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Abstract

Mucosal-associated invariant T (MAIT) cells represent up to 10% of circulating

human T cells. They are usually defined using combinations of non-lineage-

specific (surrogate) markers such as anti-TRAV1-2, CD161, IL-18Ra and CD26.

The development of MR1-Ag tetramers now permits the specific identification

of MAIT cells based on T-cell receptor specificity. Here, we compare these

approaches for identifying MAIT cells and show that surrogate markers are not

always accurate in identifying these cells, particularly the CD4+ fraction.

Moreover, while all MAIT cell subsets produced comparable levels of IFNc,
TNF and IL-17A, the CD4+ population produced more IL-2 than the other

subsets. In a human ontogeny study, we show that the frequencies of most

MR1 tetramer+ MAIT cells, with the exception of CD4+ MAIT cells, increased

from birth to about 25 years of age and declined thereafter. We also

demonstrate a positive association between the frequency of MAIT cells and

other unconventional T cells including Natural Killer T (NKT) cells and Vd2+

cd T cells. Accordingly, this study demonstrates that MAIT cells are

phenotypically and functionally diverse, that surrogate markers may not

reliably identify all of these cells, and that their numbers are regulated in an

age-dependent manner and correlate with NKT and Vd2+ cd T cells.

INTRODUCTION

Mucosal-associated invariant T (MAIT) cells are an

evolutionarily conserved subset of unconventional T

cells,1 restricted to the monomorphic major-

histocompatibility complex (MHC) class I-like antigen

(Ag)-presenting molecule, MHC-related protein 1

(MR1).2 MAIT cells are highly abundant in humans

where they make up 1–10% of the circulating T cell

pool,3,4 and they are enriched in the liver5,6 and at

mucosal surfaces such as the gut.2,6,7

Human MAIT cells are also defined by expression of a

semi-invariant T-cell receptor (TCR) composed of a very

limited TCR-a repertoire, comprising TRAV1-2 joined to

either TRAJ33,8,9 TRAJ12 or TRAJ20,7,10 with few, or no,

n-nucleotide additions at the Complementarity
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Determining Region (CDR)-3a.9 These TCR-a chains

pair with a constrained repertoire of TCR-b chains,

predominantly utilizing the TRBV6 and TRBV20 gene

families.7,9,10 In addition to their restriction to MR1, the

MAIT TCR imbues MAIT cells with the unique ability to

recognize a series of Ags derived from microbial

riboflavin (vitamin B2) synthesis,11 the most potent of

which is 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil

(5-OP-RU).12 These Ags are produced by a wide array of

bacteria and yeast species, all of which encode the

riboflavin metabolic pathway.4,11,13 Thus, these riboflavin-

derivatives represent a molecular signature of microbial

infection that can activate MAIT cells. Recently, however,

a minor subset of MAIT cells was shown to detect folate

(vitamin-B9)-based Ags presented by MR1,14 suggesting

that MAIT cell subsets may also elicit TCR-mediated

responses in the absence of riboflavin-derivatives.

MAIT cell development occurs in the thymus2 where

immature thymocytes expressing MAIT TCRs interact

with MR1-expressing CD4+CD8+ double positive (DP)

thymocytes.15 This evokes a three-stage intrathymic

developmental pathway after which mature MAIT cells

egress to the peripheral circulation and tissues.16 There,

they then expand in response to peripheral flora, and are

maintained at high proportions in the circulation.3,16

This combination of developmental cues is distinct from

those followed by conventional T cells and results in the

acquisition of a unique transcriptional profile. This

includes an effector memory phenotype,3,6 expression of

the innate transcription factor promyelocytic leukemia

zinc finger (PLZF), as well as RAR-related orphan

receptor gamma (RORct) and intermediate levels of the

T-Box transcription factor TBX21 (T-bet) in humans17,18

or mutually exclusive RORct+ or T-bet+ subsets in

mice.19 MAIT cells express tissue homing receptors6 and

high levels of surface markers typically associated with

unconventional T cells and innate-lymphoid cell (ILC)

subsets including the C-type lectin CD161,3 IL-18Ra
(CD218)4 as well as the ectopeptidase CD26.6,20 Upon

activation, MAIT cells produce large quantities of

proinflammatory cytokines IFNc and TNF6 and under

certain microenvironmental conditions, IL-17A5,6,18,21

and IL-22.21 Thus, MAIT cells are poised to mount a

proinflammatory peripheral response to microbial

infection.

MAIT cells also appear to be perturbed in several

noninfectious diseases, including autoimmunity,22-28

metabolic disorders29 and cancer,30-34 as well as viral

infection.35-38 With growing interest in the field of MAIT

cell biology, correct identification of MAIT cells is critical

to determine their role in health and disease. Typically,

this has relied on the use of a monoclonal antibody

(mAb) directed against the TRAV1-2 gene segment used

by MAIT cells.3,7,39 Because conventional T cells can also

use the TRAV1-2 gene segment, MAIT cells are usually

also defined by their high expression of CD161,3 IL-

18Ra,4 or CD26.6,20 However, it is unclear how reliable

these surrogate markers are for identifying all subsets of

MAIT cells, especially in the context of disease. For

example, a study of HIV-infected individuals suggested

that MAIT cells may lose expression of CD161 upon

activation,37 and many reports suggest a reduction in

MAIT cells defined by these surrogate markers in disease

settings,27,28,40-44 and in the context of aging.42,45

Recently, MR1-Ag-loaded tetramers have been

developed for the specific identification of MAIT

cells.7,12 Here, using these tetramers, we examine MAIT

cells and five subsets thereof, defined by CD4, CD8a
and CD8b, in healthy human peripheral blood. Our

findings show that these subsets can be phenotypically

and functionally distinct, and while surrogate markers

generally enrich for MAIT cells, for some subsets and in

some individuals, these markers fail to accurately

capture all of these cells. We also show that most MAIT

cell subsets vary with age and that their numbers

directly correlate with Natural Killer T (NKT) cells and

Vd2+ cd T cells. This study should serve as a valuable

guide for the interpretation of earlier studies prior to

the availability of MR1-Ag tetramers, and the analysis

and isolation of MAIT cells from human blood in health

and disease.

RESULTS

Innate-like T cell frequency

Using MR1-5-OP-RU tetramers to identify MAIT cells,

we first established the frequency of MAIT cells

compared to other unconventional T-cell subsets,

including Type I NKT cells and cd T-cell subsets, in a

cohort of adult peripheral blood mononuclear cell

(PBMC) blood donor samples (Figure 1a i–iii). MAIT

cells accounted for a mean of 3.1% of total T cells,

varying from 0.1% to 9.2% with an interquartile range

(IQR) of 1.3–4.5% and median of 2.6%. As previously

published,14 MR1-5-OP-RU tetramer+ TRAV1-2� atypical

MR1-reactive T cells were much less frequent, with a

mean frequency of 0.05%, ranging from 0.01% to 0.17%,

IQR of 0.03–0.08% and median of 0.04% (Figure 1b).

Nonetheless, the frequency of these cells was similar to

Type I NKT cells which had a mean of 0.09% but a

larger range, from less than 0.001–0.9%, IQR of 0.02–0.09
and median of 0.03%. The frequency of cd T cells was

comparable to that of MAIT cells, with a mean of 4.3%,

a range of 0.7–13.3%, IQR of 2.0–5.5% and median of

3.5%. The majority of cd T cells were either Vd1+ or
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Vd2+ (Figure 1a iv) accounting for a mean of 1.4 and

2.6% of total T cells, respectively (Figure 1b). Thus,

MAIT cells were similar in frequency to Vd2+ cd T cells,

and far more abundant than Type 1 NKT cells and

atypical MR1-5-OP-RU tetramer+ TRAV1-2� cells, which

were similar to each other. Intriguingly, when comparing

these populations, we found a positive correlation

between the proportion of Type I NKT cells and MAIT

cells (Spearman correlation r = 0.53, P = 0.005) and

Vd2+ cd T cells and MAIT cells (Spearman correlation

r = 0.45, P = 0.018; Figure 1c). In contrast, no significant

correlations were observed between MAIT cells and other

cd T-cell subsets, or with atypical TRAV1-2� MR1-

tetramer+ T cells and MAIT cells. This suggests that

MAIT, NKT and Vd2+ cd T-cell frequencies are

controlled by similar genetic and/or environmental

factors.

MAIT cell co-receptor distribution

We next examined CD4 and CD8 co-receptor expression

by MAIT cells defined by MR1-5-OP-RU tetramer

staining. Prior to this, however, we determined the ability

to co-stain for CD8a and CD8b on MAIT cells. Staining

with one or both mAb did not alter the frequency of

MAIT cells identified as CD8a+ or CD8b+, although there

was a slight reduction in the MFI for these markers when

they were co-labeled (Supplementary figure 1). Consistent

with previous reports,17 the majority of human MAIT

cells were CD8a+, and within this population most were

CD8ab+ (Figure 2a i, 2b i). While the CD8ab+ MAIT

cells expressed similar levels of CD8a compared to

conventional ab T cells, they expressed substantially lower

levels of CD8b (Figure 2b i), suggesting that they likely

co-express CD8aa homodimers and low levels of CD8ab
heterodimers on their surface. Conversely, CD8aa+ MAIT

cells expressed higher levels of CD8a than other non-

MAIT CD8aa+ ab T cells (Figure 2b ii–iii). Control

samples that were stained with either MR1-5-OP-RU

tetramers or control MR1-Ac-6-FP tetramers46 confirmed

that each subset was specifically stained with MR1-5-OP-

RU tetramers (Supplementary figure 2). As a proportion

of total MAIT cells, a median of 35.0% and range of 13.5–
59.5% were CD8aa+, whereas a median of 44.7%

expressed CD8ab heterodimers, ranging from 28.3% to

74.2% (Figure 2c). A median of 14.3% of MR1-5-OP-RU

tetramer+ MAIT cells were DN, ranging from 1.6% to

39.6%, while a minor proportion (median 1.3%) of these

Figure 1. Enumeration of unconventional T-cell subsets. (a) Flow cytometric plots showing example gating of (i) MAIT cells and atypical MR1

tetramer+ TRAV1-2� T cells, (ii) Type I NKT cells and (iii) cd T cells, gated on total CD3+ T cells, and (iv) Vd1 versus Vd2 expression on cd T cells.

(b) Box and whisker plots showing the percentage of innate-like T-cell subsets of total CD3+ T cells. MAITs n = 47; atypical MR1 tet+ n = 12;

Type I NKT cells n = 27; cd T cells n = 33; derived from eight experiments. (c) Scatter plots showing donor-matched percentages of (i) MAIT and

NKT cells, or (ii) MAIT and Vd2+ T cells as a proportion of total CD3+ cells (Spearman correlations (i) r = 0.53, P = 0.005, n = 27; (ii) r = 0.45,

P = 0.018, n = 27).

509

NA Gherardin et al. Phenotypic characterization of human MAIT cells



cells were CD4+CD8� single positive (SP; hereafter

referred to as CD4+ MAIT cells) or CD4+CD8+ DP,

(median 1.3%) (Figure 2a i, 2c). Closer analysis of the DP

MAIT cells revealed that the distribution of CD8aa and

CD8ab was similar to that of CD4�CD8a+ MAIT cells

with medians of 41.8% (range 28.4–68.8%) and 57.7%

(range 31.2–71.6%), respectively (Figure 2c ii). Also,

similar to CD4�CD8ab+ MAIT cells, the CD4+CD8ab+

MAIT cells had a lower CD8b MFI, suggesting co-

expression of both CD8aa homodimers and low levels of

CD8ab heterodimers (data not shown).

As a percentage of T-cell subsets, MAIT cells made up

medians of 8.1 and 6.9% of CD8+ T cells and DN T cells,

ranging between 0.7% and 17.6% and 0.2 and 32.8%,

respectively. MAIT cells accounted for a median of 89.2%

of total CD8aa+ cells, varying from 55.8% to 96.4%,

while of total CD8ab+ T cells they were 3.6% and ranged

from 1.7% to 7.7%. In contrast, MAIT cells only made

up a minor proportion of total CD4+ and DP T cells

with medians of 0.04 and 4.2% and ranges of 0–1.0%
and 0.1–19.7%, respectively (Figure 2c iii).

Taken together, while in most individuals the majority

of MAIT cells were CD8ab+, there was substantial inter-

individual variation in co-receptor distribution, including

some extreme outliers. For example, in one individual

(G73), 31.8% of MAIT cells were CD4+ (Supplementary

figure 3), most of which were intermediate to negative

for CD161 expression.

MAIT cell subsets differentially decline with age

Next, we examined how MAIT cell subsets defined by

CD4 and CD8 expression change with age ranging from

birth to 70 years old. The under-20-years-old donor

Figure 2. Co-receptor distribution on MAIT cells. Flow cytometric plots showing example gating of CD4 and CD8a expression (a) and CD8a and

CD8b expression (b i) on non-MAIT ab T cells (upper panels) and MAIT cells (lower panels). Box and whisker plots showing CD8b (b ii) and CD8a

(b iii) expression on CD8ab+, cells on MAIT cells and non-MAIT ab T cells (n = 4, from two experiments). CD8b gate set based on fluorescence

minus one (FMO) control. (c) Box and whisker plots showing: (i) the percentage of MAIT cells expressing each co-receptor; (ii) the percentage of

CD4+CD8+ DP MAIT cells that are CD8aa+ or CD8ab+, and; (iii) the percentage of total T cells expressing each co-receptor that are MAIT cells

(total CD8+, DN, CD4+ and DP n = 33; CD8aa+ and CD8ab+ n = 10; from eight experiments).
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samples have been depicted in a previous study16 but

without the detailed subset analysis shown here.

Consistent with previous reports that focused on CD8+

MAIT cells using surrogate markers to identify these

cells,42,45 we confirmed that total MAIT cells increase in

proportion over the first three decades of life, peaking

between the ages of 20–29, before gradually declining in

the decades thereafter (Figure 3a). Statistical analysis

showed a strong positive correlation between MAIT cell

frequency and age between birth and 25 years of age

(correlation r = 0.90, P < 0.0001; linear regression

r2 = 0.70, P < 0.0001) and a strong negative correlation

between 25 and 70 years of age (correlation r = �0.70,

P < 0.0001; linear regression r2 = 0.46, P < 0.0001;

Figure 3b). Analysis of MAIT cell subsets defined by

CD4 and CD8 co-receptor expression suggested that the

initial increase in MAIT cell proportions correlated

most strongly for CD8a+ MAIT cells (correlation

r = 0.91, P < 0.0001; linear regression r2 = 0.77,

P < 0.0001), followed by DN MAIT cells (correlation

r = 0.90, P < 0.0001; linear regression r2 = 0.63,

P < 0.0001) and DP MAIT cells (correlation r = 0.80,

P < 0.0001 linear regression r2 = 0.35, P = 0.035),

whereas the subsequent decline in MAIT cell

proportions correlated most strongly in the CD8a+

MAIT cells (correlation r = �0.71, P < 0.0001; linear

regression r2 = 0.47, P < 0.0001) followed by DN MAIT

cells (correlation r = �0.61, P = 0.0006; linear

regression r2 = 0.22, P = 0.01), and DP MAIT cells

(correlation r = �0.52, P = 0.0049; linear regression

r2 = 0.21, P = 0.0135; Figure 3c–e). Of note, no

correlation was observed for CD4+ MAIT cell

proportions for either the young or old age ranges

(Figure 3f). These results suggest that MAIT cell subsets

may be differentially regulated and should be included

in analysis where possible. They also highlight that

(a) (b)

(c) (d)

(e) (f)

Figure 3. Selective decrease in MAIT cell subsets with age. (a) Box plot showing MAIT cell frequency of total CD3+ T cells. (b–f) Scatter plots

showing donor age versus the proportion of total CD3+ T cells that are: (b) MAIT cells (c) CD8a+ MAIT cells (d) DN MAIT cells (e) DP MAIT cells

or (f) CD4+ MAIT cells. Red data points = ages 0–25; blue data points = ages 26–70. Statistical tests are Spearman correlations. Linear regression

lines and 95% confidence intervals are also depicted. Samples from young donors (ages 0–14) had been partially analyzed in a previous study,16

but without full CD4/CD8 subset analysis as depicted here.
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appropriate age-matching of patient cohorts and healthy

controls is critical to analyzing MAIT cells in disease.

Comparison of MR1-Ag tetramers and surrogate

phenotyping techniques

MAIT cells exhibit a unique cell surface phenotype,

including expression of high levels of the C-type lectin

CD161,3 the IL-18Ra chain CD2184 as well as the

ectopeptidase CD26.6,20 Indeed, these markers are often

used in combination with a mAb directed against the

TRAV1-2 TCR variable domain to identify and study

MAIT cells. However, it is unclear how precisely these

markers define MAIT cells, whether all MAIT cells express

them and whether all T cells identified by these markers

are MAIT cells. We therefore investigated how accurate

these markers are for identifying MR1-5-OP-RU tetramer+

TRAV1-2+ MAIT cells in healthy donors. We first

determined how many MR1-5-OP-RU tetramer+ cells are

in the TRAV1-2+ cell subsets as separately defined by

CD161, IL-18Ra and CD26 expression (Figure 4a).

Medians of 96.4% (CD161) and 90.9% (for each of IL-

18Ra and CD26) of cells expressing high levels of these

markers, respectively, co-labeled with MR1-5-OP-RU

tetramers. However, for each of these markers, there was

inter-donor variability, with up to 27.5, 61.0 and 58.2% of

TRAV1-2+ CD161HI, CD218HI and CD26HI cells,

respectively failing to label with MR1-5-OP-RU tetramers

in some individuals. Furthermore, some MR1-5-OP-RU

tetramer+ MAIT cells were detected within the

populations of TRAV1-2+ cells that expressed intermediate

or negative levels of these markers (Figure 4a ii).

To further investigate the value of surrogate markers to

identify MAIT cell subsets, TRAV1-2+ CD161HI cells,

representing the most accurate of the surrogate marker

combinations, were gated into subpopulations based on

CD4/CD8 co-receptor usage (Figure 4b). While MAIT

cells were detected in each subpopulation, the

effectiveness of these markers for identifying CD4+ MAIT

cells was highly inaccurate, with a median of only 33.7%

(IQR of 15.1–48.3) of CD4+ TRAV1-2+ CD161HI cells

labeling with MR1-5-OP-RU tetramer. This was further

exemplified by performing single cell TCR sequencing on

CD4+ CD161+ cells from one donor. Cells at the upper

most edge of the CD161HI CD4+ MAIT gate versus the

lower edge of this gate showed that while the cells with

highest CD161 expression expressed the canonical MAIT

TCR-a chain, the cells at the lower edge of the CD161+

cells expressed both canonical MAIT and diverse non-

MAIT TCR-a chains, supporting the MR1 tetramer data

showing that this population does not reliably represent

MAIT cells (Supplementary figure 4). Upon examination

of other subsets of CD161HI TRAV1-2+ cells; DP,

CD8ab+, DN and CD8aa+ T cells showed medians of

92.0% (IQR 78.5–94.4%) 94.8%, (IQR 81.5–99.7), 99.1%
(IQR 97.8–99.8) and 99.0% (IQR 98.8–99.6) of MR1-5-

OP-RU tetramer+ cells, respectively. Taken together,

while the CD161HI TRAV1-2+ phenotype is a reasonably

accurate indicator of CD8aa+ and DN MAIT cells, for

other MAIT cell populations (CD4+, DP and CD8ab+)
this approach is not very reliable.

Next, expression of the commonly used surrogate

markers on total TRAV1-2+ MR1-5-OP-RU tetramer+

MAIT cells was determined (Figure 4c). As expected, the

majority of MAIT cells expressed high levels of CD161,

IL-18Ra and CD26 (medians of 97.7, 98.6 and 98.2%,

respectively). Nonetheless, a small proportion of MAIT

cells expressed low or intermediate levels of these markers

(medians of 0.4 and 1.4%, respectively for CD161; 0.1

and 1.3%, respectively for IL-18Ra; 0.4 and 1.2%,

respectively for CD26) (Figure 4c ii). Analysis of co-

expression of CD26 and CD161 on MAIT cells from four

donors suggested that minor populations of each of

CD161�CD26+, CD161+CD26� and CD161�CD26� exist,

with CD26�CD161+ being the most prominent of the

three populations (Supplementary figure 5a). From two

of these donors, we detected a clear subpopulation of

TRAV1-2+ MR1-5-OP-RU tetramer+ MAIT cells that

were negative for CD26, and in one donor these cells

expressed lower levels of CD161 compared to the rest of

the MAIT population, as well as being

CD27�CD28�Tbet� (Supplementary figure 5a, donor D3

and Supplementary figure 5b). This highlights that while

in most cases, the surrogate markers, particularly CD161,

accurately identify most MAIT cells, not all MAIT cells

are identified with this approach, and in some outlying

individuals these markers can be highly inaccurate. Thus,

while the combination of CD161 and TRAV1-2 identifies

the great majority of MAIT cells, not all CD161+ T cells

are MAIT cells and not all MAIT cells are identified with

these markers.

MAIT cell surface phenotype

Next, phenotypic analysis of TRAV1-2+ MR1-5-OP-RU

tetramer+ MAIT cells was performed for other cell

surface markers of interest, comparing them to other T

cells or other CD3� CD19� lymphocytes which includes

NK cells (Figure 5a). These data showed that the vast

majority of MAIT cells were CD45RA�, CCR5+, CCR6+,
CXCR6+, CCR7� and CD62L�, suggesting that MAIT

cells from blood are Ag-experienced tissue-homing cells.

MAIT cells were also negative for killer-cell

immunoglobulin-like receptors (KIR) including

KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL5 and KIR2DS5

as well as the natural cytotoxicity receptor (NCR)
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Figure 4. Comparison of MR1-Ag tetramers and surrogate phenotyping techniques. (a) (i) Representative flow cytometric pseudo-color plots

showing example gating of MAIT cells using anti-TRAV1-2 mAb versus CD161 in one cocktail, or IL-18Ra or CD26 in another cocktail on total T cells,

followed by MR1-5-OP-RU tetramer staining on TRAV1-2+ CD161/IL-18Ra/CD26 high, intermediate or negative cells. (ii) Box and whisker plots

showing percentage TRAV1-2+, CD161 (green; n = 24), IL-18Ra (red; n = 12) and CD26 (blue; n = 12) High (HI), Intermediate (INT) and Low (LOW)

cells that are MR1-5-OP-RU tetramer+, derived from three experiments. (b) (i) Representative flow cytometric pseudo-color plots showing example

gating of MAIT cells using anti-TRAV1-2 mAb versus CD161 for T cell co-receptor subsets (upper panel) and MR1-5-OP-RU tetramer staining on

TRAV1-2+ CD161HI cells for each co-receptor (lower panel). (ii) Box and whisker plots showing percentage TRAV1-2+, CD161HI cells that are MR1-5-

OP-RU tetramer+ for each co-receptor (CD4+, DN and CD8+ n = 24; DP, CD8aa+ and CD8ab+ n = 12, from three experiments). (c) (i) Representative

flow cytometric pseudo-color plots showing example gating of MAIT cells using MR1-5-OP-RU tetramer versus CD161, IL-18Ra or CD26 on total T

cells (left panels) or MR1-5-OP-RU tetramer+ TRAV1-2+ T cells (right panel). (ii) Box and whisker plots showing percentage TRAV1-2+ MR1-5-OP-RU

tetramer+ cells that are HI (blue), INT (Red) or NEG (green) for CD161 (n = 24), IL-18Ra (n = 12) and CD26 (n = 12), derived from three experiments.
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Figure 5. Surface phenotyping of MAIT cells. (a) Representative histogram overlays of surface marker expression on MAIT cells (blue histograms),

non-MAIT CD3+ T cells (red histograms) and CD3�, CD19� lymphocytes (green histograms) (b) Box and whisker plots showing the percentage of

MAIT cell subsets expressing CCR6, CXCR6, CD27, CD56, NKG2D and NKG2A (n = 12 from two separate experiments). MAIT cell subsets were

gated as per Figure 2a after initially gating on CD3+TRAV1-2+MR1-5-OP-RU tetramer+, viable lymphocytes. The statistical test was a Wilcoxon

matched-pairs signed-rank test. (c) Box and whisker plot showing the percentage of total CD56+ T cells that are MAIT cells (n = 28, from three

experiments).
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NKp46, with at best only a minor subset expressing low

levels of NKp30, whereas they were heterogeneous for

NKG2A and NKG2D (Figure 5a). MAIT cells typically

expressed high levels of the co-stimulatory molecule

CD28 and the IL-7Ra chain CD127, whereas they

expressed variable levels of the costimulatory molecule

CD27, and the adhesion molecule CD56. We also noted

that the NKG2D+ MAIT cells express low-intermediate

levels of NKG2D compared to conventional T cells which

were either low or high for this marker.

We next determined whether markers with

heterogeneous expression on total MAIT cells varied

between CD4+, DP, CD8a+ and DN MAIT cell subsets

(Figure 5b). CCR6 and CD27 expression were similar

between subsets, whereas CXCR6, CD56, were expressed

at lower levels on CD4+ and DP MAIT cells compared to

other MAIT cell subsets. NKG2D and NKG2A were also

differentially expressed between subsets, with CD4+ MAIT

cells expressing the lowest levels of these markers and

minor differences in NKG2D expression were also

observed between the prominent CD8a+ and DN subsets,

as previously reported.47 Thus, in general the CD4+

MAIT cell subset appeared to be the most distinct,

exhibiting significantly lower proportions of cells

expressing each of CXCR6, CD56, NKG2D and NKG2A

compared to the other MAIT cell subsets.

CD56 was of particular interest because this marker is

typically associated with NK cells and innate-like T cells,

and many studies have incorrectly classified CD56+ T

cells as NKT cells.48 Here, we determined that many

CD56+ cells co-labeled with MR1-5-OP-RU tetramers

although there was high inter-donor variability (mean of

27.3%, ranging from 1.3 to 66.6%; Figure 5c). This

indicates that while CD56 is a poor surrogate marker of

MAIT cells, studies that have examined the function of

CD56+ T cells may have actually included MAIT cells in

their analysis.

MAIT cell transcription factor profile

We next performed intracellular transcription factor

staining with a panel of mAbs directed against key master

transcriptional regulator proteins (Figure 6). MAIT cells

were positive for the innate transcription factor PLZF and

the TH17 master regulator RORct, in line with previous

reports.3,14,17,18,49 Interestingly, MAIT cells expressed

intermediate levels of TH1 transcription factor T-bet

rather than high levels that characterized a subset of non-

MAIT T cells, and they did not express the TH2

transcription factor GATA-3 (Figure 6a).18 Of note

however, one donor had a subpopulation of T-bethi

MAIT cells (Supplementary figure 6b) again highlighting

the diversity of these cells between and within

individuals. The subsets defined by CD4 and CD8 were

largely similar for transcription factor expression,

although CD4+ and DP MAIT cells expressed moderately

lower levels of PLZF than the DN subset, and CD4+

MAITs expressed lower levels of T-bet than the CD8ab
subsets (Figure 6b). Thus, despite some differences in the

cell surface phenotypes, we show that all subsets of MR1

tetramer+ MAIT cells defined by CD4 and CD8

expression exhibit an innate-like (PLZF+), TH1 (T-bet+),

TH17 (RORct+) transcription factor profile, albeit with

some variation between subsets and between individuals.

MAIT cell subset cytokine production

To determine whether a similar proportion of MAIT cells

in each subset could produce cytokines, healthy PBMCs

were stimulated in vitro with phorbol 12-myristate 13-

acetate (PMA) and ionomycin for 7 h prior to

intracellular cytokine staining for IFNc and TNF

(Figure 6c). No significant differences in ability to

produce TNF or IFNc were observed between any of

these subsets. In order to examine a broader array of

cytokines, MAIT cells were purified by magnetically

enriching MR1-5-OP-RU tetramer+ cells from blood

packs, and the CD4/CD8-defined subsets purified by flow

cytometric cell sorting (Supplementary figure 6). Purified

cells were stimulated in vitro with PMA and ionomycin

for 24 h at which point culture supernatants were

analyzed for the presence of cytokines: IFNc, TNF, IL-2,
-4, -5, -10, -13, -17A (Figure 6d). The cytokine response

was characterized by IL-2, IFNc, TNF and IL-17A

production. MAIT cell subsets produced similar

quantities of most cytokines, with the exception of CD4+

MAIT cells which produced considerably higher (>5 fold)

levels of IL-2 than both DN and CD8aa+ MAIT cells.

Type 2 cytokines, including IL-4, -5 and -13, as well as

the immunosuppressive cytokine IL-10, were not detected

by any subpopulation of MAIT cells (data not shown).

Thus, MAIT cell subsets, as defined by co-receptor

expression, appear to have similar cytokine profiles in

response to mitogenic stimulation, with a notable

exception of CD4+ MAIT cells producing higher

quantities of IL-2.

MAIT cell TRAJ-gene usage

MAIT cells are defined by expression of a semi-invariant

TCR that utilizes an almost invariant TCR-a chain

(pairing TRAV1-2 with TRAJ33) that drives recognition

of riboflavin-derived Ags presented by MR1.50,51 MR1

tetramers have been used to confirm that while this is

true for the majority of MAIT cells, TRAJ12 and TRAJ20

can also be incorporated into the TRAV1-2+ MAIT cell
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Figure 6. Transcription factor and cytokine profile of MAIT cell subsets. (a) Upper panel: Representative flow cytometric histograms showing

transcription factor staining on MAIT cells (blue histograms) overlaid above total non-MAIT ab T cells (red histograms). Lower panel: Box and

whisker plots showing the MFI of transcription factor staining on MAIT cells (blue boxes) and total non-MAIT T cells (red boxes) for PLZF, RORct,

T-bet and GATA-3. (n = 12 from three experiments). (b) Box and whisker plots showing the MFI of transcription factor staining between MAIT

cell subsets for PLZF, T-bet and RORct. (n = 10 from two separate experiments). (c) Box and whisker plots showing the percentage of IFNc+ or

TNF+ MAIT cells subsets after 7 h stimulation of donor PBMCs with PMA and ionomycin. (n = 11, from three experiments). (d) Box plots showing

supernatant cytokine levels after FACS-sorted MAIT cell subsets were stimulated for 24 h with PMA and ionomycin. (n = 7 for CD4+, DN,

CD8aa+ and CD8ab+ MAIT cells, and n = 4 for DP MAIT cells from two separate experiments). Statistical analyses in b-d were performed using

Friedman tests with Dunn’s multiple comparison post hoc tests.
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repertoire,7 with conserved use of a TRAJ-gene-encoded

tyrosine residue at position 95 (Tyr95a), providing the

molecular basis for this gene usage.46 Moreover, a recent

report suggests that the MAIT TCR-a chain repertoire

may reflect distinct tissue-tropic subsets within

individuals,10 and may also extend beyond the use of

TRAJ33, TRAJ12 and TRAJ20 to include TRAJ genes that

do not encode a Tyr95a.52,53 Thus, variation within the

MAIT TCR-a chain repertoire are another potential

means for MAIT cell subset diversity. TRAJ-gene

variation has been shown using surrogate marker-based

MAIT cell identification methods at both a single cell and

deep sequencing level.7,10,20,53 However, MR1-Ag

tetramer-based repertoire studies have so far been limited

to single cell TCR sequencing on less than 200 MAIT cell

clones.7 Given our findings above (Figure 4) that some T

Figure 7. TRAJ gene usage by TRAV1-2+ MAIT cells. (a) Box and whisker plots showing percent total productive TRAV1-2+ reads recombined

with TRAJ12, TRAJ20, TRAJ33 or other TRAJ genes in amplified cDNA from MR1-5-OP-RU tetramer+ TRAV1-2+ T cells subjected to deep

sequencing. Data are from 4 human donors (n = 43 969, 45 454, 46 126 and 46 553 functional TRAV1-2+ reads for donors 1–4, respectively).

(b) Pie charts showing distribution of TRAJ genes by noncanonical TRAV1-2+ TCR-a chain transcripts from four individual donors. (c) Bar graphs

showing CDR3-a junction amino acid length distribution for TRAJ12+, TRAJ20+, TRAJ33+ and Other TRAV1-2+ TCR-a chain transcripts pooled

from four individual donors (derived from n = 9513, 19 522, 141 853 and 3006 transcripts, respectively). (d) Sequence logos depicting the

amino acid distribution at the CDR3-a junction in TRAJ12+, TRAJ20+ or TRAJ33+ TCR-a chain transcripts that are 10 amino acids in junctional

length (derived from n = 9451, 18 910 and 141 274 transcripts, respectively).
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cells defined by surrogate phenotypes are not MAIT cells,

it was important to further examine the frequency and

TCR-a chain repertoire of MAIT cells defined by MR1-5-

OP-RU tetramer using TCR-a chain deep sequencing.

For this purpose, bulk populations of FACS-sorted

TRAV1-2+ MR1-5-OP-RU tetramer+ MAIT cells from

four healthy donors were examined (Figure 7). With

these data, we confirm that the majority of MAIT cells

utilized a TCR-a chain composed of TRAV1-2 joined to

TRAJ33 (median 77.1%), but many alternately used

TRAJ12 or TRAJ20 (medians of 3.9 and 14.5%,

respectively) (Figure 7a). Each donor also had a small

number of transcripts that used noncanonical TRAJ genes

not encoding Tyr95a joined to TRAV1-2 (median 2.1%).

The noncanonical TRAJ genes were diverse, with no

apparent conservation between donors (Figure 7b), and

while the TRAJ12+, TRAJ20+ and TRAJ33+ MAIT TCR-a
chains had a highly biased CDR3a junction amino acid

length of 10 amino acids, the rare noncanonical TCR-a
chains were much more variable (Figure 7c). In line with

previous reports,7,9 detailed analysis of the canonical

MAIT TCR-a chains highlighted that they are largely

germline encoded, although some sequence variation was

permitted at positions 90-91a for TRAJ12+ and TRAJ33+

transcripts and 91-93a for TRAJ20+ transcripts

(Figure 7d). Importantly, Tyr95a was highly conserved in

all three groups of TCR-a chain (Figure 7d). Accordingly,

the TRAV1-2+ MAIT TCR-a chain repertoire is highly

biased toward largely germline encoded canonical

sequences with a CDR3a junctional length usually limited

to 10 amino acids. Moreover, noncanonical TRAJ-gene

usage is present, albeit uncommon, within the TRAV1-2+

MR1-5-OP-RU tetramer+ MAIT cell population.

Previous structural studies have illustrated that the

Tyr95a residue plays a conserved molecular role in

TRAJ33+ and TRAJ20+ MAIT TCR binding to MR1-5-

OP-RU complexes, but that the network of interactions

between the TCR-a and TCR-b chains are different

between the two.46 To gain insight into the biological

significance of this, TCR constructs were prepared which

encoded a TRAJ33+ (clone M33-64), TRAJ12+ (clone

M12.64) or TRAJ20+ (clone M20-64) MAIT TCR, as well

as a negative control TRAJ4+ TCR that is TRAV1-2+,

TRBV6-4+, but does not recognize MR1-5-OP-RU (clone

M4-64). These TCR sequences have been previously

published.7 All 4 TCRs utilized TRBV6-4 and thus only

differed in CDR3a/TRAJ and CDR3b/TRBJ sequence.

Mutant TCR constructs were also prepared which all

expressed the same CDR3b/TRBJ sequence as the M33-64

TCR such that the only differences between the mutant

TCRs was the CDR3a/TRAJ sequence (M12.64 b-mutant,

M20-64 b- mutant and M4-64 b-mutant). HEK293T cells

were then separately transfected to express each of the

wildtype and b-mutant TCRs, and subsequently stained

with MR1-5-OP-RU tetramers (Supplementary figure 7a).

As expected, the 3 MAIT TCRs stained brightly with

MR1-5-OP-RU tetramers whereas the M4-64 TCR did

not. Strikingly, the two MAIT TCR b-mutants exhibited

a loss of 60–65% of staining intensity compared to their

wildtype counterparts (Supplementary figure 7a, b).

Moreover, expression of the M33-64 TCR-b chain did

not permit the M4-64 TCR to recognize MR1-5-OP-RU

complexes as shown in the M4-64 b-mutant line. These

data suggest that TRAJ33, TRAJ12 and TRAJ20+ MAIT

TCRs have discrete CDR3b repertoires that complement

the TRAJ/CDR3a composition. Thus, while the TRAJ

gene usage does not appear to directly modulate

recognition of 5-OP-RU, it may provide an indirect

mechanism for establishing a broader CDR3β repertoire

by the MAIT cell population, possibly allowing for

discrimination of other antigens via CDR3b, such as

folate derivative 6-FP.14

DISCUSSION

Because of their high frequency, proinflammatory

capacity and potent antimicrobial activity, there is great

interest in MAIT cell biology from both basic

immunology and clinical research perspectives. Typically,

human MAIT cells have been identified using flow

cytometry by combining anti-TRAV1-2 with anti-CD161,

IL-18Ra or CD26. Given that these molecules can be

modulated on T cells, it was unclear how specific and

accurate these surrogate markers were for identifying

MAIT cells in health and disease. Another method used

to define MAIT cells is an MR1-mediated functional

response, which can help to show that a population

contains MR1-Ag reactive cells; however, this is not ideal

for determining if all cells in a population are MAIT

cells, nor is it likely to detect a small subset of MAIT

cells in a population. MR1-5-OP-RU tetramers now

permit the identification of MAIT cells based on their

MR1-restricted TCR specificity. Because many clinical

studies have used surrogate phenotyping techniques, and

often only focus on CD8+ MAIT cells in their

analysis,23,24,29,30,36,40,41,44,54-59 we felt it was important to

determine how well these approaches compare to the use

of MR1 tetramers to examine all MAIT cell populations.

Here, we analyzed a large cohort of healthy human

PBMC samples to both establish the phenotypic

characteristics of human MAIT cells, and subsets thereof,

using MR1-5-OP-RU tetramers, as well as to establish a

comparison of the use of MR1-5-OP-RU tetramers with

surrogate mAb-based identification techniques.

Our data suggest that identification of DN and CD8+

MAIT cells using TRAV1-2 and CD161, IL-18Ra or
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CD26 mAbs is generally consistent with results derived

from MR1 tetramer staining, at least in healthy donors.

However, we have observed inter-individual variability in

how tightly these surrogate markers correlate with MR1

tetramer staining. It is also possible that some of these

markers are modulated in disease states. In a study of

MAIT cells in HIV patients, Leeansyah et al.37 showed

that the TRAV1-2+ CD161HI population decreased with

disease progression, and noted a reciprocal increase in the

TRAV1-2+ CD161� population, and an accumulation of

cells with a MAIT-like phenotype including CD8a
expression, biased TCR b-chain usage, as well as PLZF

expression.37 While another study using MR1 tetramers

did not observe this downregulation of CD161,38 this

may be explained by differences in the sample population

and/or stage of disease. Furthermore, immature MAIT

cells in thymus, cord blood and neonatal blood have

higher frequencies of CD161lo MAIT cells and many

TRAV1-2+ CD161+ cells in thymus and neonatal blood

are not MAIT cells.16 These data suggest that MAIT cells

can modulate CD161 expression, and caution should be

applied in interpreting data that relies on the use of

TRAV1-2 and CD161-specific mAbs to identify MAIT

cells in disease settings. While the vast majority, but not

all, of TRAV1-2+ CD161HI cells in the DN and CD8a+ T

cell compartments are MAIT cells, this is a result of their

high frequency in healthy individuals. In situations where

MAIT cell frequencies are reduced, such as with age,42,45

or in disease settings,36,37,40,44 the proportion of non-

MAIT cells in surrogate marker-defined populations will

increase. Under these circumstances, caution is required

in measuring MAIT cell frequency and functional

characteristics because the residual cells when MAIT cells

are depleted will be enriched for other T cells.

Our data clearly demonstrates that the TRAV1-2+

CD161+ surrogate markers are inadequate to identify

CD4+CD8� MAIT cells, as most of the former cells do

not bind to MR1-5-OP-RU tetramer. The identity of the

non-MAIT cells within this population is unclear, but

CD161 is also expressed by IL-17 producing CD4 (Th17)

and CD8 (Tc17) T cells,60 some of which are likely to

randomly express TRAV1-2. Moreover, some of these

cells may belong to the CD4+, TRAV1-2+ population of

CD1b-restricted T cells that recognize the Mycobacterium

tuberculosis (Mtb)-derived lipid glucose monomycolate

(GMM; GEM T cells) which can also express CD161.61

This may especially be a problem in the setting of Mtb

infection.

Most MR1 tetramer+ MAIT cells are either DN or CD8a+

and of the CD8a+ subset, many lack CD8b and instead

express CD8aa homodimers.3,17 Our data suggest that these

subsets are phenotypically similar, although minor

differences in surface-molecules such as NKG2D were

observed. While CD8a+b+ MAIT cells develop directly in

the thymus, CD8a+b� MAIT cells appear to be more

mature, appearing in the periphery but not thymus.16, 62

The physiological role of CD8 co-receptor usage (whether as

CD8aa homodimers or CD8ab heterodimers) by MAIT

cells is unclear, although a recent study suggested that

CD8a+ MAIT cells had greater cytotoxic function than

CD8a� MAIT cells.47 The putative CD8 binding site of MR1

is highly conserved with human MHC class I63 and several

MAIT cell clones have been shown to require CD8

expression for MR1-mediated activation.39 We also

demonstrated that 6-FP-reactive MAIT cells express high

levels of CD8,14 suggesting that this coreceptor may

modulate responsiveness to low-affinity Ags.

The CD4+CD8� MAIT cells appear to be distinct from

other MAIT cells in terms of CXCR6, CD56, NKG2D and

NKG2A expression and they produce more IL-2 than

other subsets. In a previous study in mice, CD4+ MAIT

cells were found to be enriched in lymph nodes and

absent in lung, suggesting different tissue homing

characteristics for these cells.19 We have previously shown

immature MAIT cells in thymus express CD4 either in

the absence of CD8a, or as CD4+CD8a+ DP.16 This raises

the possibility that the CD4+CD8a�/+ MAIT cells in

adult blood are recent thymic emigrants, although the

fact that these do not decline with age in blood seems

inconsistent with this possibility given the decline in

thymic function with age. Furthermore, we previously

showed that human thymic CD4+ MAIT cell precursors

(stages 1 and 2) were incapable of cytokine production,16

in contrast to the CD4+ fraction from blood which we

show here is clearly capable of producing cytokines.

Moreover, a recent study also phenotypically compared

MAIT cell subsets defined by CD4 and CD8 expression.64

That study used the surrogate phenotype of CD161HI

TRAV1-2+ to identify MAIT cells, with some but not all

of the findings also checked against MAIT cell subsets

defined using MR1-5-OP-RU tetramers. While there were

several findings that aligned closely between our study

and the Kurioka et al. study, there were also some

important differences. In particular, in the Kurioka et al.

study,64 the CD4+ subset was observed to produce both

IL-4 and IL-13, in contrast to the CD8+ and DN subsets

which did not produce these cytokines. The CD4+ subset

was also reported to produce less IFNc than the CD4�

subsets in that study.64 In contrast, we failed to detect

production of IL-4 and IL-13 by CD4+ MAIT cells, and

we found no significant difference in IFNc production by

CD4+ MAIT cells. Perhaps the most likely reason for this

discrepancy is that we used MR1-5-OP-RU tetramer to

identify the CD4+ MAIT cells for cytokine production,

whereas the Kurioka et al64 study used the surrogate

markers CD161HI TRAV1-2+ to define MAIT cells for
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these experiments. Thus, it may have been non-MAIT

CD4+ T cells, which we have shown are abundant in the

CD4+ CD161++ TRAV1-2+ population, that were

responsible for these differences in cytokine production

in the previous study.64 Taken together, CD4+ MAIT cells

are somewhat distinct from the other subsets; however,

they do not appear to be able to produce the Th2 type

cytokines IL-4 and IL-13. While CD4+ MAIT cells might

be ignored because they are typically a minor subset of

MAIT cells in humans, it is worth reiterating that they

are nonetheless present in similar numbers in human

blood as Type-I NKT cells.

The vast majority of MAIT cells had an effector

memory cell surface phenotype, and were RORct+ and

T-betINT. This profile is in line with their proinflammatory

phenotype and propensity for IFNc, TNF and IL-17A

production. Of note, in one of twelve donors, there was a

subpopulation of MAIT cells with high expression of T-bet

suggesting some level of plasticity in T-bet expression,

aligning with recent reports on MAIT cell functional

heterogeneity. For example, it has been shown that liver

MAIT cells have a higher propensity for IL-17A

production in response to IL-7 compared to their

peripheral blood counterparts.5 Likewise, MAIT cells in

the female genital mucosa exhibit a bias toward IL-17A

and IL-22 production.21 The functional implications of

this are unclear, although it seems reasonable that MAIT

cells located at different anatomical locations might

provide a tailored response depending on the local

environment. Furthermore studies investigating the extent

of transcription factor plasticity and functional

consequences will be important. Indeed, in a lung

infection mouse model, using Salmonella Typhimurium,

mouse MAIT cells were shown to skew toward T-bet

expression postinfection.65 Whether MAIT cells can be

polarized toward Th2-like, TFH-like or Treg-like

phenotypes (through expression of master transcription

factors GATA-3, Bcl-6 and FOXp3, respectively) may also

have significant biological implications. Examining

transcriptional profiles of MAIT cells in disease settings, as

well as in tissue resident cells, should provide insights into

their functional roles. Moreover, analysis of MAIT cell

TCR-repertoire in these settings will also be important.

Indeed, previous reports suggest that the TCR repertoire

can influence microbe-reactivity52,66 and differential tissue

distribution.10 This may be due to differing Ag-reactivities,

and our data provides a potential mechanism for how

TRAJ-gene usage can influence this indirectly by shaping

the CDR3b repertoire. Further studies are required to fully

understand the contribution of distinct TCR-a and TCR-b
chains toward MAIT cell functional diversity.

Using MR1-5-OP-RU tetramers, we have confirmed

that MAIT cells are highly abundant, albeit variable in

frequency, in adult blood donors. Interestingly, we found

a positive correlation between the frequency of MAIT

cells and both Type I NKT cells and Vd2+ cd T cells in

the peripheral circulation, suggesting they may be

regulated by similar environmental and/or genetic factors.

In contrast, in mice, MAIT cells appear to compete with

NKT cells because CD1d-deficient NKT cell-deficient

mice exhibit increased numbers of MAIT cells.16 Despite

these seemingly opposing effects, these findings suggest

that MAIT cells and NKT cells share some common

developmental or homeostatic factors. We have also

demonstrated that MAIT cell frequency is modulated by

age, expanding in the first 2–3 decades of life, followed

by a gradual decline beyond this stage. There is evidence

that expansion of these cells in early life is driven by

microbial colonization9,16; however, it is unclear why

circulating MAIT cell proportions do not peak until the

third decade of life. Likewise, the reason for a gradual

decline in MAIT cell frequency with aging is unknown.

Of note, this has also been reported for Vd2+ cd T cells67

and NKT cells,68 again suggesting that these cells may be

regulated by common age-related factors. Interestingly,

CD4+CD8� MAIT cells showed no correlation between

frequency and age, suggesting that they may be

ontogenically distinct from other MAIT cells.

Nonetheless, these results highlight the importance of

appropriate age-matching of healthy control and disease

cohorts when analyzing the frequency of MAIT cells and

other innate-like T-cell subsets. Whether the decline in

MAIT cells renders the elderly more susceptible to

infectious disease warrants further investigation.

Taken together, while TRAV1-2 and CD161 have been

useful for identifying and enriching DN and CD8a+ MAIT

cells from healthy blood samples, their use is not definitive

as they may miss some MAIT cells, and may falsely identify

other cells as MAIT cells. This may especially be a problem

when examining disease cohorts or young or elderly

individuals where MAIT cells are numerically low. Thus,

MR1-5-OP-RU tetramers detect all MAIT cells, including

all subsets defined by CD4 and CD8 coreceptors, and

currently provide the most accurate method of identifying

MAIT cells in cellular samples.

METHODS

Human samples

Healthy human blood buffy coats were obtained from the
Australian Red Cross after approval from the University of
Melbourne Human Research and Ethics Committee and donor
informed consent provided (1035100). Young human
peripheral blood samples (donors ranged from 5 days to
14 years of age) were obtained from the Royal Children’s

520

Phenotypic characterization of human MAIT cells NA Gherardin et al.



Hospital (RCH), Victoria, Australia with RCH Human
Research Ethics Committee Approval (Ref 24131 G).
Peripheral blood mononuclear cells were isolated by standard
density gradient (Ficoll-Paque Plus, GE Healthcare Life
Science) and analyzed fresh or cryopreserved for subsequent
analysis.

Cell surface staining

Human PBMC were stained in PBS with LIVE/DEAD Fixable
Far Red (Thermofisher Scientific) for 15 min at room
temperature. Human Fc-block (BD Biosciences) was then
added at 500 ng/test for a further 15 min at room
temperature. Cells were washed once and stained in PBS + 2%
FBS for 30 min at room temperature with anti-surface marker
mAb as listed in Supplementary table 1 and human MR1-5-
OP-RU or MR1-Ac-6-FP BV421 tetramer (streptavidin-BV421
from Biolegend). Cells were then washed twice before avidin
and biotin blocking (Dako). Cells were then stained for a
further 30 min at room temperature with human CD1d-
PBS44 BV605 tetramer (streptavidin-BV605 from BD
Horizon). Cells were washed twice and subsequently either
subjected to intracellular transcription factor staining (see
below) or fixed with 2% paraformaldehyde for 10 min at
room temperature. Cells were analyzed immediately by flow
cytometry using an LSRFortessa (BD Biosciences).

Intracellular cytokine staining

Cells were surface stained as described above with LIVE/DEAD
Fixable Far Red (Thermofisher Scientific) and anti-surface
mAb above prior to fixation and permeabilization using 2%
paraformaldehyde and 0.3% saponin (BD Biosciences). In
brief, cells were fixed using 2% paraformaldehyde for 20 min
at room temperature, washed once and then stained in 0.3%
saponin overnight at 4 degrees with anti-cytokine mAb as
listed in Supplementary table 1. Cells were then washed twice
with PBS and resuspended in PBS + 2% FBS, prior to flow
cytometric analysis using an LSRFortessa (BD Biosciences).

Intracellular transcription factor staining

Cells were stained with a viability dye and surface mAb/tetramers
as above. Cells were then permeabilized using a Fix/Perm kit
(eBiosciences, FoxP3 kit), according to manufacturer’s
instructions. In brief, cells were permeabilized for 30 min on ice,
washed twice and then stained in permwash for 45 min on ice
with anti-transcription factor mAb as listed in Supplementary
table 1. Cells were then washed twice in permwash and
resuspended in PBS + 2% FBS. Cells were analyzed immediately
by flow cytometry using an LSRFortessa (BD Biosciences).

Flow cytometry data analysis

All flow cytometric data were analyzed using Flowjo software
(Treestar). T cells were gated as CD3+ lymphocytes as
determined by FSC-A versus SSC-A after doublet exclusion

and removal of dead cells, B-cells (CD19) and monocytes
(CD14; Supplementary figure 8).

MAIT cell stimulation assays

For intracellular cytokine staining based experiments, Freeze/
thawed human PBMCs were cultured in RF10 complete media
(RPMI-1640 (Invitrogen, Life Technologies) supplemented
with 10% (v/v) FBS (JRH Biosciences), 2% (v/v) Penicillin
(100 U mL�1), Streptomycin (100 lg mL�1), Glutamax
(2 mmol L�1), sodium pyruvate (1 mmol L�1), nonessential
amino acids (0.1 mmol L�1), HEPES buffer (15 mmol L�1),
pH 7.2–7.5 (all from Invitrogen, Life Technologies) and 2-
mercaptoethanol (50 lmol L�1, Sigma)), for 7 h in the
presence of 10 ng mL�1 PMA (Sigma) and 1 lg mL�1

Ionomycin (Sigma). Brefeldin A (Sigma) was added for the
final 6 h of culture, prior to harvesting cells and performing
intracellular cytokine staining as described above.

For cytometric bead array based experiments, MAIT cells
were enriched using MR1-5-OP-RU tetramers as previously
described.14 In brief, fresh, healthy human PBMCs were stained
with anti-TRAV1-2 FITC (Biolegend) for 30 min at 4°C prior
to staining with MR1-5-OP-RU PE tetramers. Cells were then
magnetically enriched using MACS anti-PE microbeads
(Miltenyi). After enrichment, cells were surface stained as above
with LIVE/DEAD Fixable Near Infrared (Thermo-Fisher
Scientific) anti-CD4 BV421, -CD8a APC (both BD Biosciences),
CD8b PE-Cy7 (eBiosciences) -CD14 APC-Cy7 and -CD19
APC-Cy7 (both BD Pharmingen). MAIT cell subsets were then
FACS-sorted using an ARIA III (BD Biosciences; example
purities shown in Supplementary figure 3). Cells were seeded at
2 – 15 9 103 cells/well and then cultured for 24 h in 50 lL
RF10 complete media supplemented with 10 ng mL�1 PMA
(Sigma) and 1 lg mL�1 Ionomycin (Sigma). After culture,
supernatants were harvested and analyzed for cytokine levels
using cytometric bead array.

Cytometric bead array

Cytometric bead array flex sets were purchased from BD
Biosciences and experiments performed as per manufacturer’s
instructions with an exception that 1/10 the amount of beads
and detection reagents were used, and FACS buffer was used in
place of official BD wash buffer (as determined by previous in-
house titration experiments). In brief, 10 lL of sample was
incubated with 10 lL of bead reagent cocktail for 2 h at RT in
the dark. Ten lL of PE-detection reagent was then added and
incubated for a further 2 h at RT. Beads were then washed with
200 lL of FACS buffer, resuspended in 50 lL of FACS buffer
and acquired immediately on an LSRII. Data were analyzed
using Flowjo Software (Treestar) and Graphpad Prism.

Human MR1 and CD1d tetramers

Biotinylated human MR1-5-OP-RU tetramers were produced
in house (University of Melbourne, VIC, Australia) as
previously described.12 Human CD1d tetramers were produced
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in house using a mammalian expression system. The human
CD1d extracellular domain was designed with a C-terminal
BirA tag and a 6 9 His tag (amino acid sequence at the C
terminus: GSGLNDIFEAQKIEWHEHHHHHH). The human
CD1d gene as well as the human b2-microglobulin (b2m)
gene were produced (Thermofisher Scientific) and subcloned
into separate pHLsec vectors.69 Human CD1d-b2m proteins
were expressed by cotransfection of HEK293S GnTI� cells
with the plasmids pHLsec-CD1d-BirA-His6 and pHLsec-
b2m.69 Purification of CD1d–b2-microglobulin heterodimers
was achieved by immobilized nickel affinity followed by size-
exclusion chromatography. CD1d-b2m heterodimeric
monomers were enzymatically biotinylated with BirA biotin
ligase. Biotinylated monomers were loaded with a-
galactosylceramide analogue PBS4470 overnight at room
temperature at a 3:1 molar ratio of lipid:protein. Tetramers
were then prepared using streptavidin-BV605 (BD Horizon) at
a molar ratio of 1:4.

TCR-a chain deep sequencing

Healthy human PBMCs were stained with MR1 tetramer/mAb
cocktails as above and MAIT cells sorted using an ARIA III
flow cytometer (BD Biosciences). MAIT cells were defined as
viable CD14�, CD19�, TCRcd�, CD3e+, TRAV1-2+, MR1-5-
OP-RU tetramer+ lymphocytes. RNA was immediately isolated
using an RNAEasy plus kit (QIAGEN) as per manufacturer’s
instructions. cDNA was produced using VILO SS RT kit
(Thermofisher) as per manufacturer’s instructions. After
primer optimization, TCR-a cDNA was amplified by standard
polymerase chain reaction (PCR; Eppendorf) using 35 cycles
with an annealing temperature of 52°C TRAV1-2_int and
TRAC_int primers from single cell multiplex primer sets.71

Amplified DNA was then sequenced using Illumina Miseq
with Nextera XT library preparation and 2 9 250 bp cycle
(v2) sequencing chemistry as per manufacturer’s instructions.
At least 260 000 paired-end reads were obtained for each
amplicon. Read pairs were stitched using PEAR, TRAC
masking was performed using cross_match and sequence
similarity matching to TRAJ genes was performed using
BLAST+.

Transient transfection with TCR constructs

TCR constructs were produced and used to transfect HEK293t
cells as previously described.14

Statistical analysis

All graphs were produced using Graphpad Prism. For box and
whisker plots, boxes display lower quartile, median and upper
quartile. Whiskers display minimum and maximum values,
“+” refers to mean. Median value is displayed in text above
each plot. Sequence logos were produced using the Seq2logo
web server72 an unclustered Shannon format in the absence of
pseudocounts. The size of each amino acid is proportional to
its frequency. Amino acid coloring is based on side chain
chemical properties; (red, acidic [DE]; blue, basic [HKR];

black, hydrophobic [ACFILMPVW]; green, neutral
[GNQSTY]).
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