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Abstract: Imaging of magnetic nanoparticles (MNPs) is of great interest in the medical sciences. By
using resonant magnetoelectric sensors, higher harmonic excitations of MNPs can be measured and
mapped in space. The proper reconstruction of particle distribution via solving the inverse problem
is paramount for any imaging technique. For this, the forward model needs to be modeled accurately.
However, depending on the state of the magnetoelectric sensors, the projection axis for the magnetic
field may vary and may not be known accurately beforehand. As a result, the projection axis used in
the model may be inaccurate, which can result in inaccurate reconstructions and artifact formation.
Here, we show an approach for mapping MNPs that includes sources of uncertainty to both select
the correct particle distribution and the correct model simultaneously.
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1. Introduction

Imaging techniques often involve solving inverse problems in order to be able to
image the entity of interest sufficiently [1,2]. The interplay between measured data and
the model used to invert said data is often neglected, meaning that the model is assumed
to reflect reality correctly. However, this poses a source of error for the inversion of the
data—the formation of artifacts in the reconstruction due to the use of an incorrect model.
To address this problem, techniques were invented that use additional information (a priori
knowledge) on the models and source distribution of the inverse problem. One approach
that describes the use of additional information on the inverse problem is called Blind
Deconvolution, which is used when the impulse response is not exactly known [3–5].

Most often, an imaging system can be described via a convolution; hence, the impulse
response (or Point-Spread Function) is the quantity that needs to be modeled correctly.
Here, the impulse response can be shift-invariant or not, meaning that the shape of the
impulse response depends on the position of the source in the underlying distribution.
Given the measured data and assumptions on the underlying source distribution, the goal
of Blind Deconvolution is to find the correct model that maps the source distribution to the
measurement. For this, appropriate subspaces or constraint sets of the source distribution
and models have to formulated [3].

Recently, an imaging system for magnetic nanoparticles (MNPs) using magnetoelectric
sensors called Magnetic Particle Mapping (MPM) was developed. In MPM, MNPs are
excited into the nonlinear magnetic regime using a homogeneous magnetic AC field. The
frequency of the excitation field is chosen such that the higher harmonic excitations due
to the magnetic nonlinearity coincides with a highly sensitive mechanical resonance of a
cantilever-type magnetoelectric (ME) thin film sensor [6]. The magnetoelectric sensor’s
magnetic state determines a sensitive axis and is often not exactly known and varies from
sensor to sensor [7]. Hence, prior calibration is performed to quantify the sensitive axis
such that one can model the system appropriately. However, this axis may change if
biasing is applied or the orientation of the sensor is not known exactly [7]. Thus, additional
considerations should be taken when modeling the MPM imaging system.

Sensors 2022, 22, 894. https://doi.org/10.3390/s22030894 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22030894
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3584-1611
https://orcid.org/0000-0003-3367-1655
https://doi.org/10.3390/s22030894
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22030894?type=check_update&version=2


Sensors 2022, 22, 894 2 of 21

The MPM imaging system can be described as a linear shift-invariant system, where
the distribution of MNPs is nonnegative. The impulse response of the system is dependent
on the orientation of the MNPs and the sensitive axis of the sensor. These two constraints
can be used to create an adaptive scheme that finds the correct model and the underlying
MNP distribution simultaneously by using a gradient descent procedure with alternating
projections onto feasible sets. The presented approach is also applicable for other systems
where projection axes are unknown and may, thus, be adapted for specific imaging systems.

2. Materials and Methods
2.1. Imaging MNPs

MNPs can be imaged in a variety of ways. MNP imaging techniques that use MNP
as tracer material include Magnetic Particle Imaging (MPI) [8–10], Scanning Magnetic
Particle Spectrometry (SMPS) [11–14], Magnetorelaxometry Imaging (MRXI) [15–18] and
Magneto Acoustic Tomography (MAT) [19–21]. Another type of MNP imaging technique
can be categorized into Magnetic Susceptibility Imaging (MSI) [22], one of which is called
Susceptibility Magnitude Imaging (SMI) [23]. This technique was further developed using
nonlinear MNP responses by spectroscopy AC susceptibility Imaging (sASI) [24] and
nonlinear Susceptibility Magnitude Imaging (nSMI) [25].

Approaches for enhanced imaging based on figure of merit optimization for models
were performed for several imaging techniques. For example, the authors in [18] per-
formed optimized coil activation sequences in MRXI measurements to reduce the condition
number of the model for easier inversion and robustness. Another example includes theo-
retical enhancements on the SMI setup in [23] as investigated in [26] based on geometric
considerations on the figure of merits in inverse problems.

Currently, little investigations have been conducted explicitly with regards to Blind
Deconvolution techniques in imaging MNP. In MPI, blind deconvolution techniques were
proposed and investigated to address the issue of unknown impulse responses [27]. Most
often, prior calibration of imaging systems are sufficient for imaging, yet the possibility for
simultaneous characterization of the imaging system and accurate image reconstruction
would be an attractive property for any imaging system.

Sensing MNPs with Magnetoelectric Sensors

Magnetoelectric sensors were recently used for detecting the magnetic response of
MNPs. That this was possible was first shown by [28], where a laminate composite
consisting of 500-micrometer-thick PZT with 18-micrometer-thick soft magnetic Ni-based
Metglas ribbon. The research was performed in the context of clinical interventions. It was
argued that ME sensors could be used for interventions such as sentinel lymph node biopsy
(SLNB) for cancer detection, an application that is also argued for other imaging techniques,
as mentioned earlier. With their setup, they performed a one dimensional measurement
of the magnetic field, which can be thought of as a precursor for imaging MNP with ME
sensors. To magnetize MNPs, a permanent magnet was used, and the sensor was aligned
such that no in-plane magnetic field component affected the sensor. The smallest amount
of MNP they were able to detect was 310 ng at a distance of 2 mm.

ME sensors were also used for the detection of tissue iron content for Biomagnetic
Liver Susceptometry (BLS) [29]. In the study, permanent magnets were used to magnetize
the sample and bias the sensor simultaneously. The sample is then moved periodically
such that a low frequency magnetic signal is created that can be detected via the ME sensor.
The source of the magnetic signal was the protein ferritin, for which its magnetic response
is paramagnetic. This approach was reinvented in [30] for the imaging of MNP and is
called Magnetic Susceptibility Particle Mapping (MSPM). To generate a low frequency
signal of the MNP, a motion-modulated approach was taken, where the MNP distribution
is mounted on a rotating disc, which is moved through a magnetic field of permanent
magnets. The permanent magnets also bias the sensor for high sensitivity, while using the
shape anisotropy of the sensor to adjust the extent of biasing.
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In the context of this study, some of the just mentioned considerations were used in
MPM as well [6]. The shape anisotropy of the sensors will be used for the separation of
externally applied field and the MNP field. Imaging of MNP is performed in 2D using AC
fields for magnetic excitation and linear stages for translation. Signal acquisition involves
an AC field that magnetically excites the MNP to detect higher harmonic responses via the
sensor, similar to MPI or sMPS.

The ME sensor only measures a projection of the magnetic field via its the sensitive
axis. This axis, in turn, is dependent on the fabrication procedure and magnetic state of the
sensor [7]. It is, thus, convenient for an imaging system, which uses ME sensors, to be able
to address an unknown sensitive axis while operating in an imaging experiment.

2.2. Modeling the MPM Imaging System

In the following, the imaging system for MPM will be derived and important aspects
will be highlighted. To model the MPM imaging system, we have to develop a mathematical
relationship between the sources (MNPs) and the measurement positions (sensor positions).
The MNPs have a magnetic (vector)field associated with them due to their magnetic dipole
moment m and the sensor measures only a single projection of the magnetic field via the
sensitivity axis s. The next section will deal with the role of the magnetic dipole field and the
sensor in context of an imaging system for MNPs. Furthermore, we can expect the system
to be linear as the MNPs’ magnetic fields simply superimpose. In the following, lower case
bold letters will denote vectors and upper case bold letters will denote matrices. A hat
above a vector will denote a vector of unit length. Hence, m and s are the vectors describing
the magnetic moment of the MNP and the sensitivity axis of the sensor, respectively. The
vector r will denote a spatial position. Vectors m̂, ŝ and r̂ only describe the directions of
said quantities. Matrix I is the identity matrix.

The magnetic field BD is given by the following.

BD =
µ0mᵀ

4πr3 (3r̂r̂ᵀ − I). (1)

If we measure only a single projection of the magnetic field via the sensor’s sensitive
axis s, we have the following.

4π

µ0
BD = mᵀ (3r̂r̂ᵀ − I)

(rᵀr)3/2 s

4π

µ0‖m‖‖s‖
BD = m̂ᵀHŝ. (2)

The projected magnetic field can, thus, be written in a bilinear form with magnetic
moment direction m̂, sensitive direction of the sensor ŝ and a symmetric matrix H. The
functions contained in H and their respective symmetries are important. Due to outer
product r̂r̂ᵀ, the diagonal will yield symmetric functions while the off-diagonal elements
exhibit antisymmetries with respect to the spatial coordinates. This fact will be important
at a later stage, because they imply orthogonality of the measurable fields. Only a few
correlated fields remain, making estimation of source distributions easier and allowing the
possibility of adaptive models in the inverse problem, which will be shown further below.

We now introduce the relationship of the spatial distribution of MNPs and the resulting
magnetic fields in space (regions where the field is measured). We denote the spatial
magnetic particle distribution as ρ, and the region where particles are present is domain
Ω over which they will be integrated. The measurement positions are denoted as rm.
The resulting magnetic fields Bm at the measurement positions rm are then given by
the following. ∫

Ω
ρ(r)BD(rm, r)d3r = Bm(rm) (3)
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The equation above is a Fredholm integral equation of the first kind [31]. In fact, in
this case, the integral equation is a convolution of the following.∫

Ω
ρ(r)BD(rm − r)d3r = Bm(rm) (4)

The projected dipole field BD is called the kernel of this equation and is, in this
case, equivalent to an impulse response of the system or is also commonly known as the
Point-Spread-Function (PSF) used in optics/imaging systems. The mapping from the
spatial particle distribution to the measurable signal is the forward model. In this case,
the system is linear and shift-invariant, assuming that the Point-Spread-Function does
not change depending on the sample position. Linearity stems from the assumption that
the particles do not interact with each other (thus not altering the PSF depending on, e.g.,
local concentrations) and that the magnetic fields linearly superimpose. This assumption
can be assumed if homogeneous fields are used, which is to a sufficient degree the case.
Therefore, one can describe this system, similar to linear time-invariant (LTI) systems, as a
linear space-invariant system.

Discretization of Equation (4) yields a system of linear equations, i.e., in the following.

Ax = b (5)

Here, A denotes the model matrix, which incorporates the orientation of magnetic
dipoles and sensor sensitive axis (compare Equation (2)). Vector x is the spatial MNP
distribution for which its entries are non-negative (x ≥ 0), and b denotes the superposition
of magnetic fields from the MNPs for each measurement position. Here, it is beneficial to
explicitly write out the dependence of the model matrix on the magnetic moment direction
m and the sensor sensitive axis s.

A =m1(s1A11 + s2A12 + s3A13)

+m2(s1A21 + s2A22 + s3A23)

+m3(s1A31 + s2A32 + s3A33). (6)

The model matrix can be more compactly represented by using the Kronecker matrix
product (denoted by ⊗):

A =
(

mT ⊗ Im×m

)
AB(s⊗ In×n) (7)

where AB is the blockmatrix containing all models.

AB =

A11 A12 A13
A21 A22 A23
A31 A32 A33

 (8)

Now, given a data vector b, what source distribution x and model A gave rise to the
data? This question denotes the Blind Deconvolution problem.

2.3. Inverse Problem

Using the forward model we have developed, we now wish to infer the spatial particle
distribution from the measured magnetic fields—we are looking for ways to invert the
forward model—i.e., we wish to solve the inverse problem. Assuming that the model is
accurate, the solution involves computing an estimate that is closely related to the data. For
this, we need to minimize the difference between estimate Ax and data b via some form
of metric. Commonly chosen is the L2 norm (Euclidean norm) as the distance measure
between the two vectors Ax and b. This choice stems from the differentiability of this
distance, because the norm is induced by the inner product such that an analytic expression
can be found. Differentiability is useful because the solutions can be iterated via gradient
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descent procedures. However, because we are dealing with an inverse problem, the least
square minimum is not the ideal choice due to numerical instabilities and amplifications of
noise in the measurements [1,2,32].

To combat these issues, one needs to regularize the solution. Regularization refers to
the addition of constraints to the original problem that limit the size of the solution vector
x—we are looking to both be close to data b and still have physically meaningful results.
For this, we add another term to the cost function called the regularizer R.

Φ(x) = ‖Ax− b‖2
2 + λR(x) (9)

A possible geometric meaning of the regularizer can be imagined as the description
of a set in which the solution has to lie. Often, one can show that this description is the
same as for constrained optimization via the Lagrange multiplier λ. Thus, the role of the
regularization parameter λ is to set the solution size (size as in norm of a vector). There
are many types of regularizations, most notably Tikhonov regularization (also called ridge
regression) and L1 regularization that promotes sparsity in the solution. The latter is
also of interest, because L1 regularization in combination with a nonnegativity constraint
sets the total amount of MNP in the system that has to explain the data and, thus, has
physical meaning.

Due to the fact that the L1 regularizer is convex but not differentiable, one can employ
iterative solutions schemes for solving the inverse problem. A straightforward technique
is the projected gradient method (though many different names exists, such as Projected
Landweber Iteration [2]). Here, one performs a simple gradient descent step and then
projects back into the feasible set defined for the problem, such as projection into the
non-negative orthant for the non-negativity constraint and projection onto the L1 ball
(both can also be described as the projection onto the scaled standard simplex). A visual
representation for this procedure can be exemplary observed in Figure 1.

Figure 1. Projected gradient method. Each gradient descent step is projected back into a feasible set.
In this manner, the solution becomes regularized, as the solution size cannot lie outside the feasible
set. If the feasible set is convex, the solution will converge to an optimal point within the set. Image
adapted from [33] (CC BY).

Furthermore, if the magnetic moment direction and sensor sensitive axis also need to
be estimated, the objective for solving the inverse problem can be formulated as follows.

min
x,m,s

{∥∥∥(mT ⊗ Im×m

)
AB(s⊗ In×n)x− b

∥∥∥2

2
+ λR(x)

}
s.t. x ≥ 0. (10)

2.4. Algorithm

To find the correct spatial MNP distribution as well as the correct model, we propose
a two step iterative scheme, which successively updates the MNP distribution and the
model of the imaging system via restricting entities to their respective feasible domain.
For the MNP distribution, this is mainly performed via the non-negativity constraint, and
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for the model matrices, only a linear combination of nine models (or rather six due to the
symmetries; compare Equation (2)) is allowed, thus defining a subspace of possible models.
These restrictions allow for the correct estimation of the MNP distribution and model.

First, an algorithm will be investigated for a system where magnetic moment direction
m is perfectly known and sensitive axis s needs to be found in addition to the correct
particle distribution, x. Then, the general case for unknown magnetic moment direction
m, unknown sensitive axis s and unknown particle distribution x will be investigated and
important insights will be highlighted.

2.4.1. Estimating Sensor Sensitive Axis

In this section, the system for a fixed magnetic moment direction m̂ with unknown
projection axis ŝ from the sensor will be described. We proceed by creating a model matrix
that can be described as a superposition of the forward operator in the corresponding
axes x, y, z for a fixed magnetic moment direction m in the z axis direction, i.e., as shown
in Figure 2. We could take any row or column of the block matrix AB to construct a
forward operator for the subsequent discussion. The chosen case was taken because it is
the projection axis and magnetic moment direction that will be investigated experimentally.
Model matrix A can be written for an unknown projection axis as follows.

A = s1A31 + s2A32 + s3A33 (11)

Under these circumstances, the gradient for the cost function can be rewritten as follows:

∇sΦ = xᵀ
∂Aᵀ

∂s
(Ax− b)

= Dᵀ(Ds− b) (12)

with the following.

D = [A31x, A32x, A33x] (13)

s = [s1; s2; s3]. (14)

As a result, the algorithm to compute particle distribution x and model parameters s
can be written as shown in Algorithm 1. The projection operator P+ denotes the projection
into the non-negative orthant and PC denotes projection onto feasible set C. In this case,
PC also includes a projection onto the unit sphere, as to denote only the direction of the
sensitive axis. As a stopping criterion, the discrepancy principle is used [2].

Algorithm 1 Model Estimation For Sensitive Axis

1: Given: iterations K, data b, set of possible model parameters C, estimate of noise
standard deviation δ, stopping term for discrepancy principle η, projection operator
PC, P+.

2: Initialize A31, A32, A33 possible forward operators, particle distribution x, projection
estimate s.

3: for k = 1 to K do
4: A = s1,kA31 + s2,kA32 + s3,kA33.

5: xk+1 = P+

(
xk + ‖A‖−2

2 Aᵀ(b−Axk)
)

6: D = [A31xk+1, A32xk+1, A33xk+1]

7: sk+1 = PC

(
sk + ‖D‖−2

2 Dᵀ(b−Dsk)
)

8: if ‖Axk+1−b‖2/δ ≤ η then
9: return xk+1, sk+1

10: end if
11: end for
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Figure 2. The individual model matrices corresponding to the different combinations of magnetic
moment direction and sensitive axis direction refer to different PSFs for the imaging system. In this
section, we take the projections for the magnetic moment in the z direction, which is indicated by the
model matrices enclosed by the blue borders. The dashed boxes show the corresponding PSFs for the
model matrices.

Under the condition that the correct model can be expressed as the linear combination
of model matrices corresponding to the x, y and z-projection of the magnetic field, we write
the following cost function.

Φ(x) =
1
2

∥∥∥∥∥
(

N

∑
i

siA3i

)
x− b

∥∥∥∥∥
2

2

. (15)

In this case, we would have N = 3 matrices for the projections in the x, y and z
directions. Recall the dipole functions as depicted in Figure 2. Take, e.g., the orientation
of the dipole in z-direction and take the product of any two different projections of the
dipole fields that correspond to the PSFs in Figure 2. The result will yield equal positive
and negative parts (given that we have a fine Cartesian discretization and a spatially large
enough domain). This will be important in the following step. If we expand the expression
above, we have the following:

Φ(x) =
1
2
(xᵀCᵀCx + bᵀb− bᵀCx− xᵀCᵀb) (16)

with C = ∑N
i siA3i. Now, the cross terms (i.e., i 6= j) in the quadratic forms are equal to zero

(considering equidistant sampling of the x-y plane and that the domain is large enough to
capture most magnetic field):

xᵀAᵀ
3iA3jx = 0 (17)

which means that the matrix D is orthogonal.

D = [A31x, A32x, A33x]

DᵀD = diag(a). (18)
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This follows from the fact that the inner product of the two dipole field projections is
zero, since it contains equal amounts of positive and negative parts. We can, thus, obtain
the following.

Φ(x) =
1
2
(1− N)‖b‖2

2 +
1
2

N

∑
i
‖siA3ix− b‖2

2. (19)

Since all terms correspond to strictly convex functions, the problem is uniquely solv-
able. However, because the number of parameters suffices for any of the matrices Aji to
express data b, one will still need to enforce a non-negativity constraint, which will result
in the correct estimation in the end. The derivative with respect to the parameters for the
projection s is the following:

∇iΦ = dᵀ
i (disi − b) (20)

⇒ si =
dᵀ

i b
dᵀ

i di

si =
xᵀAᵀ

3ib
xᵀAᵀ

3iA3ix
(21)

which means it can be calculated from the projection of the estimate A3ix onto data b. The
vector b can thus be expanded by an N-dimensional subspace that is constructed from the
estimated particle distribution x.

b =
N

∑
i

bᵀA3ix
‖A3ix‖

A3ix
‖A3ix‖

. (22)

Combining the results, we obtain the following.

Φ(x) =
1
2
(1− N)‖b‖2

2 +
1
2

N

∑
i

∥∥∥∥∥
(

A3ixxᵀAᵀ
3i

xᵀAᵀ
3iA3ix

− I

)
b

∥∥∥∥∥
2

2

=
1
2
(1− N)‖b‖2

2 +
N
2
‖b‖2

2 −
1
2

N

∑
i

(bᵀA3ix)
2

xᵀAᵀ
3iA3ix

2

‖b‖2
2

Φ(x) = 1−
N

∑
i

(
bᵀ

‖b‖
A3ix
‖A3ix‖

)2

2

‖b‖2
2

Φ(x) = 1−
N

∑
i

cos(θi)
2 (23)

Here, we see that the cost function is minimized if the projection of estimate A3ix onto
data b is maximized (or that the angle θi between data b and estimate A3ix is minimized).
The direction cosines, thus, add up to 1 if we find the minimum of the cost function. This
can be imagined as finding a point on a unit sphere, i.e., the decomposition of b/‖b‖ into
orthogonal components related to the projection of the magnetic field (see Figure 3). Our
task is, thus, finding the very specific subspace that is able to describe data b completely.
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Figure 3. Measurement b is estimated to lie in a 3-dimensional subspace spanned by the estimates
for the field projections in the x, y and z directions, i.e., A31x, A32x and A33x. We, thus, need to find a
point on a sphere of radius ‖b‖.

2.4.2. Estimating Sensor Sensitive Axis and Magnetic Moment Direction

To estimate both the sensitive axis and magnetic moment direction, they need to be
updated within each iteration of the algorithm. For this, the general derivatives with
respect to x, s and m need to be computed. The derivatives of the cost function can be
written as follows:

∂Φ
∂x

=Aᵀ(Ax− b) (24)

∂Φ
∂s

=Mᵀ
s (Ms s− b) (25)

∂Φ
∂m

=Mᵀ
m(Mm m− b). (26)

where Mm is given by the following:

Mm =

(I3×3 ⊗ sᵀ)

Mᵀ
1j

Mᵀ
2j

Mᵀ
3j




ᵀ

(27)

and Ms is given by the following:

Ms =

(I3×3 ⊗mᵀ)

Mᵀ
i1

Mᵀ
i2

Mᵀ
i3

ᵀ

(28)

with the following being the case.

Mij =
(
Ai1 Ai2 Ai3

)
(I3×3 ⊗ x)

=
(
Ai1x Ai2x Ai3x

)
. (29)

Important to note in the gradients is the matrix containing all quadratic forms.Mᵀ
1j

Mᵀ
2j

Mᵀ
3j


Mᵀ

1j
Mᵀ

2j
Mᵀ

3j


ᵀ

=

Mᵀ
1jM1j Mᵀ

1jM2j Mᵀ
1jM3j

Mᵀ
2jM1j Mᵀ

2jM2j Mᵀ
2jM3j

Mᵀ
3jM1j Mᵀ

3jM2j Mᵀ
3jM3j

. (30)

By plotting this matrix, one can gain an idea about the correlation between possible
magnetic field components for different dipole orientations, see Figure 4. We see that
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because we have off-diagonal elements not equal to zero, the fields for different dipole
orientations are correlated. On the other hand, we see that the 3× 3 block diagonal elements
are diagonal sub-matrices, implying that the magnetic dipole fields are orthogonal if the
orientation of the dipole lies on the (orthogonal) coordinate system axes. An algorithm that
estimates the MNP distribution x, sensitive sensor axis s and magnetic dipole direction m
can be seen in Algorithm 2.

Figure 4. The matrix consisting of all quadratic forms shows the correlation between different
magnetic field components for different moment directions. We see that most of the field components
are orthogonal to each other, while there are some off-diagonal elements, meaning that there exists a
correlation between the corresponding fields. However, they are still linearly independent.

Algorithm 2 Model Estimation

1: Given: iterations K, data b, estimate of noise standard deviation δ, stopping term for
discrepancy principle η, projection operator P+, P(1)

C , P(2)
C .

2: Initialize estimate of model parameters s, m, MNP distribution x.
3: for k = 1 to K do
4: A =

(
mT ⊗ Im×m

)
AB(s⊗ In×n)

5: xk+1 = P+

(
xk − ‖A‖−2

2 Aᵀ(Axk − b)
)

6: mk+1 = P(1)
C

(
mk − ‖Mm‖−2

2 Mᵀ
m(Mmmk − b)

)
7: sk+1 = P(2)

C

(
sk − ‖Ms‖−2

2 Mᵀ
s (Mssk − b)

)
8: if ‖Axk+1−b‖2/δ ≤ η then
9: return xk+1, sk+1, mk+1

10: end if
11: end for

2.4.3. Measurement

The experimental MPM setup can be observed in Figure 5. Shown are the translation
stages for position, the sensor and sample and sets of Helmholtz coils for magnetic field
generation. One set of Helmholtz coils is used to excite the MNP into the nonlinear magnetic
regime, and another set is used for compensation purposes, as will be explained further
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below. Not shown are the electric appliances, which include an audio amplifier for signal
amplification, a charge amplifier for sensor signal amplification and an audio interface to
generate the excitation signal and measure the sensor signal. The magnetoelectric sensor
used for the experiment is exchange biased [34] in order to avoid an external biasing field,
and the fabrication steps can be read up in [6]. The sensor exhibits its first mechanical
resonance at about 7.5 kHz. Sensor sensitivity is about 20 kV/T, and the equivalent noise
density at resonance is 15 pT/Hz0.5. The excitation signal is generated by an RME FireFace
UC with a sampling frequency of 192 kHz at 1/3 fr with fr being the resonant frequency
of the sensor. The excitation signal is amplified using a PAS2002 audio amplifier and
connected to the Helmholtz coils with additional impedance matching. The AC magnetic
field generated is about 10 mT. The sensor is aligned using the manual tip, tilt, rotation
and translation stages such that its shape anisotropy is used to attenuate some of the
influence of the applied excitation field. Additionally, another magnetic AC field is applied
with low amplitude at sensor resonance, for which its amplitude and phase are tuned to
destructively interfere with the background signal. Then, the sample containing MNP can
be inserted and measured. For measurements, equidistant points (40× 40) are sampled
in space, which correspond to an area of 20× 20 mm2, and a signal is measured with a
sample rate of 32 kHz and a frame size of 4096 samples, yielding a spectral resolution of
7.8 Hz. In the spectrum, phase and amplitude at resonance are captured, which should
ideally only contain the responses to MNPs.

Figure 5. (a) Experimental Magnetic Particle Mapping setup. Manual tip, tilt, rotation and translation
stage are used to position the sensor with high precision. Motorized stages are used to move the
sample with respect to the sensor. (b) Close-Up of sensor near the sample between the excitation coils.

An image of the MPM sample and the measured magnetic field can be seen in Figure 6.
For this, MNP CT100s (fluidMAG, Chemicell, Berlin, Germany) were placed into parallel
trenches of a sample holder. The sample has an area of 20× 20 mm2. The trenches are
0.5 mm deep and have a length of 1 mm. The filled trenches are 3 mm apart. The total
amount of MNP roughly amounts to 300 µg. The magnetoelectric sensor was placed at a
distance of circa 2 mm above the sample. Additionally, the associated measured magnetic
field can be seen next to it. There exists a translational offset in the origins of both images;
hence, the field is not directly above the trenches in direct comparison. This was no
influence on the reconstruction.
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Figure 6. (Left): image of the sample with MNP in trenches. (Right): measured magnetic field of
the sample.

3. Results and Discussion
3.1. Simulation

In the following section, two cases of the blind deconvolution algorithm are investi-
gated, which are listed in Table 1 indicated as Case I and Case II. The cases correspond to
the unknown parameters in the model matrix A, i.e., sensitive axis s and magnetic moment
direction m. These parameters are either known or unknown and, hence, need to be esti-
mated. Case I for s known and m is unknown (◦), and vice versa (×) they are equivalent
due to the bilinear relationship in Equation (2). Case 0 refers to the normal deconvolution
when the model is correctly known and will not be treated. The simulations are performed
without noise for a maximum number of 500 iterations if not stated otherwise.

Table 1. Investigated cases.

s Known s Unknown

m known Case 0 Case I

m unknown Case I Case II

3.1.1. Case I

In the following example, an unknown sensitive axis of the sensor is taken and the
magnetic moment direction is known. Even though the cost function is strictly convex (refer
to Equation (19)), the reconstruction for any model combination (set of si in Equation (19))
could explain the data. What is important is then the non-negativity constraint, such that it
acts as a guide to find the correct model. For the case where the magnetic moment direction
is known and the sensitive axis has to be estimated while computing the MNP distribution,
Algorithm 1 will be used. For each MNP distribution update, the estimated sensitive axis
is updated.

An overview of the iterations of the inversion can be seen in Figure 7. As ground truth,
the letters “B7” were used. The dimensions were 20× 20 mm2 with 50× 50 equidistant
points at a z-distance of 1 mm. The data for the reconstruction were computed via a
sensitive axis that lies in the x-y plane at an angle of 0◦ (x-direction). The algorithm is
initiated via a sensitive axis direction of 90◦. It can be observed that the angle approaches a
value of 1◦ for the 50th iteration and that the MNP reconstruction yields the letters “B7”,
which indicates that the algorithm is able to simultaneously find the MNP distribution and
the sensitive axis direction.
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Figure 7. Adaptive reconstruction to iterate the MNP distribution x and the sensitive axis s simul-
taneously. Shown are individual iterations as denoted in the upper left corner of each subplot. In
the lower right corner of each subplot, the estimated sensitive axis direction (polar) is shown. The
ground truth for this axis has an angle of ϕm = 0◦. The black color indicates MNPs, and the red lines
are level sets to guide the eye. Dimensions of each square correspond to an area of 20× 20 mm2.

To further investigate the algorithm, a true projection axis for the data is chosen in the
x-direction. The algorithm is initiated using a projection axis for all spatial directions that
lie on the unit sphere. To quantify the ability to correctly estimate the MNP distribution, the
correlation coefficient is taken of the final iteration. Pearson’s correlation coefficient (CC)
acts as a measure of spatial accuracy of the reconstructed particle distribution compared
to the ground truth. The absolute value of the correlation coefficient from the MNP
reconstruction for the initial sensitive axis direction is used as a radius for that direction.
In the case of the correct estimation of the projection axis for all initial directions, the
result would be a sphere. Figure 8 shows the results. It can be seen that, for the initial
sensitive axes in the upper half plane (z ≥ 0), the algorithm converges to the correct MNP
distribution, indicated by the large correlation coefficient. For some regions in the lower
half plane, the algorithm fails to converge to the correct MNP distribution. However, if a
good guess is taken for the true sensitive axis, the algorithm will simultaneously find the
sensitive axis and the MNP distribution.
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Figure 8. Correlation coefficient for different initial sensitive axis directions. The true sensitive axis
lies in the x direction. For the upper half space (z ≥ 0), the correlation coefficients form a sphere,
indicating that the algorithm converges to the true MNP distribution. For the lower half plane, there
are regions where the right MNP distribution is not found via the algorithm.

3.1.2. Case II

Next, the case when both the projection axis and the magnetic moment orientation
are unknown is considered. In this case, the estimation procedure involves updating
the particle distribution, followed by an update of the projection axis of the sensor and
followed by an update on the magnetic moment direction. Whether the projection axis
or the magnetic moment direction is updated first is irrelevant, because there exists an
ambiguity between the magnetic moment direction and the projection axis, as is apparent
from the bilinear form that dictates the impulse response of the system and the fact that the
matrix of the bilinear form is symmetric (refer to Equation (2)).

To investigate the reliability of the proposed algorithm (see Algorithm 2), one sweeps
the parameter space for all orientations of the projection axis and magnetic moment direc-
tion. We chose the correct (i.e., belonging to the model that gave rise to the data) projection
axis and magnetic moment direction in the x and z directions, respectively. In addition, a
box constraint on the projection axis s and magnetic moment direction m in the form of a
predetermined half-space is imposed. That is, the x component of the projection axis cannot
be negative, and the z component of the magnetic moment direction cannot be negative.
Furthermore, it is imposed that the projection axis and magnetic moment direction is of
unit length, which is implemented via projection operators P(1)

C and P(2)
C . A non-negativity

constraint on the particle distribution x is imposed as well.
In Figure 9, one can observe the correlation coefficient of the estimated MNP distri-

bution to the ground truth as well as the angle differences of the estimated projection axis
of the sensor and the angle difference of the estimated magnetic moment direction (with
respect to the ground truths, respectively). It can be seen that correlation coefficient CC
is high for most parameter combinations of the directions of sensitive axis s and dipole
orientation m, as indicated by their direction angles in spherical coordinates. For the dipole
moment m, angles θm (polar) and ϕm (elevation) describe the direction, and for the sensitive
axis s, angles θs (polar) and ϕs (elevation) describe the direction. Furthermore, it can also
be seen that, for initial parameter combinations where the correlation coefficient is large,
the angles between the true and estimated directions of s and m are small. This indicates
that the algorithm is capable of finding the correct MNP distribution while also estimating
the directions of s and m correctly.
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Figure 9. (Top): Correlation coefficient of the reconstruction to the ground truth. (Middle): Angle
error of the magnetic dipole direction. (Bottom): Angle error of the sensitive axis direction. All points
in the graph are results for a different combination of an initial dipole field direction, indicated by
angles θm (polar) and ϕm (elevation), and sensitive axis directions, indicated by angles θs (polar) and
ϕs (elevation). The grey colorbars denote the angle (white is 0◦ and black is 360◦).

3.2. Experiment
Reconstruction

The reconstruction is performed via using an orientation of the sensitive axis that
is 20◦ off the true axis. Not knowing this prior to measurement results in the formation
of artifacts in the reconstruction, as can be seen in Figure 10. In direct comparison, the
reconstruction using Algorithm 2 results in the reconstruction having significantly less
artifacts, being more localized and having a better resolution, because the trenches can
roughly be imaged individually. We suspect that the sensor geometry has to be considered
in the model for a more accurate reconstruction and better resolution. As of now, the sensor
is regarded as point-like. A discussion of the notion of resolution in inverse problems can
be found in Appendix A. Additionally, for further enhancement on the image, since fringes
are still present around the reconstruction, shrinkage (soft thresholding) can be applied
via a projection onto the scaled L1 ball in addition to the projection into the non-negative
orthant. As can be seen from the Figure, fringes are suppressed, and a clearer reconstruction
is formed. The choice of the magnitude of the L1 ball is not chosen arbitrarily but can
be roughly estimated from the measurement itself. The discussion on this is shown in
Appendix B.
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Figure 10. (Left): regular deconvolution with sensitive axis off by 20◦; (middle): Blind Decon-
volution as outlined in Algorithm 2; (right): Blind Deconvolution with additional shrinkage by
soft thresholding.

4. Conclusions

It was shown that the proposed adaptive inversion scheme is able to estimate both the
model parameters and MNP distribution simultaneously. The approach shown is able to
overcome unknown initial information, such as sensor sensitivity direction, and estimate it
correctly. Thus, the generalized model can be used in circumstances where the sensor sensi-
tive axis is not known exactly or incorrectly measured; thereby, it reduces sources of error
in the model for better reconstructions, which ultimately improves imaging applications.
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Appendix A. On Notion of Resolution in Inverse Problems

Varieties in approaches of solving inverse problems can be roughly categorized into
two types: linear and nonlinear inversion schemes. This refers to the mapping of the mea-
surement data back to the underlying distribution that gave rise to the data. If the inversion
is linear, a linear inversion operator can be constructed (i.e., a matrix), and the inversion is
independent on the distribution (e.g., MNP) and, hence, depends on the model only. The
construction of an inverse operator is only performed to an approximate degree—no full
inverse operator will be applied since overfitting would result in erroneous reconstructions
that do not reflect reality. Here, statements can be made about the effectiveness of the



Sensors 2022, 22, 894 17 of 21

imaging technique on a general basis. A nonlinear inversion scheme is dependent on the
underlying distribution; hence, no general statements can be made. In the following, these
statements will be elucidated more in depth.

Resolution in an imaging system refers to its ability to resolve features that are spa-
tially close. The resolution for an imaging system such as a microscope normally uses the
Point-Spread Function as a figure of merit. This quantity reflects the spatial spread of a
point source input to the imaging system. With the use of deconvolution techniques, the
resolution can be enhanced, and the spread of the Point-Spread Function can be reduced.

The proper assessment of the enhancement of a linear imaging system can be per-
formed via the so-called resolution matrix R [35,36]. The meaning of this operator is that
no features can be reconstructed that are sharper than given by the columns, which in turn
makes using inverse operators’ intrinsic resolution limited [37,38]. To introduce this matrix,
we start off with the system of equations that relate particle distribution x with magnetic
field b via model matrix A.

Ax = b. (A1)

The approach for solving this system of equations uses an inverse operator that, when
applied to the left hand side of the equation, yields just the particle distribution x.

A†Ax = x. (A2)

Here, A† denotes the pseudoinverse of model matrix A. However, under normal
circumstances, only an approximate inverse operator is used, which we will denote as
A†

k . Subscript k refers to an iteration number for different approaches of computing the
pseudoinverse, which will be shown further below. The reason that only an approximate
inverse operator is used is that, otherwise, noise would be amplified in the measurement
vector b, which would yield unreliable/unphysical results for the particle distribution x.
We can, thus, write the following.

A†
k Ax = A†

k b

Rkx = A†
k b. (A3)

Operator Rk = A†
k A refers to the resolution matrix for a given approximate pseudoin-

verse. To compute the resolution matrix, we choose two different approaches: the singular
value decomposition (SVD) and gradient descent (GD). The resolution matrices associated
with these approaches are as follows.

RGD,k =αV

(
k−1

∑
n=0

(
I− αS2

)n
)

S2Vᵀ (A4)

RSVD,k =VkS−1
k Uᵀ

k A (A5)

Here, A = USVᵀ, α = ‖AᵀA‖−1 and subscript k either refers to the number of itera-
tions for gradient descent or the number of left and right singular vectors corresponding to
the first k singular values (i.e., such that A ≈ UkSkVᵀ

k ).
Let us look into the meaning of these matrices in more detail. The resolution matrix

can be thought of in two ways:

• The columns can be understood as the spatial spread of a delta-like input, i.e., the
Point-Spread Function.

• The rows can be understood as the convolution of the MNP distribution with the
Point-Spread Function. It is the (scaled) averaging function of the system.

As observed in Figure A1, the columns (blue enclosure of the matrix) represent the
spatial spread of a delta-like input at particle position j. The red enclosure in the matrix
refers to the weighted (the weights can be negative) sum of all field contributions from all
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MNP, such that it refers to an averaging function of the MNP responses. Due to the fact that
the system is a linear space-invariant system, the resolution is the same for all positions.
Resolution could heuristically be chosen to be the full width half maximum of the peak of
the columns. It has to be noted that the resolution may be spatially anisotropic depending
on the shape of the impulse response of the imaging system.

Figure A1. The columns of the resolution matrix Rk reflects the spread of a delta-like input, which
can be thought of as the Point-Spread Function of the system. For the inverse operator for different
iterations k, the resolution matrix attains a more delta-like response, which means that the spread is
reduced and that resolution is enhanced

The peaks as shown in Figure A1 become narrower with increasing iteration numbers.
This means that the resulting overall resolution is given by the last iteration we were
able to perform without fitting noise. For this, there are several criteria that can be used
for the termination of the reconstruction [2]. It has to be emphasized that the resolution
matrix relies on the analytic expressions presented here such that procedures such as the
proximal gradient algorithm for the L1 projection cannot meaningfully produce a resolution
matrix. The only cases where an analytic expression can be found is if the regularizer is
differentiable (e.g., Tikhonov regularization), semiconvergent properties of gradient descent
are used [2] or truncation via a singular value decomposition is applied.

A more general perspective on the resolution matrix (or rather, resolution map) is that
it can be viewed as the effect of a single input on the vector b, which subsequently needs to
be inverted [39]. For this, we look at the change of reconstruction δxi from unit change êi in
x via the inversion operation G.

δxi = G(A(x + êi))− G(Ax) (A6)

In case of linearity, that is, if an analytic expression is found via an approximate
(generalized) inverse A†

k , then we have the following.

δxi = G(A(x + êi))− G(Ax)

= A†
kAêi + A†

kAx−A†
kAx

= Rkêi. (A7)

Thus, in the linear case, output δxi from a unit change directly yields a column of the
resolution matrix, which tells us about the Point-Spread Function/spatial spread of the
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parameter xi of particle distribution x. Important to point out is that this inversion process
is only dependent on the model itself and not on the particle distribution. This is a direct
result of the linearity of the inversion process.

On the other hand, if the inverse map does not obey linearity, which is the case for,
e.g., L1 regularization, we have the following.

G(A(x + êi)) 6= G(Ax) + G(Aêi). (A8)

As a result, spatial spread δxi of parameter xi depends on particle distribution x itself,
and a general statement of the resolution for a model inversion procedure, when the inverse
map is not linear, cannot be given. Therefore, assessment of resolution is in this case is only
beneficial if a standard reference is used such that the results can be comparable.

Appendix B. Estimation of Magnetic Content

In the following, it will be shown that the magnetic content of an imaging experiment
can be estimated from the measurement alone. For this, we consider a measurement in an
x–y plane with equidistant measurement positions. We further set the magnetic moment
direction into the z direction and sensitive axis direction in the x direction. The MNP
distribution is distributed in an x–y plane below the measurement plane. We, thus, write
for magnetic moment m as follows:

m = ‖m‖

0
0
1

 (A9)

and for the sensitive axis s, we have the following.

s = ‖s‖

1
0
0

 (A10)

The associated magnetic field of a point dipole is then the following.

Bx =
µ0‖m‖‖s‖

4π

3xz

(x2 + y2 + z2)
5/2 . (A11)

The projection above is antisymmetric with respect to the x direction. Integration of
this projection in the x-direction yields the following.∫ x

−∞
Bxdx = −µ0‖m‖‖s‖

4π

z

(x2 + y2 + z2)
3/2 . (A12)

The function is of equal sign from −∞ to +∞ for the x and y variables. The next step
involves integrating over the whole x− y plane. The result is the following.∫ ∞

−∞

∫ ∞

−∞
−µ0‖m‖‖s‖

4π

z

(x2 + y2 + z2)
3/2 dxdy = −µ0‖m‖‖s‖

2
. (A13)

Thus, the given procedure is proportional to the magnetic moment, which is, mathe-
matically speaking, the L1 norm of the negative integrated dipole field projection. Therefore,
one can calculate the magnetic moment directly from the data, given that a sufficiently
large region of the magnetic field is measured to approximate the procedure given above.
It is important to point out that the result is independent of the z-distance. On one hand,
this means that one can estimate the magnetic moment without knowing the z-distance,
while on the other hand it means that there is no depth information from this procedure.
To generalize this approach, given an arbitrary spatial distribution of magnetic moments
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and given that the measured projection is equal to the example given above, we denote the
magnetic field of a magnetic moment as BD. We can write the magnetic field associated
with a moment distribution, given as BL, as follows.

BL(r) =
∫

Ω
BD
(
r− r′, m

)
ρ
(
r′
)
d3r′. (A14)

As above, we assume the same direction of magnetic moment m and integrate in the
x-direction and then integrate over the x− y plane. Since the integral is not dependent on
the z-distance (as explained above), one obtains the following result.

− 2
µ0‖m‖‖s‖

∫ ∞

−∞

∫ ∞

−∞

∫ x

−∞
BL(r)dxdxdy =

∫
Ω

ρ
(
r′
)
d3r′. (A15)

Since moment distribution ρ is non-negative (i.e., ρ ≥ 0), the following statement
is obvious.

‖ρ‖1 =
∫

Ω
ρ
(
r′
)
d3r′. (A16)

Thus, the total amount of magnetic content can be computed from the magnetic field
if the measured projection is the same as in the form above. It would also work for the
projection in the y direction. In this way, one can infer the total amount of particles from
the measurement itself and can use this for regularization via projection onto the scaled
L1 ball in the projected gradient method. One has to point out that, because the result is
independent on the z distance, any reconstruction from any height that is able to construct
vector b via estimate Ax yields the same amount of MNP content.
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