wave is 

generated in the outer medium (by an antenna) and impinges on the sphere. Therefore, it is 

of interest to express the first medium outward wave (E1nm
− ) and the internal inward wave 
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(E2nm
+ ) field coefficient as a function of the first medium inward wave (E1nm

+ ) field 

coefficient. To this purpose, we can use the reflection coefficient definition and the 

continuity of the impedance. In fact, by inverting Equation (20) and evaluating it at r = a, we 

obtain:

E1nm
− = E1nm

+ Γn k1a ℎn
(1) k1a

ℎn
(2) k1a

(29)

The reflection coefficient can be written in terms of the impedance:

Γn k1a = Zn k1a − Zn1
Zn1 − Zn k1a R (30)

where R is the ratio Znl/Zni, evaluated in r = a. By imposing the continuity condition for the 

impedance in r = a: Zn (k1a) = Zn (k2a) = ZJn2 (k2a), we can calculate the outward wave 

coefficients in terms of speherical Bessel functions as:

E1nm
−

E1nm
+ = ZJn2 k2a − Zn1

Zn1 − ZJn2 k2a R ⋅ ℎn
(1) k1a

ℎn
(2) k1a

(31)

The previous expression is the product of two ratios. The first ratio describes a reflection 

coefficient, whose value depends on the dielectric properties of the media and the radius of 

the sphere. The second ratio represents a propagation factor, which accounts for the spatial 

distribution of the energy and whose value also depends on the radius of the sphere.

The coefficients of the field transmitted in the sphere (13) are evaluated by imposing the 

continuity of the electric field at r = a. From Equation (21), we have:

E2nm
+ = E1nm

+ ℎn
(1) k1a

ℎn
(1) k2a

1 + Γn k1a
1 + Γn k2a . (32)

An expression for reflection coefficient Γn(k2a) can be obtained from Equation (20), with 

the physical constraint E2nm
+ = E2nm

− , from being inside the sphere, and substituted in 

Equation (32):

E2nm
+ = E1nm

+ ℎn
(1) k1a

2jn k2a 1 + Γn k1a (33)

The expression of the coefficient has a straightforward physical interpretation also in this 

case. It is the product of a propagation term that accounts for the geometry-dependent 

energy distribution and a transmission coefficient τn = 1 + Γn(k1a), which accounts for the 

energy propagated inside the sphere.
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3.6. Power Evaluation

The traveling form presented in Section 3.3 is useful to describe the field inside the sphere as 

the coherent sum of inward and outward waves. It also allows one to evaluate the power 

density Slnm as:

Slnm = 1
2ElnmHlnm* ⋅ r =

= 1
2Znl

|Elnm
+ |2 ℎn

(1) klr
2 1 + Γn klr [1 + Γn klr

Znl
Zni

]*
(34)

where r  is the radial unit vector defined in Figure 1.

When kr >> n, the magnetic field is the opposite of the electric field and the power density in 

each medium can be written as:

Slnm = 1
2Znl

|Elnm
+ |2|ℎn

(1) klr |2 1 − |Γn klr |2 . (35)

This expression clearly shows that the inward and outward powers are decoupled. By 

integrating the power density on a spherical surface centered at the origin, the power 

dissipated inside the sphere by the n-th mode can be calculated in a straightforward manner 

by substituting l = 2 in Equation (34) and multiplying the result with n(n + 1)r2.

In conclusion, in Table 2, the formulas of electromagnetic fields, reflection coefficient and 

impedances proposed in both traveling and stationary forms are presented.

4. Comparison with Mie Scattering

In this section, we compare the proposed framework with the classical Mie scattering. In our 

approach, the electric field in the external medium E1nm is expressed as the sum of inward 

and outward waves:

E1nm = E1nm
+ ℎn

(1) k1r + E1nm
− ℎn

(2) k1r (36)

As both the incident and the scattered fields contribute to the outward waves, we can rewrite 

Equation (36) to explicitly show both contributions:

E1nm = E1nm
+ ℎn

(1) k1r + E1nm
+ ℎn

(2) k1r + E1nm
− − E1nm

+ ℎn
(2) k1r (37)

The first two terms of Equation (37) represent the incident field, and the last term is the 

scattering term, as defined in the Mie formulation. Therefore, considering that 

ℎn
(1) k1r + ℎn

(2) k1r = 2jn k1r , the relationship between our coefficients and those of the 

classical Mie scattering is:
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E1nm
+ = anm

2 (38)

E1nm
− − E1nm

+ = cnm (39)

Therefore, the Mie coefficients can be easily retrieved from the coefficients of our method 

as:

cnm
anm

= 1
2

E1nm
−

E1nm
+ − 1 (40)

As a further validation of our approach, in Appendix A we present the algebraic passages to 

obtain the cnm expression presented in Equation (9) from Equation (40).

The consistence of the proposed model with Mie scattering is directly verified for the case of 

a perfectly conducting sphere. In fact, the continuity conditions dictate that the electric field 

at r = a must be null. This means that the reflection coefficient of the electric field must be 

−1.

Therefore, the relation between the outward and inward coefficients is immediately found 

from Equation (29) as:

Einm
− = − Einm

+ ℎn
(1) k1a

ℎn
(2) k1a

(41)

Substituting the last equation in Equation (40), we obtain:

cnm
anm

= 1
2

ℎn
(1) k1a

ℎn
(2) k1a

− 1 = − jn k1a
ℎn

(2) k1a
, (42)

which is, in fact, the expression of the Mie scattering coefficients for the perfectly 

conducting sphere reported in Equation (11).

5. Numerical Results

In this section, we present examples of EM scattering from a spherical object and show how 

our model can provide a physically intuitive understanding of the results.

5.1. Results for the Fundamental Mode (n = 1)

We first investigated the scattering and propagation characteristics for the fundamental mode 

(n = 1) as a function of the dielectric properties of the sphere.
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In all the simulations, the carrier frequency was set to 292.7 MHz, which is the operating 

frequency of 7 T MR scanners, the external medium was air (εr1 = 1) and the relevant 

quantities were plotted for a sphere with radius a ranging from 0 to 0.6 m (corresponding to 

ka = 26.93). We investigated the dependence of the reflection coefficient (Figure 4) and 

impedance (imaginary and real part in Figures 5 and 6, respectively) on different values of 

relative electric permittivity (εr2 = 5, 25, 50) and conductivity (σ = 0, 0.05, 0.15 and 0.5 

S/m).

In addition, we plotted the radial dependence of the EM field (electric and magnetic field in 

Figures 7 and 8, respectively) and the power (Figures 9 and 10) inside a sphere of radius a = 

0.6 m for the same values of relative electric permittivity (εr2 = 5, 25, 50) and conductivity 

(σ = 0, 0.05, 0.15 and 0.5 S/m).

The results for a lossless sphere (σ = 0 S/m) are shown in blue in all plots. For a lossless 

sphere, Figure 4 shows that the reflection coefficient has unitary modulus, independently 

from the value of the dielectric constant.

This is consistent with the fact that no power is absorbed by the sphere and all the incoming 

power (carried by inward waves) is balanced by the outgoing power (carried by outward 

waves). The same result is confirmed by the fact that the sphere impedance turns out to be a 

pure imaginary quantity.

In the following paragraphs, we show that our approach allows one to reformulate, in terms 

of engineering quantities (impedances and reflection coefficients), two typical boundary-

value problems described in the literature by Mie scattering: the natural oscillation modes of 

a sphere and the diffraction of a plane wave by a sphere [2].

It is known from the Mie scattering theory that a lossless sphere is characterized by its 

natural modes that obey the transcendental equations introduced in Section 9.22 of [2] 

(Equations (10) and (19)). With our proposed approach, the same solutions are obtained 

simply by imposing the continuity condition for the impedance at r = a: Zn(k1a) = Zn(k2a).

By simply observing that in the inner medium there is a standing wave and that in the outer 

medium there is only an outward wave, it is straightforward to write the continuity condition 

by substituting to Zn(k1a) and Zn(k2a) the impedance expressions reported in the second and 

third rows of Table 1, respectively.

As a result, the condition can be simply written as:

Znl = ZJn2 (43)

or substituting the explicit expression reported in the second column of Table 1 as:

1
k1

ℎn
(2) k1a

ℎn
(2)′ k1a

= 1
k2

jn k2a
jn′ k2a (44)
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Equation (43) provides the transcendental equation introduced in Section 9.22 of [2], whose 

solutions provide the natural frequencies of the sphere, demonstrating that a set of natural 

modes exists.

The main advantages of using our formulation are:

1. By employing the concept of impedance, we derived Equation (44) by means of 

simple and easily interpretable physical arguments.

2. Equation (44) can be easily extended to the case of a stratified sphere, which 

represents a considerable simplification compared to the classical approach that 

requires a complete reformulation of the scattering problem for each layer.

The diffraction of EM energy from a sphere can also be analyzed using our proposed 

framework. It is known that, when a plane wave impinges on a homogeneous lossless 

dielectric sphere, the EM field transmitted in the sphere (whose analytical expression is 

provided in Equation (33)) has a resonance-like behavior, governed by the geometric and 

dielectric characteristics of the sphere. From Equation (33), we can easily find the resonance 

condition by maximizing the ratio between the inward field coefficients of the two media, 

which occurs when the 1 + Γn(k1a) factor reaches its maximum value, i.e., when the value of 

Γn(k1a) is real and positive. Therefore, our formulation intuitively shows that resonances 

occur when outward and inward waves have electric fields in phase and magnetic fields in 

antiphase on the sphere surface. This means that the magnetic field is null on the sphere 

surface, which is consistent with the fact that the impedance ZJn2(k2a) is infinite in 

resonance condition.

In perfect analogy with uniform transmission lines, our formulation allows one to interpret 

the resonance phenomenon in terms of the sphere’s impedance and, therefore, in terms of 

the phase difference between electric and magnetic fields on the spherical interace, which is 

responsible for the field distribution outside and inside the sphere and for the consequent 

energy storage.

The previous phenomena can be appreciated also directly from the plots of the impedance 

and the EM field. For example, a resonance effect can be seen in Figures 7b and 8b, where 

the maximum values of the amplitude of the electric and magnetic fields for εr2 = 25 are 

considerably higher than the corresponding values for εr2 = 5 (Figures 7a and 8a) and εr2 = 

50 (Figures 7c and 8c). For the fundamental mode (n = 1), for a = 0.6 m and εr2 = 25, the 

product ka = 18.67 almost coincides with the sixth null of the derivative of the spherical 

Bessel function (18.79). From Figure 5 (see above) and Equation (31), we know that this 

corresponds to infinite impedance at the sphere surface, which means that the amplitude of 

the 1 + Γn(k1a) factor is maximum and, therefore, the mode resonates.

In a similar manner, also in the TM case, we can obtain discrete resonance values 

corresponding to infinite values of the admittance at the interface, by looking at the nulls of 

the impedance at the interface.

For the case of a lossy sphere, the field is attenuated during its propagation and the inward–

outward interferences are damped.
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It is interesting to note that in this case the real part of the impedance is non-null, with peaks 

in correspondence of the resonant frequencies. In fact, the sphere impedance approaches the 

intrinsic impedance of the external medium, resulting in a minimum of the reflection 

coefficient (see Equation (31)).

Using our proposed framework, phenomena like those described above can be interpreted 

with traditional engineering concepts, such as an impedance pseudo-matching (in fact, 

perfect matching is not possible for a single sphere with real frequencies).

Relevant insight can also be gained from the power density plots. In a lossless sphere, the net 

incoming power density is fully balanced by the outgoing one and the net flux is null for all 

permittivity values (see Figures 9 and 10, where the blue line is superimposed to the x axis). 

This phenomenon is also shown by Equations (34) and (35), where it is clear that the net 

power density is null if the magnitude of the reflection coefficient ∣Γn(klr)∣ is unitary.

In the presence of losses, the power density closely follows the square of the amplitude of 

the electric field, and when εr2 = 25, which is the in-resonance condition for the fundamental 

mode, for low losses (σ = 0.05 S/m), the power density is also large in proximity of the 

origin. If the losses are significant (σ = 0.15 and σ = 0.5 S/m), the power is mostly 

dissipated by the peripheral region of the sphere and the power density inside the sphere is 

almost null.

Figure 10 shows the power dissipation, which is the integral of the power density and is a 

monotonic function of the radial coordinate r. As expected, the higher the conductivity, the 

lower the capacity of the field to penetrate inside the sphere, and the power is mainly 

dissipated in the peripheral region of the sphere.

The power value at the boundary of the sphere (i.e., for a = 0.6 m in Figure 10) represents 

the total dissipated power inside the sphere.

It is worth highlighting that, with our formalism, the power was evaluated with a simple 

scalar expression (Equation (34)), without solving integrals, which represents an advantage 

compared to Mie scattering, in terms of the computation time and complexity associated 

with the integration of rapidly oscillating functions.

5.2. Full Modal Analysis

The behavior of the EM field for modes characterized by the higher order of the spherical 

Bessel functions was first investigated for the case of a lossless sphere.

Figures 11 and 12 show the transmitted electric and magnetic field as a function of the radial 

coordinate in a sphere of radius a = 0.6 m, evaluated for the first four modes of the Bessel 

functions.

For a low dielectric contrast (εr2 = 5), none of the modes is resonant and the peaks of the 

fields are slightly decreasing with the order of the Bessel function. At the origin, the electric 

field is always null, due to field symmetry, and the only mode contributing to the magnetic 

field is the first mode.
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Figure 11b,c and Figure 12b,c show that the field distribution is strongly influenced by the 

resonance conditions.

For example, as already noted when describing Figures 7b and 8b, when εr2 = 25 and a = 0.6 

m, the first mode is close to the resonance condition and, therefore, the corresponding 

electric and magnetic amplitudes both have a peak (Figures 11b and 12b). In addition, in the 

same figures, the third mode is also amplified, and this is due to the fact that ka = 18.67 is 

close to the fifth null of the derivative of the third order Bessel function, which corresponds 

to an infinite impedance and, therefore, to the resonance condition.

In Figures 11c and 12c, a similar pattern occurs for the second and fourth modes, which are 

on resonance when εr2 = 50 and a = 0.6 m, which means they are the main contributors 

(among the first 4 modes analyzed in the plots) to the electric and magnetic fields.

A possible application of these results would be in the optimization of computation time. In 

fact, using the interpretation provided above, it is straightforward to order the modes based 

on their contribution to either the electric or magnetic field, and perform calculations only 

for the limited set of modes that contributes the most. In addition, the proposed scattering 

formulation in terms of engineering quantities could be useful for design optimization. For 

example, in MRI, it could guide the design of novel materials to be integrated with the 

radiofrequency coils ([30]) that can force impedance matching only for specific modes, in 

order to maximize the magnetic field (i.e., the source of the MRI signal) in a specific region 

while limiting power deposition (i.e., losses) over the entire sample [24].

In Figure 13, we show the EM distribution in the case of a lossy sphere, with conductivity σ 
= 0.05 S/m. As expected, all the modes are attenuated by the lossy medium. In addition, the 

resonance phenomenon cannot take place as for the case of a lossless sphere, because here 

the impedance cannot be infinite (see Figure 4), which results in considerable amplitude 

damping of the resonant modes (see y-axis scale of Figure 12 vs. Figures 10 and 11).

6. Discussion and Conclusions

In this work, we presented a theoretical framework to study the electromagnetic scattering 

and propagation characteristics in spherical objects. We demonstrated the proposed approach 

for the simple case of a homogeneous sphere, showing that it is fully consistent with the 

established Mie scattering theory. Our formulation extends previous work on equivalent 

transmission lines and the main advantage over Mie scattering is the possibility to analyze 

the propagation of the EM field in terms of reflection and transmission coefficients, making 

the physical understanding of the field distribution more intuitive. This goal was achieved by 

describing the fields inside and outside the sphere as a superposition of inward and outward 

waves, and forcing the equality of the inward and outward field coefficients inside the sphere 

to respect the energy conservation principle.

The described approach can be directly applied to research problems that currently use Mie 

scattering. One example is the design of metasurfaces, which enable unconventional 

phenomena, such as perfect absorption, holography, electromagnetic invisibility and much 

more [10,31–33]. In such application, the Mie coefficients are combined with 
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homogenization techniques to evaluate the electromagnetic response of an array of high 

permittivity dielectric spheres, deriving a surface impedance. A possible implication of this 

study could be the expression of the surface impedance in terms of the impedance of the 

individual dielectric spheres, with an improvement of the physical interpretation behind the 

surface design.

Our model could be generalized in a straightforward manner to describe the scattering by 

multi-layered spheres, which has applications in several fields. In fact, our formulation can 

be seen as an extension of the theory of spherical transmission lines [25]. In particular, while 

the concepts of impedance and reflection coefficients in the analysis of the scattering from 

spheres were previously described, the significant novelty of this work is the introduction of 

an intuitive impedance transfer formula that simplifies the definition of the boundary 

conditions between layers. A possible application of our comprehensive theoretical 

framework could be the optimization of the properties of high-permittivity coil substrates 

that are used to manipulate the EM field distribution to improve the diagnostic performance 

of MRI coils [24,30].

While the proposed formulation provides intuitive physical insight if the sources surround 

the spherical object, as in various biomedical applications, it is also applicable to the 

classical problem of scattering of plane waves from spheres. In fact, the formulation is valid 

for any source that can be expressed as a linear combination of spherical waves.

One limitation of our approach is its effectiveness when a large number of modes is needed 

to describe the total electromagnetic field. In fact, in such case, it could be challenging to 

intuitively grasp an overall physical interpretation of the scattering from the analysis of the 

individual modes. Nevertheless, the framework would still allow one to identify a few 

dominant modes for the case of interest and study their behavior first.

In conclusion, the proposed method allows for expressing the scattering from spheres in 

terms of relevant engineering entities, providing physicists and engineers with a new tool to 

interpret the Mie scattering mathematical results, and to design systems that involve 

spherical scatterers with a full physical comprehension of the underlying phenomena.
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Appendix A

In this appendix, we present the algebraic steps necessary to obtain the classical Mie 

scattering formulation from the reflection coefficient introduced in this paper. By using 

Equation (18) in Equation (31), we can write the ratio between outward and inward 

coefficients in Medium 1 as:
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E1nm
−

E1nm
+ = =

1
k2

jn k2a
jn′ k2a − 1

k1
ℎn(1) k1a

ℎn(1)′ k1a

1
k1

ℎn(1) k1a

ℎn(1)′ k1a
− 1

k2
jn k2a
jn′ k2a R

ℎn
(1) k1a

ℎn
(2) k1a

= k1ℎn
(1)′ k1a jn k2a − k2jn′ k2a ℎn

(1) k1a
k2jn′ k2a ℎn

(1) k1a − k1ℎn
(1)′ k1a jn k2a R

ℎn
(1) k1a

ℎn
(2) k1a

(A1)

where the term R is defined as:

R = ℎn
(1) k1a

ℎn
(2) k1a

ℎn
(2)′ k1a

ℎn
(1)′ k1a

(A2)

Substituting Equation (A2) in Equation (A1), we obtain:

E1nm
−

E1nm
+ = ℎn

(1)′ k1a jn k2a − χjn′ k2a ℎn
(1) k1a

χjn′ k2a ℎ(2) k1a − ℎn
(2)′ k1a jn k2a

(A3)

Using simple algebra, we can then derive the following quantity:

1
2

E1nm
−

E1nm
+ − 1 = jn′ k1a jn k2a − χjn′ k2a jn k1a

χjn′ k2a ℎ(2) k1a − ℎ̇(2) k1a jn k2a
(A4)

The left side of Equation (A4) is the ratio between scattered and incident fields expressed 

with the proposed formalism. The right side of the equation shows that this ratio has the 

same analytical expression of the TE Mie scattering coefficients presented in Equation (9), 

confirming that our proposed method is equivalent to the Mie approach.
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Figure 1. 
Geometrical representation of the scattering problem. The field in each medium is expressed 

as the combination of inward and outward spherical waves.
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Figure 2. 
The phase of the term Znl/Znl is plotted against the sphere radius a. The frequency is 297.2 

MHz; the sphere dielectric properties are: ε = 50ε0, σ = 0; the corresponding wavenumber k 
= 44.89 m−1.
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Figure 3. 
Equivalent transmission line for the case of an inward spherical wave incident on a spherical 

boundary.
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Figure 4. 
The modulus of the reflection coefficient is plotted as a function of the sphere radius for 

different values of relative permittivity (εr2 = 5, 25 and 50 in (a–c), respectively) and 

conductivity (σ = 0, 0.05, 0.15 and 0.5 S/m). The frequency is set to 297.2 MHz.
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Figure 5. 
The imaginary part of the sphere impedance is plotted as a function of the sphere radius for 

different values of relative permittivity (εr2 = 5, 25 and 50 in (a–c), respectively) and a range 

of conductivity values.
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Figure 6. 
The real part of the sphere impedance is plotted as a function of the sphere radius for 

different values of relative permittivity εr2 = 5, 25 and 50 in (a–c), respectively and a range 

of conductivity values.
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Figure 7. 
The amplitude of the electric field inside a sphere of radius a = 0.6 is plotted as a function of 

the radial coordinate r for different values of relative permittivity (εr2 = 5, 25 and 50 in (a–
c), respectively) and conductivity (see plot legend).
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Figure 8. 
The amplitude of the magnetic field inside a sphere of radius a = 0.6 is plotted as a function 

of the radial coordinate r for different values of relative permittivity (εr2 = 5, 25 and 50 in 

(a–c), respectively) and conductivity (see plot legend).
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Figure 9. 
The amplitude is plotted as a function of the radial coordinate for different values of relative 

permittivity (εr2 = 5, 25 and 50 in (a–c), respectively) and conductivity (see plot legend).
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Figure 10. 
The power dissipated inside a sphere is plotted as a function of the radial coordinate for 

different values of relative permittivity (εr2 = 5, 25 and 50 in (a–c), respectively) and 

conductivity (see plot legend).
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Figure 11. 
Electric field distribution as a function of the radial coordinate in a lossless (σ = 0 S/m) 

sphere of radius a = 0.6 m for the first four modes. Results are plotted for different values of 

relative permittivity (εr2 = 5, 25 and 50 in (a–c), respectively).
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Figure 12. 
Magnetic field distribution as a function of the radial coordinate in a lossless (σ = 0 S/m) 

sphere of radius a = 0.6 m for the first four modes. Results are shown for different values 

relative permittivity (εr2 = 5, 25 and 50 in (a–c), respectively).
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Figure 13. 
Electric (a) and magnetic (b) field distribution as a function of the radial coordinate for the 

first four modes. The sphere has a radius of a = 0.6 m, conductivity of 0.05 S/m and a 

relative permittivity of 50, mimicking the electrical properties of average brain tissue at 

297.2 MHz.

Ruello and Lattanzi Page 37

Electronics (Basel). Author manuscript; available in PMC 2021 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ruello and Lattanzi Page 38

Table 1.

Definitions of the different wave impedances.

Spherical Bessel Function Impedance Expression Impedance Symbol Compact Expression

ℎn
(1) klr

iωμ
kl

ℎn(1) klr

ℎn(1)′ klr
Zn

(1) klr Znl

ℎn
(2) klr

iωμ
kl

ℎn(2) klr

ℎn(2)′ klr
Zn

(2) klr Znl

jn (klr)
iωμ
kl

jn klr
jn′ Zn

(J) klr ZJnl
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Table 2.

Summary of the formulas defining the proposed framework.

Electromagnetic Field Reflection Coefficient Impedance

Traveling 
form

Elnm(r) = Elnm
+ ℎn

(1) klr 1 + Γn klr
Γn klr =

Zn klr − Znl

Znl − Zn klr
znl
znl

Zn klr = Znl
1 + Γn klr

1 + Γn klr
znl
znlHlnm(r) =

Elnm
+

Znl
ℎn

(1) klr 1 + Γn klr
Znl
Znl

Stationary 
form

Elnm(r) = Elnm
+ + Elnm

− 2jn klr + i Elnm
+ − Elnm

− 2yn klr Γn klr =
Zn klr − Znl

Znl − Zn klr
znl
znl

Zn klr = ZJnl
A0l + itnl
A0l + itnl′

Hlnm(r) =
kl

iωμ Elnm
+ + Elnm

− 2jn′ klr + i Elnm
+ − Elnm

− 2iyn′ klr
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