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ABSTRACT Pasteurella multocida is an important multihost animal and zoonotic
pathogen that is capable of causing respiratory and multisystemic diseases, bactere-
mia, and bite wound infections. The glycosaminoglycan capsule of P. multocida is an
essential virulence factor that protects the bacterium from host defenses. However,
chronic infections (such as swine atrophic rhinitis and the carrier state in birds and
other animals) may be associated with biofilm formation, which has not been char-
acterized in P. multocida. Biofilm formation by clinical isolates was inversely related
to capsule production and was confirmed with capsule-deficient mutants of highly
encapsulated strains. Capsule-deficient mutants formed biofilms with a larger bio-
mass that was thicker and smoother than the biofilm of encapsulated strains. Pas-
sage of a highly encapsulated, poor-biofilm-forming strain under conditions that fa-
vored biofilm formation resulted in the production of less capsular polysaccharide
and a more robust biofilm, as did addition of hyaluronidase to the growth medium of
all of the strains tested. The matrix material of the biofilm was composed predominately
of a glycogen exopolysaccharide (EPS), as determined by gas chromatography-mass
spectrometry, nuclear magnetic resonance, and enzymatic digestion. However, a pu-
tative glycogen synthesis locus was not differentially regulated when the bacteria
were grown as a biofilm or planktonically, as determined by quantitative reverse
transcriptase PCR. Therefore, the negatively charged capsule may interfere with bio-
film formation by blocking adherence to a surface or by preventing the EPS matrix
from encasing large numbers of bacterial cells. This is the first detailed description
of biofilm formation and a glycogen EPS by P. multocida.

IMPORTANCE Pasteurella multocida is an important pathogen responsible for se-
vere infections in food animals, domestic and wild birds, pet animals, and humans.
P. multocida was first isolated by Louis Pasteur in 1880 and has been studied for
over 130 years. However, aspects of its lifecycle have remained unknown. Although
formation of a biofilm by P. multocida has been proposed, this report is the first to
characterize biofilm formation by P. multocida. Of particular interest is that the bio-
film matrix material contained a newly reported amylose-like glycogen as the exopo-
lysaccharide component and that production of capsular polysaccharide (CPS) was
inversely related to biofilm formation. However, even highly mucoid, poor-biofilm-
forming strains could form abundant biofilms by loss of CPS or following in vitro
passage under biofilm growth conditions. Therefore, the carrier state or subclinical
chronic infections with P. multocida may result from CPS downregulation with con-
comitant enhanced biofilm formation.
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Pasteurella multocida is a zoonotic (1), Gram-negative bacterium in the family
Pasteurellaceae. P. multocida is part of the normal microbial flora of the upper

respiratory tract of many animal species but is also a potential pathogen of many
domestic and agriculturally important animals, such as dogs, cats, cattle, pigs, and avian
species (2). P. multocida is also an important human pathogen following direct inocu-
lation into subcutaneous tissues (e.g., bite wounds) (3). In hosts in which the innate
immune response is compromised (such as prior viral infection, immunosuppression,
stress, etc.) P. multocida is able to gain access to the lower respiratory tract and cause
respiratory disease and systemic infection. In swine, P. multocida can cause a chronic
polymicrobial infection (usually with Bordetella bronchiseptica) called atrophic rhinitis
(4–6). However, P. multocida is not considered part of the normal flora of birds, in which
it can be a highly invasive primary pathogen (7). Nonetheless, birds that recover from
infection and obtain specific immunity can remain colonized by P. multocida, resulting
in asymptomatic carriage and spread of the organism to nonimmune birds (8–10).
Furthermore, birds can also become colonized with low-virulence P. multocida strains
(11, 12). An important question is whether low-virulence strains can revert to a highly
virulent phenotype if they infect naive animals. An essential virulence factor of P. mul-
tocida is a glycosaminoglycan capsular polysaccharide (CPS) that helps shield other
surface antigens from the host immune system (13) and prevent phagocytosis and
bactericidal activity, among other roles (14). There are five P. multocida CPS serogroups
based on capsular antigens of distinct structural and antigenic specificity, designated A
(15), B, D, E (16), and F (17). CPS serogroup A is composed of hyaluronic acid, serogroup
D is a polysaccharide susceptible to enzymes that degrade chondroitin sulfates A and
C and heparinase, and serogroup F is a polysaccharide similar to chondroitin (18). The
serogroup B CPS is composed predominately of mannose but also contains arabinose
and galactose, while the composition of the CPS of serogroup E strains has not been
determined (14).

One of the most economically important diseases of cattle in the U.S. beef and dairy
industries is bovine respiratory disease (BRD) (19). The cost of BRD to the cattle industry
has been estimated at more than $500 million/year (20). The most common bacterial
agents responsible for BRD include Mannheimia haemolytica, Pasteurella multocida (CPS
serogroup A), Histophilus somni, and Mycoplasma spp. Isolation of more than one
causative agent from a BRD infection is common (21). For example, P. multocida has
been isolated from calves with lower respiratory tract disease following challenge or
natural infection with H. somni (22, 23). Stresses such as crowding (feedlots), shipping,
weaning, and viral infection further predispose the animals to infection (24). Transmis-
sion of BRD disease agents likely occurs by aerosol or physical contact between animals.
Another common disease associated with P. multocida, as described above, is avian
cholera, which can affect most avian species and occurs worldwide. However, some
birds, such as turkeys and waterfowl (6, 10), are more susceptible to serious disease. The
fatal infectious dose of P. multocida for mallards is as few as 12 cells (25). P. multocida
can be transmitted through watering systems (26) (such as troughs and ponds that are
shared by infected and healthy birds), by rodent infestations (27), and by the fecal-oral
route (28), resulting in widespread infection and death. The most devastating outbreaks
of avian cholera occur in locations where flocks of geese tend to migrate. For example,
a single outbreak affected close to 20,000 birds and was associated with healthy
migrating geese carrying P. multocida A:1 in nasal, oral, and cloacal samples (10). In
humans, about 300,000 visits to emergency rooms are due to animal bite or scratch
wounds (29), and Pasteurella spp. are isolated from ~50% of dog bites and ~75% of cat
bites (30). However, bacteremia and systemic diseases without invasive animal contact
have also been reported in humans (31).

P. multocida isolates from BRD and avian cholera (both serogroup A) have been
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reported to form a biofilm in vitro (32), and it has been proposed that swine atrophic
rhinitis (serogroup D isolates) is a biofilm infection (33). However, characterization and
careful analysis of a P. multocida biofilm and the biofilm matrix have not been reported.
Biofilm infections within the host are a complex mixture of bacterial and host cells,
exopolysaccharide (EPS), extracellular nucleic acids, trapped nutrients in water, and
proteins. These bacterial communities are comparable to tissues formed by multicel-
lular eukaryotes—the bacterial cells show cooperation, fluids and nutrients are circu-
lated, and the bacteria are protected from unfavorable conditions in the external
environment (34).

In this study, the formation of biofilm in vitro and the biofilm extracellular matrix of
P. multocida serogroup A laboratory strains and clinical isolates was more thoroughly
characterized. Of significance was determining that the amount of CPS produced by
P. multocida is inversely proportional to the amount of biofilm formed and that highly
encapsulated, poor-biofilm-forming strains can be converted to robust biofilm formers
following loss or reduction of CPS by mutagenesis or in vitro passage. The biofilm
matrix consisted of at least protein and a newly identified glycogen EPS. A putative
polysaccharide synthesis and export locus was also identified but appeared to be
constitutively expressed during biofilm formation or during planktonic growth.

RESULTS
Relationship between CPS production and biofilm formation by P. multocida. A

collection of clinical isolates and laboratory strains (see Table S1 in the supplemental
material) of P. multocida was screened for the ability to form a biofilm by crystal violet
(CV) assay. Upon initial screening, it was noted that there was an inverse correlation
between the mucoid appearance of the colonies (an indication of the degree of
encapsulation) and the amount of biofilm formed (Fig. 1A). To confirm the association
between encapsulation and biofilm formation, we made isogenic mutants of the
wild-type (WT) P1059 and P1062 strains by mutating the hyaE gene and of strain X73
by mutating hyaD. Recent clinical isolate C0153 was subcultured in vitro daily for five
passages, by which time it was able to form a prominent biofilm. The P. multocida
serogroup A capsule is composed of hyaluronic acid, which is not immunogenic
because of its presence in host connective, epithelial, and neural tissues, thus negating
the use of assays that utilize antibodies for antigen quantification. Therefore, to
quantify CPS on the mutants, mid-log-phase cultures (optical density at 562 nm [OD562]
of 0.6) were treated with hyaluronidase to release from the CPS the uronic acid, which
was quantified by chemical assay. We confirmed the phenotypic observations (colony
iridescence under incandescent lighting) that mutants P1062ΔhyaE and X73ΔhyaD and
the passaged variant of C0153 all made significantly less CPS than the WT strains. WT
P1062 produced 67.01 �g/ml uronic acid whereas P1062ΔhyaE produced 22.62 �g/ml
uronic acid; WT X73 produced 83.02 �g/ml uronic acid, whereas X73ΔhyaD produced
15.90 �g/ml uronic acid (P � 0.0001 for both strains). P. multocida P1059ΔhyaE also
made less uronic acid than WT P1059, but the difference was not significant (P �

0.1147) because WT P1059 produced relatively little uronic acid (CPS) in comparison
with the other strains (20.39 �g/ml uronic acid for the parent versus 13.22 �g/ml uronic
acid for P1059ΔhyaE) (Fig. 1B). Thus, all mutants with the same mutation in hyaE and
the passaged strain were capsule deficient. To further confirm that a deficiency in CPS
production was responsible for the enhanced biofilm formation seen, the mutation in
strains P1059ΔhyaE and P1062ΔhyaE was complemented in trans. Uronic acid produc-
tion was restored and enhanced in complemented mutant P1059ΔhyaE[hyaE], and
biofilm formation was reduced. Biofilm formation by complemented mutant
P1062ΔhyaE[hyaE] was also reduced to the same amount as the parent (Fig. 1B). WT
P. multocida clinical isolate C0513 was a mucoid, poor-biofilm-forming strain that was
isolated from a calf experimentally challenged with H. somni (22). WT C0513 was
subcultured under biofilm-favoring growth conditions (five subcultures in RPMI me-
dium every 48 h) until the strain could form a significant biofilm compared to the
parent (P � 0.0001). WT C0513 produced 89.38 �g/ml uronic acid, while the subcul-
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tured variant (C0513-P5) produced 13.87 �g/ml uronic acid (P � 0.0001) (Fig. 1B),
further supporting the idea that CPS production is inversely correlated with biofilm
formation.

We also observed that when P. multocida was grown on dextrose starch agar (DSA)
supplemented with Congo red (CR), the presence of CPS inhibited CR uptake, enabling
us to develop an assay to semiquantify CPS. Strains deficient in biofilm formation had
low CR absorption indexes, while proficient biofilm-forming strains had significantly
higher CR absorption indexes (P1059ΔhyaE, P � 0.0001; P1062ΔhyaE, P � 0.05;
X73ΔhyaD, P � 0.001) than the respective parent strains. Differences in CPS quantity
between the parent and mutant strains were greater in the CR assay than in the uronic
acid assay. A correlation graph was generated to evaluate the effectiveness of this assay
in predicting biofilm-forming potential (Fig. 1C). However, the correlation between CR
absorption and CV biofilm quantification for P1059ΔhyaE was an outlier on the corre-
lation graph. Upon further investigation, we determined that there was a modification
in the lipooligosaccharide (LOS) electrophoretic profile of P1059ΔhyaE that was distinct

FIG 1 Correlation between CPS production and biofilm formation by P. multocida clinical isolates and laboratory strains.
(A) Clinical and laboratory isolates were grouped on the basis of their colonial morphology (amount or lack of mucoid
appearance and iridescence) on blood agar in relation to biofilm formation. The y axis represents the A562 after staining
of the biofilm with CV and solubilization of the residue with 95% ethanol. Groups: 1, rough colonies/unencapsulated; 2,
smooth colonies/intermediate encapsulation; 3, mucoid colonies/highly encapsulated. The amount of biofilm formed (as
indicated by CV assay) by isolates in groups 2 and 3 was significantly smaller than the amount of biofilm formed by group
1 isolates (****, P � 0.0001). (B) Comparison of biofilm formation by WT strains and the respective isogenic capsule-
deficient mutants or an in vitro-passaged variant of WT C0153 (C0153-P5). The amounts of biofilm and CPS were
determined by CV assay and uronic acid assay, respectively. The WT strains and the respective capsule-deficient mutants
are listed on the x axis. The left y axis represents the concentration (�g/ml) of the uronic acid removed from the cell surface.
The right y axis is the absorbance of solubilized CV after staining. White bars indicate the absorbance value from CV
staining; black bars indicate uronic acid content. Biofilm formation was significantly higher in isolates producing less CPS.
Significant differences between the parent and mutant strains in the CV assay are indicated by asterisks, and those in the
uronic acid assay are indicated by number signs as follows: *, P � 0.05; **** or ####, P � 0.0001. (C) Correlation plot of
P. multocida CR uptake absorbance values (y axis) and CV absorbance values for biofilms (x axis). The Pearson correlation
coefficient is 0.7324 for all values and 0.9635 if P1059ΔhyaE is excluded. Encapsulated isolates are represented by solid
dots, while acapsular isolates are represented by hollow dots.
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from that of the parent and not present in the other mutant strains (data not shown).
The LOS modification may have contributed to enhanced CR uptake, particularly if the
surface becomes more hydrophobic (35). If P1059ΔhyaE was excluded from statistical
analysis of the correlation graph, the Pearson r value was 0.9635, further supporting a
strong inverse correlation between CPS and biofilm formation. The CR assay was
repeated with each group of clinical isolates (Fig. 1A), and CR uptake correlated
inversely with colony morphology (iridescence). Group 1 consisted of rough, capsule-
deficient strains, group 2 consisted of smooth, moderately encapsulated strains, and
group 3 consisted of mucoid, highly encapsulated strains. Biofilms were quantified by
CV uptake, and CPS was quantified by inhibition of CR uptake. Comparative measure-
ments of the amount of biofilm formed and the amount of CPS produced consistently
indicated that when more CPS was present, less biofilm was formed. Group 1 isolates
overall produced a more robust biofilm than either group 2 or group 3 isolates (P �

0.0001 for both groups) on the basis of CV quantification. Group 2 isolates produced
some biofilm, which was more than that produced by the mucoid strains, but the
difference was not significant (P � 0.05).

To further investigate the inverse relationship between CPS production and biofilm
formation, hyaluronidase was added to the biofilm growth medium to degrade the CPS,
as this process has been shown to at least partially eliminate the hyaluronic acid CPS
from the surface of P. multocida serogroup A isolates (36, 37). When 300 U of hyal-
uronidase was added to encapsulated cultures of WT strains P1059, P1062, X73, and
C0513, all of which were poor biofilm formers, biofilm formation by each strain
increased significantly (P � 0.0001 for each strain), as determined by quantitative CV
staining (Fig. 2). These collective results indicated that serogroup A CPS interfered with
biofilm formation.

Chemical and genomic analysis of the matrix EPS. Gas chromatography-mass
spectrometry (GC-MS) indicated that the EPS extracted from the biofilm matrix was a
polymer composed of glucose that was terminally 4 or 4,6 linked (Fig. 3a). The nuclear
magnetic resonance (NMR) proton spectrum displayed one main anomeric signal at
5.3 ppm (Fig. 3b) that is distinct for a glucose with an � configuration at the anomeric
center. This information, along with chemical data, suggested that the EPS had a
glycogen-like structure, later confirmed by digesting the polysaccharide with pullula-
nase, which depolymerized the polymer, as determined by NMR measurement (Fig. 3c).

A comparative BLAST search of available genome databases identified a putative
glycogen synthesis locus in the P. multocida genome (Table 1). This locus consisted of
six open reading frames that may encode the putative enzymes glucanotransferase
(malQ), glucan branching protein (glgB), debranching protein (glgX), adenylyltrans-
ferase (glgC), synthase (glgA), and phosphorylase (glgP). The encoded proteins shared
the greatest identity with those of other members of the family Pasteurellaceae, most

FIG 2 Effect of hyaluronidase on biofilm formation during growth. Either 0 or 300 �g of hyaluronidase
was added to the culture medium of P. multocida strains under growth conditions favoring biofilm
formation. After 2 days, the biofilms were rinsed and solubilized with 95% ethanol and the A562 values
were determined. Significance values are based on comparison to the sample with no enzyme added. ***,
P � 0.001; ****, P � 0.0001. White bars, WT C0513; dark gray bars, WT X73; black bars, WT P1059; light
gray bars, WT P1062.
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notably Aggregatibacter spp., Necropsobacter rosorum, and Haemophilus influenzae
(Table 1).

Enzymatic treatment of biofilms. Developing biofilms were treated with protei-
nase K and �-amylase to determine their effect on biofilm development and to evaluate

FIG 3 Structural analysis of the P. multocida serogroup A EPS. Panels: a, GC-MS chromatogram of
partially methylated and acetylated alditols; b, proton spectrum of the intact EPS; c, proton spectrum of
the EPS after overnight pullulanase digestion. *, impurity.

TABLE 1 P. multocida WT strain P1059 genes with amino acid identity to glycogen
synthesis proteins in related bacteria

Locus tag Gene Putative gene product
% Amino acid sequence
identity (bacterium)a Gene size (bp)

PM_RS02805 malQ 4-�-Glucanotransferase 66 (Aggregatibacter
segnis), 64
(Aggregatibacter
aphrophilus)

2,094

PM_RS02810 glgB 1,4-�-Glucan-branching
enzyme

87 (A. segnis), 86
(Haemophilus felis)

2,193

PM_RS02815 glgX Glycogen debranching
protein

69 (H. felis), 67
(A. aphrophilus)

2,019

PM_RS02820 glgC Glucose-1-phosphate
adenyltransferase

94 (H. felis), 91
(Necropsobacter rosorum)

1,308

PM_RS02825 glgA Glycogen synthase 86 (H. felis), 84 (A. segnis) 1,443
PM_RS02830 glgP Glycogen phosphorylase 89 (H. felis), 82

(A. aphrophilus)
2,457

aGenera and species other than Pasteurella are listed.
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matrix composition (Fig. 4). The WT P1059 biofilm retained 91 and 93% of the CV stain
after exposure to proteinase K (P � 0.9957) and �-amylase (P � 0.9977), respectively,
compared to biofilm growth in the absence of these enzymes. These results reflect the
lack of biofilm formed by WT strain P1059. In the more robust biofilm-forming,
CPS-deficient strain P1059ΔhyaE, there was 61 and 57% less biofilm after growth with
proteinase K and �-amylase, respectively (P � 0.0065 and P � 0.0118, respectively).
Therefore, while more than half of the biofilm matrix was removed after enzymatic
treatment of P1059ΔhyaE, less than 10% of the WT P1059 matrix was removed after
treatment with either enzyme. Similar results were obtained with highly encapsulated,
biofilm-poor WT strain C0513 and the in vitro-passaged variant C0513-P5. In WT C0513,
79% of the biofilm CV stain was retained after proteinase K treatment (P � 0.9123) and
a small but insignificant increase in CV staining occurred after treatment with
�-amylase (P � 0.2249). In subcultured variant C0513-P5, 44% of the biofilm CV stain
was lost after proteinase K treatment (P � 0.0001) and 37% of the biofilm CV stain was
lost after �-amylase treatment (P � 0.0001). The H. somni 2336 biofilm was not affected
by treatment with �-amylase but was diminished to a similar extent after treatment
with proteinase K (data not shown).

SEM. WT P1059 and P1059ΔhyaE biofilms were grown on abiotic coverslips and
examined for formation and structure by scanning electron microscopy (SEM). WT
P1059 formed microcolonies surrounded by small amounts of biofilm matrix. Individual
bacterial cells or small clusters of two to six bacteria adhered to the glass coverslip and
were dispersed between microcolonies (Fig. 5A). The P1059ΔhyaE biofilm matrix was

FIG 4 Enzyme digestion of biofilm matrix. Prior to inoculation of the culture medium with P. multocida,
0.1 mg/ml �-amylase or proteinase K was added; this was followed by incubation for 48 h. Biofilms were
rinsed, stained with CV, and solubilized with ethanol, and the A562 was determined. White bars, no
treatment; light gray bars, treatment with proteinase K; dark gray bars, treatment with �-amylase.
Significance values are based on comparison to the sample with no enzyme added. *, P � 0.05; **, P �
0.01; ****, P � 0.0001; ns, not significant.

FIG 5 SEM images of P. multocida biofilms after 48 h of incubation on glass coverslips. (A) WT strain P1059.
(B) P1059ΔhyaE biofilm formation.
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clearly visible, included peaks and valleys characteristic of biofilm matrices, and was
more extensive than the biofilm of the parent. Some individual bacterial cells adhered
to the glass coverslip below the matrix, similar to the WT (Fig. 5B).

CLSM. Two-day-old biofilms of WT P1059 and P1059ΔhyaE were imaged by confocal
laser scanning microscopy (CLSM), converted into z-stacks, and analyzed for structural
characteristics (Table 2). Biofilms of WT P1059 (n � 10) were best characterized as a cell
monolayer with an average thickness of 0.001719 �m3/�m2 and a roughness coeffi-
cient of 2, which indicated maximum roughness. Of interest, live/dead staining of the
WT P1059 monolayer identified living cells adhering to the glass coverslip, while dead
cell debris was present on the biofilm exterior (Fig. 6A; Fig. S1A). The P1059ΔhyaE
biofilm had an average biomass volume of 21 �m3/�m2, and live/dead staining
indicated that the biofilm was composed primarily of living cells. The topmost layer
appeared to have small clusters of dead cellular debris (Fig. 6B; Fig. S1B).

qRT-PCR of putative EPS matrix genes. The expression of genes proposed to
encode the glucan EPS of subcultured variant C0513-P5 and WT parent C0513 during
planktonic growth was similar, with only minor differences noted on the basis of
quantitative reverse transcriptase PCR (qRT-PCR). Gene expression of both WT C0513
and C0513-P5 during planktonic growth was also compared with gene expression of
the same strains during biofilm formation (Fig. 7). Constitutively expressed gyrB was
used as a control to normalize the fold differences between strains. Most of the genes
in the CPS locus and the putative glycogen synthesis locus, genes encoding putative
glycosyltransferases (38, 39), genes involved in lipopolysaccharide synthesis (e.g., waaA
[40]), and genes that encode other putative EPS biosynthesis proteins (e.g., opsX [41])
were not differentially expressed between cells of either strain grown planktonically or
as a biofilm (not shown). Therefore, differences in gene expression that would distin-
guish a proficient biofilm former from a deficient one were not identified in those

TABLE 2 Comstat analysis results obtained from CSLM z-stack images

Straina

Avg biomass
(�m3/�m2)
� SD

Avg thickness
(�m) � SD

Max
thickness
(�m)

Roughness
coefficient
(0–2)

Surface
area/biovolume
ratio

WT P1059 0.0449 � 0.0032 0.001719 � 0.0003 4.5 2 9.92
P1059ΔhyaE 21 � 3.23 29.79 � 4.73 34.31 1 5.05
an � 10 for both strains.

FIG 6 CSLM z-stack showing live/dead staining of WT P1059 during biofilm formation. (A) WT P1059. (B) P1059ΔhyaE. Live staining, left column; dead staining,
center column; live-dead overlay, right column.
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genes. However, the genes for CsrA (carbon storage regulator A), HexD (CPS export),
and XylB (xylulose kinase) were upregulated in both the parent and the proficient
biofilm former C0513-P5. However, of interest was that the expression of SgbU (L-
xyulose-5-phosphate 3-epimerase) was greatly enhanced in only WT parent strain
C0513.

DISCUSSION

P. multocida can cause acute or chronic infections in many animal species and
humans. Chronic infections include atrophic rhinitis in swine and snuffles in rabbits, and
birds and cattle may carry P. multocida asymptomatically and act as host carriers. Avian
P. multocida carrier animals demonstrate few or no outward signs of infection (42).
Carrier migratory birds, such as geese (9), may act as persistent reservoirs of infection
that can spread virulent P. multocida as they migrate between water supplies (43, 44).
Samuel et al. (12) reported that a parenteral challenge of mallards with “relatively
low-virulence” P. multocida resulted in the establishment of a carrier state in both
challenged birds and birds in contact with the infected birds. Of interest is that Pritchett
et al. (45) described endemic fowl cholera in flocks of leghorns from which isolates that
formed “blue” colonies (acapsular phenotype) were associated with a relatively high
incidence of the carrier state in birds, relatively little disease, and a high incidence of
contact carrier birds. Subsequently, Pritchett et al. (11) reported that an intranasal
challenge of leghorns with “fluorescent colonies” (presumably encapsulated) of an
epidemic strain resulted in a high mortality rate but a low incidence of carrier animals
and little spread to contact birds. In chronic or asymptomatic infections by “blue”
colony types, the bacteria may be present as a biofilm in which the bacteria are
relatively innocuous and there is little inflammatory response (7, 25, 46). However,
bacteria shed from the biofilm may be in a planktonic state, which may be more
pathogenic and contagious to susceptible animals. In this transmission model, biofilm
formation is essential to the spread of potential pathogens. Although biofilm formation
has been proposed as a component of some P. multocida infections (32, 33), this is the
first study to more thoroughly characterize the composition and formation of P. mul-
tocida biofilms.

Examination of biofilms by a wide variety of clinical and laboratory isolates indicated
that all of the strains of P. multocida could form some biofilm but that there was a wide
variation in the amount of biofilm that individual strains could form. Only isolates
of nontoxigenic CPS serogroups A and F of avian or bovine origin were reported.
However, biofilm formation by serogroup D isolates of porcine origin was also con-
firmed in our assays (not shown), as proposed previously (33). When the extent of

FIG 7 Normalized fold increases in genes significantly upregulated during biofilm formation. WT strain
C0513 was grown for 48 h under stationary conditions to promote biofilm growth and subcultured five
consecutive times under the same growth conditions to obtain strain C0153-P5. Gray bars, WT strain
C0513 (biofilm-deficient strain); white bars, variant C0513-P5 (biofilm-proficient strain).
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biofilm formation was compared with colony morphology under iridescent light, it was
noted that there was an inverse relationship between the iridescence and how mucoid
the colonies were and the amount of biofilm formed by that strain. It has been clearly
established that cells with the most CPS on their surface form the most mucoid,
iridescent colonies, with smooth colonies containing less CPS and smaller blue colonies
(rough) being CPS deficient (47, 48). Inverse correlations between CPS content and
biofilm formation that are similar to the results described here for P. multocida have
also been reported for Neisseria meningitidis (49), Escherichia coli (50, 51), and other
bacterial species (49, 52).

To confirm the inverse relationship between CPS content and biofilm content, an
accurate assay to quantify CPS was necessary. Immunoassays are unavailable because
antibodies against the type A CPS hyaluronic acid are difficult to obtain because this
CPS is recognized as “self” by the immune system. An alternative method to quantify
P. multocida type A CPS production is by observing the colony morphology on solid
agar medium (47). This method has been used to distinguish encapsulated, virulent
P. multocida from less virulent or avirulent decapsulated P. multocida for almost a
century (53). However, this method is not quantitative and we determined that
P. multocida is capable of producing more than one polysaccharide, prompting the
need for a quantification method that can differentiate hyaluronic acid from glycogen
and potentially xylan (54). Several methods that have been used to quantify hyaluronic
acid were not useful in distinguishing hyaluronic acid from other or similar polysac-
charides because of a lack of test specificity; these assays use reagents that react with
carbohydrates but not specifically hyaluronic acid (13, 55, 56). Therefore, enzymatic
removal of the CPS from the cell surface was used to quantify the uronic acid present
by using a carbazole assay (57). In addition, we determined that the CPS inhibits CR
uptake by the bacteria because CR preferentially binds to neutral carbohydrates (58).
Therefore, the amount of CPS produced was inversely proportional to CR uptake by
P. multocida isolates. This assay correlated with biofilm formation based on larger index
values of isolates that produced a proficient biofilm and a smaller index value that
correlated with isolates that were deficient in biofilm formation.

Further evidence that CPS inhibited biofilm formation was supported through the
use of three isogenic CPS-deficient mutants with mutations in hyaE or hyaD. Subculture
of P. multocida in vitro has long been known to result in spontaneous loss of CPS (48).
We confirmed this observation by growing an encapsulated isolate under biofilm-
favoring growth conditions for five passages, resulting in reduced CPS production while
simultaneously increasing biofilm formation (strain C0513-P5). Thus, the removal of CPS
(based on uronic acid assay of enzymatically treated cells and the CR uptake assay)
enhanced proficient biofilm formation in a previously poor-biofilm-forming strain.
Therefore, CPS may inhibit biofilm formation by blocking surface proteins essential for
adherence, the first step of biofilm formation (59). CPS has also been shown to
physically block adhesion factors essential to biofilm formation in E. coli (60, 61).
Complementation of mutants P1059ΔhyaE and P1062ΔhyaE with hyaE in trans reduced
biofilm formation and enhanced uronic acid content in both complemented recombi-
nant strains, further supporting the idea that the presence and the amount of CPS
interfered with biofilm formation. Finally, hyaluronidase treatment to remove most of
the CPS from the cell surface of each parent strain significantly enhanced biofilm
formation but had little to no effect on rough, good-biofilm-forming strains or CPS-
deficient strains (data for the latter not shown). However, hyaluronidase treatment was
less effective at enhancing biofilm formation by WT X73 than that by the other three
strains, though it was still significantly able to do so. Why hyaluronidase was not as
effective in enhancing biofilm formation in strain X73 could be explained if this strain
also produces the �-(1,4)-D-xylan polysaccharide that has been reported for at least one
other strain (54). A D-xylan polysaccharide would not be susceptible to removal by
hyaluronidase.

Biofilms are composed primarily of cells encased in a matrix material that is
predominately EPS but also proteins and extracellular nucleic acids (34). Once it was
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established that some strains of P. multocida could form a substantial biofilm, we
sought to determine if the matrix material consists of a polysaccharide distinct from the
CPS. By using procedures used previously to isolate EPS from H. somni (62), an
�-(1,4)-linked polymer of glucose (glycogen) was isolated. This is the first description of
a glycogen polymer produced by P. multocida. However, qRT-PCR indicated that the
putative genes responsible for glycogen synthesis were not upregulated during biofilm
formation, indicating that some glycogen may always be produced (63), thus account-
ing for small amounts of biofilm in all of the strains tested. It is possible that the large
amount of CPS produced by mucoid strains masked the presence of the glycogen. A
wide variety of bacterial genera have the genes to make proteins to synthesize a
glycogen polymer, and the genera with the greatest amino acid sequence identity to
those in P. multocida are other members of the family Pasteurellaceae. Of interest is that
some of these proteins are closest in identity to those from Haemophilus felis, which,
like P. multocida, lives in the upper respiratory tracts of cats (64). Surface expression of
CPS may also inhibit biofilm formation by blocking cell surface adhesins (59). The
addition of hyaluronic acid, the component of serogroup A CPS, to the biofilm growth
medium had no effect on biofilm formation, likely because the added polysaccharide
was not associated with the cell surface, as it is when produced by the cell. However,
as mentioned above, the addition of hyaluronidase to hydrolyze the serogroup A CPS
present did enhance biofilm formation by highly encapsulated poor biofilm formers.
Furthermore, at least one gene responsible for CPS export was upregulated during
proficient biofilm formation, indicating that the EPS and CPD may be exported by a
common pathway.

Enzymatic digestions of developing biofilms were used to determine the relative
amounts of protein and carbohydrate within the biofilm. Addition of proteinase K and
�-amylase enzymes to the biofilm growth medium resulted in partial digestion of the
biofilm material but had little effect on isolates deficient in biofilm formation. These
results supported the idea that the biofilm matrix consisted of glycogen, the substrate
for �-amylase, and that the biofilm matrix was also composed of protein or that the
matrix structure was dependent on a protein scaffolding.

Previous studies have shown that P. multocida can display substantial quantities of
lipids on its surface, causing the bacterium to become hydrophobic (65, 66) and
increasing the adherence of the bacterium to surfaces (66); an essential early step in
biofilm formation. However, in studies not shown, there was no difference in hydro-
phobicity between the parent and acapsular mutant strains (as determined by the
bacteria moving from an aqueous phase to an organic phase), indicating that hydro-
phobic interactions did not contribute to biofilm formation in P. multocida. Autoag-
gregation can also contribute to biofilm formation and is often facilitated by EPS and/or
bacterial adhesins (67, 68). However, no differences in autoaggregation were noted
between proficient and deficient biofilm-forming strains (P � 0.227) (data not shown),
indicating that cell-to-cell interactions were not inhibited by CPS, and autoaggregation
was not a good predictor of biofilm formation by P. multocida.

Changing growth conditions from those that favor planktonic growth (approxi-
mately 6 h with rapid shaking) to those that favor biofilm growth (�6 h under
stationary conditions) was sufficient to initiate changes in gene expression. H. somni
and P. multocida are genetically related. Therefore, homologues of genes shown to be
upregulated during H. somni biofilm formation (69) were included in our qRT-PCR
assays during biofilm formation by P. multocida. As expected, some of the genes
upregulated during H. somni biofilm formation were also upregulated during P. mul-
tocida biofilm formation. For example, the gene for the carbon storage regulator CsrA
was upregulated during biofilm formation by both H. somni (62) and P. multocida.
However, CsrA is an RNA-binding protein that represses biofilm formation in some
Gram-negative bacteria, such as E. coli (70) and Campylobacter jejuni (71). In E. coli, CsrA
influences biofilm suppression and dispersal primarily through its regulatory effect on
glycogen synthesis and catabolism (70). Although the effect of CsrA on biofilm forma-
tion is reversed between E. coli and P. multocida, upregulation of CsrA enhances

P. multocida Biofilm and Exopolysaccharide Formation ®

November/December 2017 Volume 8 Issue 6 e01843-17 mbio.asm.org 11

http://mbio.asm.org


glycogen synthesis, which in P. multocida enhances biofilm formation. Xylulose kinase
(XylB) and L-xyulose-5-phosphate 3-epimerase (SgbU) were also upregulated during
P. multocida biofilm formation (though in the latter only in the parent strain). A
�(1-4)-D-xylan polysaccharide has been identified as an additional polysaccharide of at
least one other P. multocida serogroup A strain (54). Therefore, xylan could be another
EPS that forms the biofilm matrix of some strains, such as C0153, which was used for
qRT-PCR, but not for EPS purification. Expression of the gene for SgbU was examined
because it was also upregulated during H. somni biofilm formation (62). Of interest was
that the gene for SgbU was upregulated only during biofilm formation by the parent
and not during that by the mutant. Therefore, we suspect that SgbU was not directly
related to biofilm formation but may be affected by a global regulator, such as Fis,
which also downregulates CPS expression following subculture (71).

A gene in the P. multocida CPS locus, hexD, encodes a protein required for poly-
saccharide export (14, 15) and was upregulated during biofilm formation. Therefore,
one or more genes responsible for CPS export may also contribute to EPS export. Genes
involved in hyaluronic acid biosynthesis are in region 2 and were neither upregulated
or downregulated. Genes in the putative glycogen synthesis locus were not differen-
tially regulated during proficient biofilm formation versus deficient biofilm formation.
Therefore, glycogen may be constitutively expressed but can only contribute to matrix
formation when CPS is absent and adherence and biofilm formation can be initiated.

In summary, we have demonstrated that biofilm formation by P. multocida in vitro
is inversely related to CPS production. The biofilm was composed of protein and a
newly identified glycogen amylose EPS (and likely extracellular DNA). Since isolates that
produce less CPS are less virulent and proficient biofilm formers, we propose that
downregulation of CPS (72) may result in chronic pasteurellosis and avian carriers
because of enhanced biofilm formation.

MATERIALS AND METHODS
Isolates and growth conditions. The laboratory and clinical isolates of P. multocida used in this

study and their sources are described in Table S1. Strain C0513 was isolated from the transtracheal wash
of a calf following an experimental challenge (22) with H. somni. Prior to the challenge, nasopharyngeal
cultures from the calf were negative for P. multocida and other respiratory pathogens. All P. multocida
strains were cultured on brain heart infusion (BHI) or Columbia blood agar (BD, Franklin Lakes, NJ)
supplemented with 5% defibrinated sheep blood (HemoStat Laboratories Inc., Dixon, CA) or on DSA with
or without 0.005% CR supplementation. Agar-grown cultures were grown at 37°C with 6% CO2. Broth
cultures were grown in BHI or RPMI 1640 medium without glutamine or phenol red (Lonza, Walkersville,
MD). For biofilm formation, 50 �l of mid-log-phase P. multocida was inoculated into 5 ml of RPMI 1640
in a 50-ml polyethylene tube and incubated without shaking at 37°C in 6% CO2 for at least 48 h.

All P. multocida isolates were confirmed and serogrouped by multiplex PCR as described elsewhere
(73). All of the isolates used in this study were nontoxigenic and either serogroup A or F or untypeable
(not A, B, D, E, or F).

Isolation of a biofilm-proficient P. multocida variant. WT isolate C0513 was subcultured every 48 h
under conditions favoring proficient biofilm growth (described above) until the isolate was capable of
producing a proficient biofilm, which occurred after five subcultures. This variant is referred to as
C0513-P5.

Construction of acapsular P. multocida mutants. Gene replacement mutants of WT P. multocida
isolates WT P1059 (avian, serogroup A:3), WT P1062 (bovine, serogroup A:3), and WT X73 (avian,
serogroup A:1) were generated by using previously described techniques, with minor modifications (74).
Briefly, DNA fragments containing the hyaE gene of WT P1059 and WT P1062 were amplified with
forward primer 5= ATGAAAAAGGTTAATATCATTGG 3= and reverse primer 5= TTAACCTTGCTTGAATCGTTT
ACC 3= to produce an approximately 1,870-bp fragment containing the hyaE coding region of each
isolate. These PCR products were cloned into pCR2.1 (Invitrogen, La Jolla, CA) and amplified with deletion
primers 5= AAAGATATCTTGGTTTACTTCAATAATTTC 3= and 5= AAAGATATCACTGCATCTGTTCAATCAACG
AGC 3=, which produced a linear product with pCR2.1 flanked by the upstream and downstream arms of
the replacement plasmid. Digestion with EcoRV (sites contained in the primers) and ligation recircula
rized the plasmid, deleting amino acids 239 through 359 of the encoded protein and substituting
isoleucine for the leucine residue at former position 360. An attempt was made to frameshift the deleted
gene in WT P1062 by inserting a SmaI linker (5= CCCCGGGG 3=) into the EcoRV site, but the product
produced was found to contain a series of three of the linkers, which restored the reading frame to
encode an additional eight amino acids (Pro Arg Gly Pro Gly Ala Pro Gly) in the deletion site.

A DNA fragment containing a portion of the hyaE and hyaD coding regions of WT X73 was amplified
with forward primer 5= GAAGATGCGCATGAAGCCAATCGCATT 3= and reverse primer 5= GCCATTTGGTTT
AGACATGATG 3= to produce an approximately 1,680-bp product. This PCR product was cloned into
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pCR2.1, digested with the BglII restriction endonuclease, and ligated to introduce a 225-bp deletion in
the hyaD gene in frame into the coding region.

Each of the above DNA segments from WT strains P1059, P1062, and X73 replacement DNA segments
were excised from pCR2.1, cloned into pGA301ori, introduced by electroporation into the respective
strains, and then handled as previously described (74). PCR was used to confirm that kanamycin-sensitive
colonies lacked plasmid pGA301ori. Mutations in the CPS biosynthetic locus were confirmed by PCR with
the primers described above. P1059ΔhyaE and P1062ΔhyaE yielded a PCR product approximately 360 bp
smaller than that of their WT counterparts, and the X-73ΔhyaD PCR product was approximately 220 bp
smaller than that of its WT counterpart. Each mutant appeared noniridescent when grown on DSA under
oblique illumination, whereas each parent was clearly iridescent because of capsule formation.

To complement the mutation in P1062ΔhyaE, a forward primer (5= AAAAAGGATCCCAAGCGTTGGG
TAAAAAAACCGCTTA 3=) and reverse primer (5= AAAAGGATCCTCCATAGATTCCGCCGACTTTTCA 3=) were
used to amplify the promoter and coding region of hyaE by using the WT P1062 genomic template. The
BamHI-digested product was ligated into pBC SK� (Stratagene) containing a kanamycin resistance
marker (pUC4K) in the SalI site. The backbone of the resulting plasmid was replaced by digestion with
BssHII and ligated to a DNA fragment containing the Mannheimia haemolytica pD80 (a 4.2-kb ampicillin
resistance plasmid) origin of replication. The resultant product was electroporated into competent WT
P1062 as previously described (75). P. multocida was made competent by growth to mid-log phase, and
37 �l of hyaluronidase solution (10 mg/ml) was added to 10 ml of culture and incubated for 30 min
without shaking. The bacteria were washed three times with ice-cold 10% glycerol, and the bacteria were
resuspended in any solution remaining after the final wash. About 50 �l of cell suspension was
transferred to cold electroporation cuvettes for electroporation into the mutant strains (74).

RNA extraction, PCR, qRT-PCR, and BLAST analysis. Primer set 1, specific for toxA, was used as
described by Kamp et al. (76). All PCRs were performed in an Eppendorf Mastercycler pro PCR system
with vapo.protect technology (Eppendorf, Germany) by using OneTaq reagents in accordance with the
manufacturer’s instructions (New England Biolabs, Ipswich, MA).

At least three technical replicates of WT C0513 and C0513-P5 biofilm and planktonic cultures were
pooled to obtain RNA from each growth phase. RNA was isolated with Qiagen RNAprotect bacterial
reagent, Qiagen QiaShredder, and Qiagen RNeasy kits (Qiagen, Hilden, Germany) in accordance with the
manufacturer’s instructions for prokaryotic RNA. RNA was transcribed into cDNA with the Quanta qScript
kit (Quanta Biosciences, Gaithersburg, MD) in accordance with the manufacturer’s instructions. qRT-PCR
was performed on an Applied Biosciences 7300 real-time PCR system (Applied Biosystems, Foster City,
CA) with the Quanta SYBR FastMix kit (Quanta Biosciences, Gaithersburg, MD) in accordance with the
manufacturer’s instructions. Quantitative real-time PCR was performed in triplicate for each primer set
with two biological replicates of each strain. The primers used are described in Table S2. A primer set
identifying gyrB was used as a control. The 2�ΔΔCT method (77) was used to calculate the normalized fold
differences in gene expression. Genes analyzed by qRT-PCR were selected on the basis of their relevance
to biofilm formation in the related species H. somni (62), homology to genes involved in glycogen
synthesis (Table 1), or P. multocida CPS production (15).

Initially, the sequence of the gene for E. coli glycogen synthase (GlgA) (78) was used to determine
that a glgA homologue and related genes in a glycogen locus exist in the P. multocida genome. A BLASTP
search (79) was then used to identify the closest homologies to annotated genes of other genera.

Biofilm quantification. A modification of the CV staining method of Sandal et al. (69) was used to
quantify biofilm formation. Two hundred microliters of 0.1% CV was gently added to a tube containing
5 ml of bacterial culture and incubated at room temperature for 10 to 15 min. The medium and CV were
removed by pipetting, and the tube was gently washed with phosphate-buffered saline (PBS), pH 7.2. To
quantify biofilm formation, the CV was solubilized with 500 �l of 95% ethanol, 200 �l was transferred to
a 96-well microtiter plate, and the OD562 was determined with a VMax Kinetic Plate Reader (Molecular
Devices, Sunnyvale, CA). At least three biofilms were tested for each biological replicate.

Capsule quantification. Isolates and strains were grown in BHI broth to mid-log phase, washed with
saline, and resuspended to an OD562 of 0.7 in 10 ml of saline. Bacterial suspensions were incubated at
37°C with 200 �l of 5 mg/ml hyaluronidase for 30 min and then harvested at 10,000 � g for 10 min. A
uronic acid assay of the supernatant was performed (57), and the results were quantified in comparison
to purified uronic acid control standards. The OD562 was recorded with a VMax Kinetic Plate Reader
(Molecular Devices). In addition, isolates were grown overnight on BHI agar supplemented with 0.005%
CR. Bacterial colonies were removed from the agar surface and suspended in a preweighed 1.5-ml tube
containing 1 ml of PBS. The tubes were centrifuged at 10,000 � g for 5 min, and the PBS was discarded.
The wet weight of each sample was determined, and the bacteria were resuspended in 1 ml of 1% SDS
in PBS, releasing the CR-bound material from the bacterial lysate. Two hundred microliters of each
sample was transferred to a 96-well microtiter plate. The OD490 was determined with a VMax Kinetic Plate
Reader (Molecular Devices). The CR absorption index (CRA) was calculated with the formula CRA �
A490/(W2 � W1), where W2 is the weight of the tube and PBS buffer after the addition of bacteria and W1

is the weight of the tube and PBS buffer before the addition of bacteria.
Purification of EPS from the biofilm. Biofilm EPS was extracted from P. multocida as previously

described (62), with RPMI 1640 without phenol red or glutamine (Lonza, Walkersville, MD) as the growth
medium. After the biofilm matured, the growth medium was carefully removed, leaving the biofilm and
sediment intact. The purified EPS was lyophilized.

Chemical analysis of EPS. EPS composition and substitution patterns were determined by analyzing
monosaccharides as acetylated methylglycoside derivatives of the partially methylated and acetylated
alditols (80). The conditions used for GC-MS were the same for each derivative, and it was performed on
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an Agilent 6850A gas chromatograph equipped with an SPB-5 capillary column (Supelco; 30 m by 0.25
mm [inside diameter]; flow rate of 0.8 ml min�1 with He as the gas carrier) interfaced with a 5973N mass
detector. Electron impact mass spectra were recorded with an ionization energy of 70 eV and an ionizing
current of 0.2 mA. The temperature program used was set at 150°C for 5 min, 3°C/min up to 280°C, and
300°C for 5 min. EPS glycogen was quantified by the anthrone reagent method (81).

Pullulanase (P5420; Sigma-Aldrich, Milan, Italy) digestion prior to NMR spectroscopy was carried out
by adding 20 �l (2 U) of the suspension to the sample and then incubating it at 37°C overnight. Proton
spectra were recorded in D2O at 298 K with a Bruker DRX 600-MHz spectrometer equipped with a
cryogenic probe; acetone was used as an internal standard (�H � 2.225 ppm; �C � 31.45 ppm). For the
proton spectrum recorded with deuterated water, the residual solvent peak was reduced by a presatu-
ration sequence. For the proton spectrum of the pullulanase digestion product, the water peak was
suppressed by applying an excitation sculpting sequence. All spectra were recorded with 16,000 points
of resolution, the free induction decay was zero filled to 32,000 points, and an exponential window
function (linebroadening � 0.5) was applied to enhance the signal-to-noise ratio. The spectra were
processed and analyzed with Bruker TopSpin 3.1 software.

LOS purification. LOS was extracted as previously described (82) and examined by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and silver staining as previously described (83).

Treatment of growth medium with hyaluronidase, �-amylase, proteinase K, or hyaluronic acid.
To remove capsular material during biofilm formation, RPMI 1640 was supplemented with 0 or 300 U of
hyaluronidase (Sigma-Aldrich, Raleigh, NC) prior to inoculation. In another experiment, hyaluronic acid
(Sigma-Aldrich) was added to RPMI 1640 at concentrations of 0, 10, and 100 �g/ml prior to bacterial
inoculation to determine the effect of extracellular CPS on biofilm formation. To assess the presence of
carbohydrate or protein in the biofilm matrix, the growth medium was supplemented with 0.1 mg/ml
�-amylase or proteinase K (both from Sigma-Aldrich) prior to inoculation. Biofilms were grown and
analyzed as described above.

Bacterial hydrophobicity and autoaggregation. Bacterial hydrophobicity was determined as
previously described (84), as was autoaggregation (68), with the following modifications. P. multocida
was suspended in PBS at an OD of 1.0 at the start of the experiment. After 24 and 48 h, the OD562 of the
top 200 �l was recorded.

SEM. P. multocida strains were grown on glass coverslips in RPMI 1640 medium without phenol red
or glutamine (Lonza, Walkersville, MD) and incubated at 37°C under stationary conditions for 48 h. The
coverslips were gently washed and fixed in a solution of 5% glutaraldehyde, 4.4% formaldehyde, and
2.75% picric acid in 0.05% sodium cacodylate buffer for at least 1 h. Sequential dehydration of the sample
was carried out with 25, 50, 70, 80, and 95% ethanol. SEM was performed as previously described (62),
with a Carl Zeiss, Inc., EVO40 scanning electron microscope.

CLSM. Biofilms were grown on LabTek II eight-chamber cover glass slides (Thermo Fisher Scientific,
Rockford, IL) for 48 h. Biofilms were gently washed, resuspended in sterile PBS, stained with 1 �l of SYBR
live stain and 1 �l of propidium iodide dead stain (Life Technologies, Inc., Frederick, MD), and incubated
for approximately 1 h at room temperature. CSLM was performed with a Zeiss 880 Laser Scanning
Microscope (Zeiss, Germany).

Statistical analysis. Median values, standard deviations, and comparative P values were determined
by unpaired Student t test with Excel (Microsoft) or InStat (GraphPad Software, Inc., La Jolla, CA) software.
One- and two-way analyses of variance were performed with Prism software version 6.01 (GraphPad
Software, Inc.). Multiple comparisons were performed with the Sidak multiple-comparison test. Correla-
tion of data was also performed with Prism software, version 6.01. A P value of �0.05 was considered
significant. Biofilms examined by CLSM were analyzed with COMSTAT1 software (85).

Data availability. The sequence data obtained for the putative glycogen biosynthesis genes and
proteins in this study are available at the National Center for Biotechnology Information (https://blast
.ncbi.nlm.nih.gov) under protein accession numbers WP_010906715.1 (PM_RS02805), WP_005726331.1
(PM_RS02810), WP_016533562.1 (PM_RS02815), WP_005722006.1 (PM_RS02820), WP_005753940.1
(PM_RS02825), and WP_010906718.1 (PM_RS02830).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01843-17.
FIG S1, PDF file, 0.1 MB.
TABLE S1, PDF file, 0.03 MB.
TABLE S2, PDF file, 0.2 MB.
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