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High-density lipoprotein- (HDL-) cholesterol measurements are generally used in the diagnosis of cardiovascular diseases.
However, HDL is a complicated heterogeneous lipoprotein, and furthermore, it can be converted into dysfunctional forms
during pathological conditions including inflammation. Therefore, qualitative analysis of pathophysiologically diversified HDL
forms is important. A recent study demonstrated that serum amyloid A (SAA) can remodel HDL and induce atherosclerosis not
only over long periods of time, such as during chronic inflammation, but also over shorter periods. However, few studies have
investigated rapid HDL remodeling. In this study, we analyzed HDL samples from patients undergoing orthopedic surgery
inducing acute inflammation. We enrolled 13 otherwise healthy patients who underwent orthopedic surgery. Plasma samples
were obtained on preoperative day and postoperative days (POD) 1-7. SAA, apolipoprotein A-I (apoA-I), and apolipoprotein A-
II (apoA-II) levels in the isolated HDL were determined. HDL particle size, surface charge, and SAA and apoA-I distributions
were also analyzed. In every patient, plasma SAA levels peaked on POD3. Consistently, the HDL apoA-I : apoA-II ratio
markedly decreased at this timepoint. Native-polyacrylamide gel electrophoresis and high-performance liquid chromatography
revealed the loss of small HDL particles during acute inflammation. Furthermore, HDL had a decreased negative surface charge
on POD3 compared to the other timepoints. All changes observed were SAA-dependent. SAA-dependent rapid changes in HDL
size and surface charge were observed after orthopedic surgery. These changes might affect the atheroprotective functions of
HDL, and its analysis can be available for the qualitative HDL assessment.

1. Introduction

High-density lipoprotein (HDL) is a well-known, multifunc-
tional particle that has been shown to suppress the progres-
sion of atherosclerosis by numerous epidemiological and
experimental studies [1–4]. HDL and other lipoproteins
transport lipids through the lymphatic and circulatory sys-
tems; many studies provided insights into the causal relation-

ship between lipids and atherogenesis [5]. Consequently,
HDL-cholesterol (HDL-C) measurements are generally used
in the diagnosis of cardiovascular diseases, and many
attempts have been made to pharmaceutically increase its
levels [6–10]. However, HDL is a complicated and heteroge-
neous lipoprotein, and furthermore, it can be converted into
dysfunctional forms during pathological conditions like dia-
betes [11, 12], oxidative stress [13, 14], and inflammation
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[15, 16]. Therefore, qualitative analysis of pathophysiologi-
cally diversified HDL forms is important and has been
widely conducted.

Chronic inflammation induces constant HDL remodel-
ing that can lead to a higher risk of acute coronary syndrome.
For example, levels of small HDL particles were low in
patients with rheumatoid arthritis, who also had elevated
coronary calcification [17]. Patients infected with human
immunodeficiency virus also display increased large HDL
particles and decreased small HDL particles [18].

One of the most important HDL remodeling factors is
serum amyloid A (SAA). Previous studies reported that dur-
ing inflammation, the blood SAA level increased up to 579-
3560μg/mL, more than 1,000 times its basal level, following
its production in the liver [19–21]. The majority of the SAA
produced binds to HDL and displaces its main component,
apolipoprotein A-I (apoA-I) [22–25].

Strikingly, a recent study showed that mice receiving a
single injection of an adenoviral vector encoding human
SAA1 displayed increased atherosclerosis, despite only brief
elevations in SAA levels [26]. This suggests that SAA can
have acute effects on HDL, in addition to the long-term
effects observed during chronic inflammation. However,
few studies have analyzed SAA distribution changes in the
HDL of human subjects. In this study, we report rapid,
SAA-dependent changes in HDL characteristics in patients
who underwent orthopedic surgery.

2. Materials and Methods

2.1. Samples. Patients samples in this study were the residuals
of blood samples obtained for laboratory analyses at the Clin-
ical Laboratory of the Medical Hospital at the Tokyo Medical
and Dental University. Whole blood samples were submitted
to the laboratory before (PRE) and just after (POST) ortho-
pedic surgery and on postoperative days (PODs) 1, 3, and 6
or 7 between April 2017 and March 2018. Blood samples
from patients who had been diagnosed with any other med-
ical disease (e.g., liver disease, diabetes, and other inflamma-
tory diseases) were excluded. After anonymizing the patient
samples, the untraceable blood tubes collected in vacuum
tubes containing ethylenediaminetetraacetic acid dipotas-
sium (Terumo, Tokyo, Japan) were centrifuged at 4°C and
2,150 × g for 30min for plasma collection. The samples were
stored at -80°C and analyzed within 4months. Human exper-
iments complied with all relevant national regulations and
institutional policies and were performed in accordance with
the tenets of the Declaration of Helsinki. The study design
was disclosed publicly to patients which were offered the
opportunity to opt out of this project for the use of the resid-
ual samples. The study was approved by the institutional
research ethics committee of the Faculty of Medicine, Tokyo
Medical and Dental University (M2016-049).

2.2. HDL Isolation. HDL (d = 1:063 – 1:210 g/mL) was iso-
lated from patient plasma samples by ultracentrifugation as
previously described [27]. The isolated HDL fraction was
dialyzed against phosphate-buffered saline (PBS), stored at
4°C, and used within 3 weeks.

2.3. SAA and Lipid Measurements. SAA concentrations in
plasma and HDL fractions were determined using a commer-
cially available latex agglutination-turbidimetric immunoas-
say kit (LZ SAA, Eiken Chemical, Tokyo, Japan). Plasma
albumin and HDL-C were measured using L-Type Wako
ALB-BCP and MetaboLead HDL-C kits, respectively (FUJI-
FILM Wako Pure Chemical Corporation, Osaka, Japan, and
Kyowa Medex, Tokyo, Japan). These measurements were
performed using a LABOSPECT 008 automatic analyzer
(Hitachi High Technologies, Tokyo, Japan). Protein levels in
HDL fractions were measured by Lowry et al.’s method [28].

2.4. Electrophoresis and Western Blot Analysis. HDL samples
were resolved by sodium dodecyl sulfate- (SDS-) polyacryl-
amide gel (PAGE) on 16% gels under nonreducing condi-
tions, and by Native-PAGE on 8% gels followed by
Coomassie Brilliant Blue (CBB) staining and western blot
analysis, respectively, as previously described [23]. apoA-I
was detected using a goat anti-apoA-I polyclonal antibody
(1 : 1,000 dilution, Academy Bio-Medical Company, Hous-
ton, TX, USA) and horseradish peroxidase- (HRP-) conju-
gated rabbit anti-goat IgG (1 : 2,000 dilution, Medical &
Biological Laboratories, Aichi, Japan), and SAA was detected
using a rabbit anti-human SAA polyclonal antibody (1 : 1,200
dilution, ASSAYPRO，MO, USA) and HRP-conjugated goat
anti-rabbit IgG (1 : 50,000 dilution, Beckman Coulter, CA,
United States). apoA-I and SAA were visualized with 3,3′
-diaminobenzidine-4HCl and H2O2 or with ECL Prime
Western Blotting Detection Reagent (GE Healthcare, New
York, USA). Agarose electrophoresis was performed using
TITAN GEL (Helena, Saitama, Japan) according to the man-
ufacturer’s protocol, and the resolved lipoproteins were
stained with 0.1% Fat Red 7B. Semiquantification and analy-
sis of the relative mobility of each band were performed by
densitometry on a CS Analyzer 4 (ATTO, Tokyo, Japan).

2.5. High-Performance Liquid Chromatography (HPLC). To
investigate changes in HDL particle size, patient HDL frac-
tions were analyzed on an HPLC system equipped with a
LC-20ADVP pump, a DGU-20A degassing unit, a CTO-
20A column oven, an SPD-20A ultraviolet detector, and an
SIL-20AC autoinjector (Shimadzu Corporation, Kyoto,
Japan). Each sample (40μL) was injected into serially con-
nected size exclusion columns (PROTEIN KW-803 and
KW-804; 300mm × 8:0mm i.d., Shodex, Tokyo, Japan),
eluted with PBS at a flow rate of 1mL/min, and monitored
by absorbance at 280nm.

2.6. Statistical Analysis. All data represent the mean ±
standard deviation (SD) unless otherwise stated. Statistical
significance was assessed using SPSS version 20.0 (IBM, Chi-
cago, IL, USA) by Spearman’s rank correlation coefficient test
or unpaired Student’s t-test. p < 0:05 was considered statisti-
cally significant.

3. Results

3.1. Changes in SAA Levels before and after Surgery. SAA con-
centrations in patient plasma samples (n = 13) were deter-
mined at the PRE, POST, and POD1, 3, and 6/7 timepoints.
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All patients except for case 2 (27.7μg/mL) had low plasma
SAA levels (mean ± SD: 5:1 ± 2:7 μg/mL) near the reference
range (<8μg/mL) PRE, and these values generally remained
low (3:7 ± 2:0 μg/mL) POST, although cases 3 and 12 dis-
played slight increases in SAA (22.5 and 53.7μg/mL, respec-
tively; Figure 1(a)). Conversely, plasma SAA levels in all
patients increased markedly by POD1 (318:1 ± 265:9 μg/mL)
and POD3 (2552:2 ± 1805:8 μg/mL) and then decreased
(211:9 ± 186:1 μg/mL) by POD6/7. In each patient, plasma
SAApeaked onPOD3; however, the extent of the increase var-
ied. Plasma HDL-C and albumin levels were also measured
and displayed similar trends, decreasing by 34 ± 14% for
HDL-C and 28 ± 12% for albumin POST compared to PRE,
then remaining largely unchanged through POD3. At
POD6/7, HDL-C and albumin levels decreased and increased,
respectively (Figures 1(b) and 1(c)).

3.2. Changes in the HDL Apolipoprotein Ratio. Each HDL
sample was analyzed by SDS-PAGE followed by CBB stain-
ing (Figure 2(a)). Two bands at apparent molecular masses
of 28 and 8 kDa, corresponding to apoA-I and apoA-II

monomers, respectively, were clearly observed in every
HDL fraction at all timepoints. Bands of various intensities
were also observed at 12 kDa, corresponding to SAA. Consis-
tent with the plasma SAA level, the SAA band appeared on
POD1, peaked on POD3, and was absent on POD6
(Figure 2(a)). To investigate relative changes in apolipopro-
tein levels, the sum of the intensities of the apoA-I, apoA-
II, and SAA bands was calculated at each timepoint and used
to determine the intensity percentages of the individual
bands. The relative intensity of the apoA-I band was signifi-
cantly decreased (by 16.5%; p = 0:013) on POD3 compared
to POST and had recovered by POD6/7. Conversely, the rel-
ative amount of SAA was significantly increased (by 21.6%;
p < 0:001) on POD3 and returned to its basal level by
POD6/7 (Figures 2(b) and 2(c)). However, the relative inten-
sity changes for apoA-II did not resemble those for apoA-I. A
slight decrease of 5.1% (p = 0:01) was observed on POD3,
which remained on POD6/7 (Figure 2(d)).

3.3. Effect of Increased SAA on HDL Particle Size. As we
observed high amounts of SAA bound to HDL, we next
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Figure 1: Changes in plasma SAA and HDL-C levels after surgery. Plasma samples were collected from patients (n = 13) before (PRE) and
just after (POST) orthopedic surgery and on postoperative days (POD) 1, 3, and 6 or 7. Plasma SAA (a), HDL-C (b), and albumin (c) levels
were determined.
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examined changes in HDL particle size by HPLC. When the
HPLC profiles of HDL fractions POST and on POD3 were
compared, the retention time was slightly shorter on POD3,
and the peak was sharper (Figure 3(a)). To investigate the
association between the shortened retention time and the
plasma SAA level, the ratio of the retention time on POD3
to POST was compared with the plasma SAA level on
POD3. The ratio was significantly negatively correlated with
the SAA level (r = −0:611, p < 0:05, n = 13; Figure 3(b)).

3.4. Changes in HDL apoA-I Distribution. Patient HDL frac-
tions were resolved by Native-PAGE followed by western
blotting for apoA-I. In PRE HDL samples, apoA-I ranged
from 7.1 to 17.0 nm in size (Figure 4(a)). Smaller HDL parti-
cles were absent on POD3 but present on POD6/7. The per-
centage of decrease in HDL particle size range from POST to
POD3 was compared with the POD3 plasma SAA level, and

the values were significantly negatively correlated (r = −0:787,
p < 0:005, n = 13; Figure 4(b)).

3.5. Changes in HDL SAA Distribution. Since we observed
HDL particle size changes by HPLC and Native-PAGE anal-
yses, we next examined the SAA distribution in HDL by
western blot analysis. Figure 5 shows representative HDL
profiles of patients with relatively low and high SAA levels
on POD3 (Figures 5(a) and 5(b), respectively). After adjust-
ing SAA levels to 500μg/lane, each HDL sample was resolved
by Native-PAGE. In patients with low SAA, two large, notice-
able bands were observed at particle sizes of 6.2 and 7.8 nm
on POD1 and POD3 (Figure 5(a)). Conversely, in patients
with high SAA, SAA was distributed on larger HDL particles
on POD3, and the range of SAA distribution was wider com-
pared to low SAA samples (Figure 5(b)).
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Figure 2: Changes in HDL apolipoprotein levels after surgery. HDL fractions were isolated from patient plasma (n = 13) before (PRE) and
just after (POST) orthopedic surgery and on postoperative days (POD) 1, 3, and 6 or 7 by ultracentrifugation. Fractions were resolved by
SDS-PAGE (4 μg/lane) followed by CBB staining. A representative profile is shown (a). Bands at 28, 12, and 8 kDa represent apoA-I, SAA,
and apoA-II, respectively. Band intensities were semiquantified by densitometry. The intensities for apoA-I (b), SAA (c), and apoA-II (d)
are shown as percentages of the summed intensity for all three bands. Values represent the mean, min, and max. ∗p < 0:05, ∗∗p < 0:005,
and ∗∗∗p < 0:001 vs. POST by paired t-test.
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3.6. Changes in HDL Surface Charges. The surface charges of
the HDL samples were analyzed by agarose gel electrophore-
sis. HDL particles were observed in the alpha fraction PRE
and POST; however, the relative mobility of the HDL bands
was shorter on POD3 than at other timepoints
(Figure 6(a)). When the distance migrated by HDL was com-
pared with the SAA level on POD3, a significant negative cor-
relation was observed (r = −0:907, p < 0:001, n = 13;
Figure 6(b)).

4. Discussion

A few studies have demonstrated rapid HDL remodeling due
to increased SAA in human subjects. Zimetti et al. compared
the HDL of 59 subjects with acute-phase reaction (APR)
related to infections, oncological causes, or autoimmune dis-
eases and control subjects without APR and reported that in
patients with APR, apoA-I-containing and medium-sized
HDL particles were reduced, and HDL function was
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Figure 3: Association between HDL particle size and plasma SAA levels. HDL fractions from patients (n = 13) just after (POST) orthopedic
surgery and on postoperative day 3 (POD3) were isolated by ultracentrifugation, and 40 μL of 0.5mg/mL HDL was resolved by HPLC. A
representative HPLC profile is shown (a). The ratio of the retention times on POD3 and POST was compared to the plasma SAA
concentration on POD3 (b). The correlation was estimated by Spearman’s rank correlation coefficient test.
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Figure 4: Changes in HDL apoA-I distribution after surgery. HDL fractions were isolated from patient plasma (n = 13) before (PRE) and just
after (POST) orthopedic surgery and on postoperative days (POD) 1, 3, and 6 or 7 by ultracentrifugation. Fractions were subjected to Native-
PAGE (1.0 μg/lane) followed by western blotting for apoA-I. A representative profile is shown (a). For each patient, the HDL particle size
range was determined by densitometry and the percentage of range decrease on POD3 compared to POST was compared with the plasma
SAA level on POD3 (b). The correlation was estimated by Spearman’s rank correlation coefficient test.
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impaired [29]. Jahangiri et al. reported similar reductions in
HDL-C and apoA-I levels, as well as decreased cholesteryl
ester transfer protein levels in the HDL of patients after car-
diac surgery compared to before surgery [30]. However, the
heterogeneity of HDL particles observed even in healthy sub-
jects makes it difficult to determine how SAA affects HDL
structure. In addition, preexisting conditions such as coro-
nary artery disease can make analyzing these effects even
more complicated, even when comparing HDL from the
same patient at different timepoints. Therefore, in this study,

we analyzed HDL samples from patients undergoing ortho-
pedic surgery who had no additional major diseases or med-
ical issues.

SAA levels in all patients showed notable increases 3 days
after surgery and decreased rapidly over the next 4 days, sim-
ilar to changes reported in patients with acute inflammation
[31]. In addition, HDL-C levels decreased just after surgery,
before SAA levels increased. Since albumin displayed the
same trend as HDL-C, these decreases were thought to be
due to intravenous rehydration. Therefore, to investigate
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Figure 6: Changes in HDL surface charge after surgery. HDL fractions were isolated from patient plasma (n = 13) before (PRE) and just after
(POST) orthopedic surgery and on postoperative days (POD) 1, 3, and 6 or 7 by ultracentrifugation. Fractions were analyzed by agarose gel
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the effects of increased SAA on HDL, we compared HDL
characteristics on POD1, 3, and 6/7 with the HDL POST,
not PRE. Displacement of HDL apoA-I by SAA has been
shown both in vitro and in vivo [22–24]. Consistently,
reduced relative apoA-I levels were observed on POD3, with
a reciprocal change observed in SAA. Conversely, only slight
changes in apoA-II levels were observed. These results are
consistent with previous studies on patients with severe dis-
eases, including septicemia, septic abortion, and bacterial
dysentery [22] and indicate that apoA-I release from HDL
due to competition from SAA occurs in vivo.

To investigate the association between the extent of SAA
binding and HDL remodeling, we analyzed changes in HDL
particle size, apoA-I and SAA distributions, and surface
charge. In HPLC analysis, the shorter retention time of the
peak top suggested a shift toward larger HDL particles. As
equal amounts of HDL were injected to the HPLC, the
marked change of the sharpness of the peak also indicated a
narrowed HDL particle size range. These results were consis-
tent with the apoA-I distribution by Native-PAGE. HDL size
remodeling in these patients depended on their plasma SAA
levels, consistent with previous reports [22, 32]. Since large
changes in HDL-C concentrations were not observed
between PRE and POD3, the reduction in small HDL parti-
cles was likely not due to catabolism, but rather SAA-
induced HDL enlargement. Consistent with this, SAA was
mainly distributed on larger HDL particles. However, a
previous study of lipopolysaccharide administration to
SAA knockout mice reported paradoxical results to ours,
suggesting that the HDL size increase was associated with
increased surface phospholipid content, not increased SAA
[33]. In their Native-PAGE profile, the HDL size range,
even in wild-type mice, was quite different from ours.
Although additional phospholipid analysis would be
instructive, this contradiction could also be simply due to
differences in the organisms and inflammation induction
methods used.

In our previous study, the surface charge of HDL dif-
fered between samples with low and high SAA [23].
However, these HDL samples were obtained from
patients with different backgrounds (e.g., primary disease
and inflammation condition), and we were unable to con-
trol for these differences. In this study, we analyzed oth-
erwise healthy patients undergoing orthopedic surgery
and observed positive changes in HDL surface charge
that were SAA-dependent.

5. Conclusions

Our study reveals rapid apoA-I displacement, size remodel-
ing, and surface charge changes in HDL that correspond to
fluctuations in SAA levels in the same individuals at different
timepoints. Recent studies from our group and others have
demonstrated that SAA affects HDL functions, including its
antioxidant ability [23, 34] and cholesterol efflux capacity
[30, 35, 36]. Therefore, analysis of the SAA-specific HDL
remodeling can be available for the qualitative HDL assess-
ment as a biomarker.
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