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Abstract

Background and Aims: Due to the COVID‐19 pandemic, a precise and reliable

diagnosis of this disease is critical. The use of clinical decision support systems

(CDSS) can help facilitate the diagnosis of COVID‐19. This scoping review aimed to

investigate the role of CDSS in diagnosing COVID‐19.

Methods: We searched four databases (Web of Science, PubMed, Scopus, and

Embase) using three groups of keywords related to CDSS, COVID‐19, and diagnosis.

To collect data from studies, we utilized a data extraction form that consisted of

eight fields. Three researchers selected relevant articles and extracted data using a

data collection form. To resolve any disagreements, we consulted with a fourth

researcher.

Results: A search of the databases retrieved 2199 articles, of which 68 were

included in this review after removing duplicates and irrelevant articles. The studies

used nonknowledge‐based CDSS (n = 52) and knowledge‐based CDSS (n = 16).

Convolutional Neural Networks (CNN) (n = 33) and Support Vector Machine (SVM)

(n = 8) were employed to design the CDSS in most of the studies. Accuracy (n = 43)

and sensitivity (n = 35) were the most common metrics for evaluating CDSS.

Conclusion: CDSS for COVID‐19 diagnosis have been developed mainly through

machine learning (ML) methods. The greater use of these techniques can be due to

their availability of public data sets about chest imaging. Although these studies

indicate high accuracy for CDSS based on ML, their novelty and data set biases raise

questions about replacing these systems as clinician assistants in decision‐making.

Further studies are needed to improve and compare the robustness and reliability of

nonknowledge‐based and knowledge‐based CDSS in COVID‐19 diagnosis.
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1 | INTRODUCTION

COVID‐19 is a respiratory disease developed by the SARS‐CoV‐2

virus.1 Fever, fatigue, sore throat, and dry cough are the most

common manifestations of this disease.2 Other respiratory illnesses,

such as influenza and respiratory syncytial virus, can also cause these

symptoms and contribute to the difficulty in controlling the

outbreak.3 According to the World Health Organization (WHO), as

of November 22, 2023, the coronavirus has infected 772,166,517

people worldwide and caused 6,981,263 deaths.4 This outbreak has

presented substantial challenges in delivering affordable and high‐

quality healthcare services to a growing number of patients.5

Strategies to prevent and control COVID‐19 include early diagnosis,

patient isolation, contact monitoring, quarantine, and vaccination.6

Several methods are used to diagnose COVID‐19, including

clinical symptoms, epidemiological history, real‐time polymerase

chain reaction (RT‐PCR) tests, chest computerized tomography (CT)

scans, X‐ray imaging, enzyme‐linked immunosorbent assay (ELISA),

biosensors, and point‐of‐care testing (POCT).7–12 Currently, the RT‐

PCR test for COVID‐19 confirmation is expensive, manual, and

complex.13 However, it has been shown to have high rates of false

positives or negatives, which makes it unreliable for detection.14 Also,

the RT‐PCR test for COVID‐19 confirmation is an expensive, manual,

and complex approach.13 In some healthcare settings, commercial

test kits, swabs, PCR machines, or their expertise may be less

available.13,15 Additionally, CT scans have been found to have high

rates of false negatives.14 This is why combining diagnostic methods

could improve COVID‐19 detection accuracy.

Clinical decision support systems (CDSS) are helpful methods for

healthcare providers in clinical decision‐making and the early

screening of patients.16 They integrate various information such as

characteristics of individual patients, radiological images, clinical

examination, and clinical guidelines and provide patient‐specific

recommendations or suggestions.16

CDSS may include artificial intelligence (AI) methodologies for

assisting in quick and accurate medical diagnoses.17–19 In this case,

intelligent clinical decision support systems (ICDSS) are created. The

CDSS based on AI are classified into two types: (1) the ICDSS based

on expert system (ES) and (2) the ICDSS based on machine learning

(ML).20,21

The ICDSS based on ES or knowledge‐based CDSS aim to

automate diagnosing COVID‐19, typically performed by medical

experts.20,21 These systems primarily consist of a knowledge base

that contains medical expertise, an inference engine that uses the

knowledge base to generate a diagnosis for the patient, and a way to

communicate to the user (input and output).20,21 The ICDSS based on

ML or nonknowledge‐based CDSS learn to solve human problems by

simulating human learning on a computer.20,22 ML is the ability of

machines to find patterns and learn hidden knowledge from large

data sets using analytical techniques.20,22,23 The goal is to teach

automated techniques to classify and cluster data, learn behavior,

generate patterns, and predict future actions using decision support

systems.20,22,23 Generally, ML can be divided into supervised and

unsupervised learning.20,22,23 The supervised methods are commonly

used for disease prediction and include regression, Support Vector

Machine (SVM), Random Forest (RF), Naive Bayes (NB), K‐Nearest

Neighbor (KNN), Decision Tree (DT), and Artificial Neural Network

(ANN).20,22,23 A type of ML is deep learning (DL), which uses

multiple‐layer artificial neural networks.20,22,23 One of the most

widely used subsets of DL is the Convolutional Neural Network

(CNN), which allows the system to learn data representation.20,22,23

Previous review studies have examined the impact of AI or ML

models in screening, diagnostics, and prediction of COVID‐19,24–28

ML models for diagnosing infectious diseases,23 CDSS based on AI

for early recognition of respiratory infections,29 and CNN for the

diagnosis and prognosis of COVID‐19.30 Moreover, there is little

understanding of the corresponding techniques that explain the use

of different types of CDSS to assist in diagnosing COVID‐19. To our

knowledge, no comprehensive review exists on the methods for

developing CDSS for COVID‐19 diagnosis. Given the importance of

accurate COVID‐19 diagnosis, this scoping review aimed to (1)

review the types of CDSS to assist in COVID‐19 diagnosis and (2)

investigate metrics for evaluating the performance accuracy of CDSS

in the diagnosis process.

2 | METHODS

2.1 | Search strategy

The current study was a scoping review study reported based on the

Preferred Reporting Items for Systematic Reviews and Meta‐

Analyses guideline extension for scoping reviews (PRISMA‐ScR).31

We conducted searches in the Scopus, PubMed, Web of Science,

and Embase databases without time limitation up to September

2023 to identify relevant articles. The search strategy involved

three sets of keywords. Synonymous words within each set were

combined using the OR operator. Subsequently, the three sets of

keywords were combined using the AND operator. The first set of

keywords pertained to COVID‐19 (Group A), the second set was

related to CDSS (Group B), and the third set was implied to diagnose

(Group C) (Appendix 1). Several synonyms and spelling variations for

each search term were used to capture as many articles as

possible.32,33

2.2 | Eligibility criteria

In this study, articles were included that (1) published in English, (2)

were about any CDSS, (3) reported on the detection or diagnosis of

COVID‐19, (4) used various types of CDSS to assist in the diagnosis

of COVID‐19. Books, book chapters, letters to the editors, and

conference article abstracts were excluded, as they may be less

reliable without undergoing rigorous peer review. Also, we excluded

articles that used only AI or ML to diagnose COVID‐19 and did not

provide a role for CDSS to assist in diagnosing COVID‐19.
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2.3 | Study selection and data extraction

Abstracts of articles retrieved from four scientific databases were

entered into EndNote X8.0. Duplicate articles were excluded, and the

remaining articles were independently screened by three researchers

(A. R. A., F. S., and A. T. A.) based on the title and abstract to select

relevant studies. The lists of independently selected articles were

reviewed jointly by A. R. A., F. S., and A. T. A. After final approval, the

full texts were independently reviewed by three researchers to

extract information using a data extraction form. Three medical

informatics specialists confirmed the validity of this form. The form

includes fields such as authors' names, publication year, study

location, sample size or data sources, types of CDSS, computational

methods, performance measures, and main results. All findings in the

data extraction form were re‐examined and validated by A. R. A., F.

S., and A. T. A. The fourth researcher (K. B.) consulted and resolved

disagreements in each stage. The extracted data were analyzed in

Microsoft Excel 2016 and presented in terms of percentage,

frequency, and graphs.

3 | RESULTS

3.1 | Study selection

This study identified a total of 2199 articles from four databases, of

which 701 were repeated studies, and 1263 were unrelated upon

screening based on titles and abstracts. After careful examination of

1498 remaining articles based on inclusion and exclusion criteria, 235

studies were selected for full‐text reading. For several reasons, 167

articles were excluded from the final full‐text review. These reasons

included narrative reviews, brief communications, letters, protocols,

and reviews. Some studies only used ML to diagnose COVID‐19,

while others required a better understanding of how CDSS can assist

in diagnosing COVID‐19. However, some studies utilized CDSS for

other purposes, such as monitoring, resource allocation, risk and

severity assessment, and reviewing prognosis and outcomes in

COVID‐19 patients. These studies also recommended the use of

CDSS in future research. Finally, 68 articles met all the inclusion

criteria.5,17,34–99 The flowchart of the selection process is shown in

Figure 1. The authors did not assess study quality due to the review

type, which was a scoping review.31

3.2 | Characteristics of the included articles

The most of articles were published in 2021 (n = 23) (Figure 2). The

first authors of most studies were affiliated in India (n = 12), Turkey

(n = 7), the United States (n = 5), and Saudi Arabia (n = 5) (Figure 3).

Chest X‐ray images and computed tomography (CT) scans of

COVID‐19 patients and healthy individuals were used as data

sources in most studies (n = 43) (Appendix 2). Details of the selected

studies are shown in Appendix 2.

3.3 | Types of CDSS to assist in diagnosing
COVID‐19

Types of CDSS to assist in diagnosing COVID‐19 are shown in Figure 4.

Most of the studies used ICDSS based on ML (nonknowledge‐

based CDSS) (n=52 [76.5%]).34–85 In these studies, the most

common methods for designing CDSS were CNN (n=33),38,40–42,

45–47,49–52,54,56–69,71,72,78,82–85 SVM (n=8),35,36,39,43,44,54,56,57 RF

(n=7),34,35,37,39,42,44,55 and KNN (n=7)36,37,39,42,43,55,56 (Table 1 and

Appendix 2). Some studies used a combination of MLmethods to develop

CDSS (n=14)34–37,39,42–44,53,55–57,70,84 (Appendix 2). Rule sets

(n=8),5,17,88,89,93,94,96,97 fuzzy mathematical models (n = 5),86,90–92,95 and

ontology (n=3)87,98,99 were used for developing ICDSS based on ES

(knowledge‐based CDSS), respectively (Appendix 2).

3.4 | Evaluation methods of CDSS

The most common metrics for evaluating ICDSS based on ML are

shown in Table 2. Most studies used a combination of performance

metrics to evaluate CDSS (n = 40) (Appendix 2). In most of these studies,

accuracy (n = 43),35–40,42–47,49–69,71,72,76–78,80–83,85 sensitivity (recall)

(n = 35)35–37,39,41–44,46,47,49–54,56,57,61,63–69,71,72,76,78,81–85 and F1‐score

(n = 26)34–36,39,41–43,46,47,50,52–54,56,57,60,61,63,64,66,68,69,81,82,84,85 were

used (Table 2). Other metrics for evaluating ICDSS based on ML were

the Matthews correlation coefficient (MCC),52,56,58 receiver operating

characteristic (ROC) curve,34,36,70 and so on (Appendix 2).

The most common metrics for evaluating ICDSS based on

ES were diagnosis rate (n = 3)17,92,93 and accuracy (n = 3)87,90,95

(Appendix 2). Other metrics (such as ease of use, precision, recall, and

time) for evaluating these systems are shown in Appendix 2.

4 | DISCUSSION

4.1 | Principal findings

This scoping review examined the assistance of CDSS in COVID‐19

diagnosis. The most frequently used method for this purpose was the

ICDSS based on ML (nonknowledge‐based CDSS), followed by ICDSS

based on ES (knowledge‐based CDSS). Most studies have indicated

that using CDSS have positively impacted the accurate diagnosis of

COVID‐19.5,17,34–62,64–84,86–90,92–99

4.2 | Nonknowledge‐based CDSS

ML was the most frequently used method to develop CDSS for

COVID‐19 diagnosis. The most common ML methods in the reviewed

studies were CNN.34–85 In line with this result, other review studies

also indicated CNN to be the most common method to develop a

system for COVID‐19 diagnosis.23,25,27,28,30,100 A CNN is a type of

DL algorithm used for processing medical images, particularly for
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identifying specific features in chest radiographs of COVID‐19

patients.30 CNN is more valuable than other methods for developing

CDSS due to its excellent performance accuracy and much lower

preprocessing.25,30 For example, in the reviewed studies, CDSS based

on CNN achieved a performance accuracy ranging from 75% to

99.62%.38,40–42,45–47,49–52,54,56–69,71,72,78,82–85 Also, these studies

indicated that CDSS based on CNN could be effective in detecting

COVID‐19, assisting domain specialists, physicians, and radiologists

in the decision‐making process, and enhancing radiologists' working

productivity25,30,42,66,87 It is challenging to create a CDSS using CNN

due to the scarcity of big data and low quality of data sources.25

Developing these data sets in medicine is costly and necessitates

specialized labor. In addition, ethical and privacy concerns must be

assessed.30 Therefore, these findings do not mean that CDSS are a

production‐ready solution because the diagnostic power of these

systems relies on chest X‐ray images and CT scans of COVID‐19

patients.50 It is important to acknowledge the bias that is introduced

in these studies because someone who has a chest X‐ray or a CT scan

is more likely to have COVID‐19. Many of the symptoms of

COVID‐19 are nonspecific and thus difficult to differentiate from

overlapping symptoms of other diseases. Future research can study

F IGURE 1 PRISMA‐ScR flowchart showing the search process. CDSS, clinical decision support systems; PRISMA‐ScR, Preferred Reporting
Items for Systematic Reviews and Meta‐Analyses guideline extension for scoping reviews; WOS, Web of Sciences.

F IGURE 2 Distribution of the studies in terms of publication year.
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some of the more unique presenting symptoms of COVID‐19

(anosmia, thromboses, etc.) in light of how CDSS could be used to

assist in diagnosing these cases.

4.3 | Knowledge‐based CDSS

In the present scoping review, the results of 16 studies identified a

positive impact on a diagnosis of COVID‐19 with the assistance of

CDSS based on ES.5,17,86–99 In the reviewed studies, rule sets were

the most common methods in developing a knowledge base of

CDSS.5,17,88,89,93,94,96,97 Rule‐based systems acquire contextual

knowledge from extracted data stored and manipulated in other

approaches.101 The reviewed studies extracted data from various

sources, such as observed symptoms, specific medical measurements,

pre‐existing medical conditions or any hospitalization history, recent

PCR test results, clinical guidelines, websites (e.g., WHO), and

knowledge of experts to develop rule sets.5,17,86–99 Therefore,

knowledge‐based CDSS in these studies can provide a comprehen-

sive view of the patient's health information. This feature enables

health practitioners to access treatment recommendations and risk

classification, recommend test lists, quickly track test results and

symptoms, and access clinical guidelines in the COVID‐19 pandemic.5

Generally, these types of CDSS require knowledge bases and input

variables (e.g., fever, cough, cell blood count, respiratory rate, CT

chest/RT‐PCR, family history, and age). Hak et al. conducted a

literature review and found that many CDSS are inadequate due to a

lack of standardization and structure in their knowledge base.102

Therefore, understanding the different ways of representing, main-

taining, and updating knowledge in rule‐based systems is important.

The reviewed studies used different metrics, including diagnostic

rate, accuracy, ease of use, and time, to evaluate the performance of

knowledge‐based CDSS.5,17,86–99 The reason for this could be the

widespread COVID‐19 pandemic, leading to a lack of time to

evaluate these systems' performance properly. It is essential for

researchers and software developers to thoroughly assess the

performance of these systems before implementing them in real

clinical settings for COVID‐19 diagnosis.

In summary, the present scoping review studied the types of

CDDS that assist in the COVID‐19 diagnosis. Previous studies used

nonknowledge‐based CDSS and knowledge‐based CDSS for this

purpose. The sample size in most studies was the clinical character-

istics (e.g., radiological images) of public data sets of COVID‐19

patients and healthy individuals. The performance and accuracy of

CDSS may depend on extracted information from data sets to predict

the infection of COVID‐19. These assumptions about performance

metrics may change with the emergence and availability of new data.

Therefore, these systems should be used by healthcare providers and

F IGURE 3 Number of publications by country based on authors' countries.

F IGURE 4 Types of CDSS in the selected studies. CDSS, clinical
decision support systems; ES, expert systems; ICDSS, intelligent
clinical decision support systems; ML, machine learning.
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domain experts to validate and evaluate their clinical usefulness in

real workflow. Also, focusing on the early stages of COVID‐19

detection is crucial, as most methods effectively identify the disease

only in advanced stages. Future studies can assess the impact of

CDSS to assist in predicting and detecting the COVID‐19 disease in

the initial stage. Finally, stakeholders (e.g., researchers, healthcare

professionals, and health policymakers) of CDSS should first consider

the type of design methods for developing a CDSS. The type of

design method assists in the accuracy and precision of the diagnoses

in CDSS. These issues can also be considered in future studies.

4.4 | Limitations

The present study has two limitations. First, the study's exclusion of

non‐English articles may cause language bias. However, we employed

a comprehensive search strategy. By using this method, the likelihood

of missing relevant articles may have been reduced. Our search

strategy was run in January 2021 and updated in September 2023.

The number of included studies may be changed after a period of

time because new studies will be conducted on various CDSS to

assist in diagnosing COVID‐19 at different stages of severity.

Second, we searched four scientific databases: Scopus, PubMed,

Embase, and Web of Science. While searching additional databases

may uncover new articles, these four databases will likely retrieve the

most relevant articles.

5 | CONCLUSION

This scoping review studied the assistance and impact of CDSS on

the detection and diagnosis of COVID‐19. The results showed that

COVID‐19 can be diagnosed by assisting nonknowledge‐based CDSS

and knowledge‐based CDSS. These studies used various techniques

such as ML methods (e.g., CNN, SVM, RF) and ES methods (e.g., rule

sets, fuzzy mathematical models, ontologies) to design CDSS. ML

methods were the most common techniques in developing CDSS for

COVID‐19 diagnosis. The greater use of these techniques can be due

TABLE 1 The computational methods of ICDSS based on ML in
the selected studies.

Computational methods in CDSS Frequency in the studies

AdaBoost 2

ANN 1

Association rules 1

BNs 2

CART 1

Catboost 1

CNN 33

DNN 4

DT 7

GB 1

HGB 1

KNN 7

LDA 1

Lightgbm 1

LR 5

MLP 2

NB 5

PNN 1

QLDA 1

RF 7

RFC 1

SVC 1

SVM 8

XGB 1

XGBboost 1

XGBC 1

XGBoost 2

Abbreviations: AdaBoost, Adaptive Boosting; ANN, Artificial Neural

Network; BNs, Bayesian Networks; CART, Classification and Regression
Tree; CDSS, clinical decision support systems; CNN, Convolutional Neural
Networks; DNN, Deep Neural Networks; DT, DecisionTree; GB, Gradient
Boosting; HGB, HistGradient Boosting; ICDSS, intelligent clinical decision
support; KNN, K‐Nearest Neighbors; LDA, Linear Discriminant Analysis;

LR, Logistic Regression; ML, machine learning; NB, naive Bayes; PNN,
Probabilistic Neural Network; QLDA, Quadratic Linear Discriminant
Analysis; RF, Random Forest; SVC, Support Vector Classification; SVM,
Support Vector Machine; XGBC, XGBoost classification; XGBoost,
eXtreme Gradient Boosting.

TABLE 2 The most common metrics for evaluating intelligent
clinical decision support based on machine learning in the selected
studies.

Evaluation criteria Description Frequency

Accuracy The overall effectiveness of a

classifier

43

Sensitivity (recall) Effectiveness of a classifier to
identify positive labels

35

F1‐score Relations between data positive
labels and those given by a
classifier

26

Precision Class agreement of the data labels
with the positive labels given
by the classifier

20

Specificity How effectively does a classifier

identify negative labels

20

Area under the

curve (AUC)

Classifier's ability to avoid false

classification

12
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to the availability of public data sets about chest X‐ray images and

CT‐scan scans of COVID‐19 patients. Novelty and data set biases

raise questions about the performance accuracy of these systems.

Most models still need to be deployed enough to show their real‐

world functionality. However, they can help combat the pandemic.

Future studies can evaluate the usefulness and performance accuracy

of CDSS for COVID‐19 diagnosis in different healthcare environ-

ments from the perspective of healthcare providers. Also, future

studies can examine the impact of CDSS in other care cycle stages of

COVID‐19, such as prevention, screening, surveillance, treatment,

and rehabilitation, and compare the accuracy, robustness, and

reliability of different methods in developing CDSS. This paper

provides insights into how CDSS can be used to detect and mitigate

the COVID‐19 pandemic. It will be helpful for researchers, healthcare

providers, government officials, and policymakers.
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