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Mitochondrial dysfunction is the most fundamental mechanism of cell damage in cerebral hypoxia-ischemia and reperfusion.
Mitochondrial respiratory chain (MRC) is increasingly recognized as a source for reactive oxygen species (ROS) in the postischemic
tissue. Potentially, ROS originating in MRC can contribute to the reperfusion-driven oxidative stress, promoting mitochondrial
membrane permeabilization. The loss of mitochondrial membranes integrity during reperfusion is considered as the major
mechanism of secondary energy failure. This paper focuses on current data that support a pathogenic role of ROS originating
from mitochondrial respiratory chain in the promotion of secondary energy failure and proposes potential therapeutic strategy
against reperfusion-driven oxidative stress following hypoxia-ischemia-reperfusion injury of the developing brain.

1. Introduction

Perinatal hypoxic-ischemic (HI) brain injury is one of the
most common causes of severe neurological handicap in
children. Estimated life-time costs to support children with
cerebral palsy, a common outcome of HI brain injury
in neonates, reached 11.5 billion dollars in 2003 [1].
Unfortunately, our understanding the mechanisms of the
HI brain injury is not deep enough for the development
of mechanism-targeted therapeutic interventions in this
disease. Even therapeutic mechanisms of post-HI cerebral
hypothermia (the only clinically proven neuroprotective
strategy) are still not well defined which precludes an optimal
use of this potentially powerful strategy.

Physiologically, HI brain injury could be defined as an
acute oxygen and nutrients deprivation to the brain caused
by a collapse of cerebral circulation. Hypoxia-ischemia
results in severe cellular bioenergetics failure, and if cerebral
circulation is not restored, then the brain death is unpre-
ventable. However, if the cerebral circulation is restored for
example, as a result of successful resuscitation, then cerebral

reperfusion ensures with a full or partial brain recovery.
Unfortunately, the same reperfusion can also contribute to
the propagation of brain injury initiated by the HI insult.
This implies that HI brain injury as a disease, consists
of two fundamental pathophysiological events: hypoxia-
ischemia and reperfusion. During hypoxia-ischemia and
reperfusion mitochondrial dysfunction plays a fundamental
role in brain injury. It is now recognized that not only
mitochondrial failure to generate ATP during ischemia,
but the generation of oxidative radicals and the release
of proapoptotic proteins during reperfusion contribute to
the cellular damage. The leading molecular mechanisms
responsible for the evolution of cell damage and repair
during reperfusion change at different timepoints following
HI insult (Figure 1). A critical upstream mechanisms to
consider in the management of HI brain injury are those
linked to an oxidative stress [2]. Therefore, already at the
initiation of resuscitation/reperfusion an attempt should be
made to limit the reoxygenation-driven burst in generation
of reactive oxygen species (ROS) in order to alleviate the
severity of oxidative damage to the HI brain.
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Figure 1: The evolution and major mechanisms of hypoxic-
ischemic brain injury. Arrows indicate HI insult and resuscitation
(reperfusion), two fundamental events that cause cerebral damage.
Different mechanisms may take a lead in the evolution of brain
injury: initiated by the bioenergetics mitochondrial dysfunction,
cellular injury is driven by excitotoxicity and oxidative stress,
followed by the neuroinflammation. The paper is focused on the
proximal to the index event mechanism, an oxidative stress and the
role of mitochondrial generation of ROS (see text), modified from
[2].

2. HI and Resuscitation

It is known that reintroduction of the oxygen to ischemic
tissue potentiates oxidative injury. An initial attempt to
limit formation of ROS could be made by judicious use
of oxygen during resuscitation. Not too long ago, in 2000
the use of 100% oxygen was indisputably recommended
for the initiation of resuscitation in all depressed infants
[3]. Now neonatologists have tempered their enthusiasm for
the use of pure oxygen in neonatal resuscitation. Several
clinical trials showed that in the majority of depressed infants
the goal of resuscitation, an immediate survival, could be
achieved with the use of room air, as effectively as with
the use of 100% oxygen [4–6]. Oxygen is indispensable
component of ROS. Therefore, regardless of the primary
mechanisms of ROS generation during reperfusion, a switch
from a routine use of 100% oxygen to the room air at
the initiation of neonatal resuscitation, potentially, should
limit the severity of an oxidative stress. Indeed, Vento et al.
reported a significantly lower level of circulating markers
of oxidative stress in neonates resuscitated with the room
air (RA) compared to infants resuscitated with the 100%
oxygen [7]. However, it remains to be determined to what
extent the use of RA in the resuscitation of infants with
HI brain injury attenuates an oxidative damage to the
brain. Numerous animal studies clearly demonstrated that
hyperoxic re-oxygenation maintained for 30–60 minutes of
initial reperfusion was detrimental for neurological outcome
in asphyxiated pigs and rodents [8–10]. The use of the
100% oxygen in these animals was strongly associated with
exacerbation of an oxidative stress in the brain [8]. Of
note, however, the hyperoxic resuscitation in these studies
was used for 30–60 minutes. At these time-points of
reperfusion a full restoration of systemic circulation was
already achieved and this resulted in extreme hyperoxemia.
Because the primary goal of resuscitation is the return of

spontaneous circulation (ROSC), experiments in which the
hyperoxic resuscitation is applied beyond the time-point
of the ROSC have limited translational importance for the
resuscitation science. However, the references cited above do
provide an important translational message for the post-
resuscitation medical care: All efforts should be made to
avoid hyperoxemia in reperfusion.

Although, normoxic resuscitation has been shown to be
effective in the majority of infants, it is still undetermined
whether the use of RA in the resuscitation of severely (a
complete circulatory arrest) asphyxiated infants is as effective
as the use of 100% oxygen in achieving ROSC. After a
prolonged (25 minutes) cardiopulmonary arrest in mature
pigs, the resuscitation with the use of positive pressure
ventilation significantly improved the rate of sustained
ROSC and cardiac output only if the resuscitation was
supplemented with hyperbaric (∼400% O2) re-oxygenation
[11]. In contrast, following a brief (one minute) cardiac
arrest a cardio-pulmonary resuscitation with the use of RA or
100% O2 resulted in similar rates of ROSC in neonatal pigs
[12, 13]. These data suggest that the duration of circulatory
arrest may determine whether positive pressure ventilation
needs supplementation with 100% O2 to enhance the rate of
ROSC. It is critical to understand that no attempts should be
made to attenuate a reperfusion-driven oxidative stress at the
expense of the efficacy of resuscitation.

Overall, current data suggest that the use of room air
in resuscitation reduces the severity of oxidative stress in
the majority of depressed infants at risk for HI brain
injury. The simplicity of this approach (restriction of oxygen
availability for the formation of ROS), however, underscores
our incomplete understanding the mechanisms initiating an
oxidative injury to the HI brain. Interestingly, Matsiukevich
et al. showed that in neonatal mice subjected to a lethal
HI insult evidenced by a complete circulatory collapse,
hyperoxic resuscitation limited to the time (2 minutes)
needed to achieve a sustained ROSC was not associated with
exacerbation of reperfusion-driven acceleration in the rate
of ROS emission from isolated brain mitochondria [14].
However, it is yet to be clarified whether ROS originating
from mitochondria at the onset and during reperfusion cause
an oxidative injury to the HI brain. To date, it is still unclear
what are sources of pathogenic oxidative radicals in the
HI brain, how to enhance antioxidative mechanisms and
what are those mechanisms of injury which are initiated or
exacerbated by the ROS.

3. Potential Sources of Reactive Oxygen Species
in HI Injury to the Developing Brain

The evolution of ischemic brain injury following restora-
tion of oxygen and nutrient delivery is a paradoxical
biological phenomenon. Although, it is clear that without
reperfusion/reoxygenation an ischemic tissue does not sur-
vive, maladaptive metabolic changes induced by ischemia
predispose cell to dysfunction and death upon reperfu-
sion/reoxygenation. The central role in this phenomenon
was assigned to ROS, which can be formed only in the
presence of O2. Therefore, an oxidative damage occurs
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mostly upon reintroduction of O2 to the ischemic tissue. In
the immature brain antioxidant system is underdeveloped
which limits inactivation of some ROS and in particular,
hydrogen peroxide (reviewed in [2]). The latter is perhaps
the most important tissue-damaging ROS species due to its
relative stability and the ability to cross lipid membranes.
For example, upregulation of Cu/Zn superoxide dismutase
(enzyme which converts superoxide into H2O2) increased,
rather than decreased the extent of HI brain injury in neona-
tal rats [15]. This was associated with elevated level of H2O2

in the brain. In contrast, transgenic mice overexpressing
glutathione peroxidase (enzyme which detoxifies H2O2 into
H2O) were markedly protected against HI insult [16]. What
is the origin of this H2O2? What are the major sources of
oxidative radicals responsible for an oxidative brain damage
in HI? In an elegant study, Abramov and coauthors have
identified three distinct ROS generating systems during sim-
ulated HI insult (oxygen-glucose deprivation (OGD)) and
reperfusion in cultured neurons mitochondrial respiratory
chain (MRC), xanthine oxidase and NADPH oxidase [17].
MRC responds to OGD with a burst of ROS emission,
which declined by the end of HI insult secondary to a loss
of mitochondrial membrane potential. At the end of HI
insult a second elevation in cellular ROS generation was
attributable to the activity of xanthine oxidase. A third peak
in ROS production was due to activity of NADPH oxidase
during reperfusion. Inhibition of either NADPH oxidase or
xanthine oxidase resulted in a significant neuroprotection
[17]. In immature animals and humans with HI brain
injury, elevated level of hypoxanthine was proposed as the
evidence for a pathogenic role of xanthine oxidase [18, 19].
However, an inhibition of xanthine oxidase with oxypurinol
or allopurinol failed to reduce lipid peroxidation, and did
not protect the brain in a rat model of HI injury [20] or
in human neonates with perinatal HI insult [21]. Genetic
or/and pharmacological inhibition of NADPH oxidase also
did not exert neuroprotection in different models of perinatal
HI brain injury [22]. Taken together these data challenge a
pathogenic contribution of NADPH oxidase or xanthine oxi-
dase to an oxidative brain damage following HI in neonates.
Interestingly, Loor et al. using a model simulating HI
reperfusion injury in cultured cardiomyocytes demonstrated
that genetic overexpression of only intramitochondrial ROS-
scavenging enzymes, Mn-superoxide dismutase or phos-
pholipid hydroperoxide glutathione peroxidase protected
cells against reperfusion-induced death [23]. In contrast,
overexpression of Cu-Zn superoxide dismutase or catalase
did not result in the protection [23].

Mitochondria are known as a major source for ROS pro-
duction in the health and diseases, including brain ischemia-
reperfusion injury (reviewed in [24]). In mature animal
models of ischemia-reperfusion injury to the brain and
heart, mitochondria have been increasingly recognized as an
important source for the reperfusion-driven acceleration in
ROS release [24–27]. However, rapidly emerging evidence
supporting a deleterious role of ROS originating in mito-
chondria during reperfusion are partially counterbalanced
by the reports suggesting a prosurvival signaling mediated
by mitochondrial ROS in the heart preconditioning ([28],

reviewed in [29]) and in postischemic reperfusion [30]. In
the developing brain potential deleterious or prosurvival
effects of mitochondrial ROS in HI reperfusion were not
studied. In the following part of this paper we discuss the
experimental data obtained in the mature animal models
of the brain and heart ischemia-reperfusion injury which
support the primary role of mitochondrial ROS in oxidative
damage.

4. Mitochondrial ROS and HI Reperfusion
Oxidative Stress

In mature animals several studies detected a reperfusion-
driven acceleration in ROS generation from mitochondria
associated with oxidative damage to the postischemic heart
[25, 26] and brain [27]. A single study showed that in neona-
tal mice with genetically ablated C1q component of the clas-
sical complement activation pathway, the neuroprotection
and attenuation of oxidative HI brain injury were associated
with the ability of C1q−/− brain mitochondria to release
significantly less ROS in response to HI reperfusion, rather
then with altered activation of the terminal complement
complex [31]. A pathogenic contribution of ROS originating
from mitochondria is supported by the data demonstrating
that extrinsic or genetic enhancement of mitochondria-
targeted ROS scavengers reduces the extent of injury or/and
oxidative stress in animal models of ischemia-reperfusion
in several organs ([32–34], reviewed in [35]). Furthermore,
pharmacological inhibition of ROS generation in the mito-
chondrial respiratory chain (MRC) limits the extent of
ischemia-reperfusion damage and the expression of markers
of oxidative injury [26, 36, 37]. These data highlight MRC
as a potential target for an antioxidative therapeutic strategy
against HI brain injury. In the MRC, complex I and complex
III are two major sites for ROS generation during reperfusion
[32, 38]. An inhibitory effect of ischemia on complex I has
been suggested as a cause for an accelerated generation of
ROS in MRC in hearts [26]. However, interpreting the data
on postischemic mitochondrial ROS production might be
difficult and requires an appropriate experience. The data
on mitochondrial function in ischemia-reperfusion mostly
were obtained in isolated mitochondria in vitro, when results
depended on the choice of experimental conditions. For
example, in mitochondria isolated from different organs,
including neonatal mouse brain, the response to inhibition
of complex I is either increase or dramatic decrease in
ROS emission rates, depending upon a substrate used to
donate electrons to MRC. NAD-linked substrates such as
malate, glutamate, pyruvate, and so forth, invariably support
an elevation in mitochondrial ROS emission following an
inhibition of complex I with rotenone (Figure 2(a)). In
contrast, the use of FAD-linked substrates such as for exam-
ple, succinate results in robust decrease in mitochondrial
ROS emission following an inhibition of complex I with
rotenone (Figure 2(a)). These differences in ROS generation
by MRC in response to the same complex I inhibitor
are well understood and explained by the differences in
the electron transport flows, supported by NAD- or FAD-
linked substrates (reviewed in [39]). NAD-linked substrates
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Figure 2: (a) H2O2 emission rate from brain mitochondria isolated from p10 naı̈ve mouse and supported either with succinate (FAD-linked
substrate) or malate-glutamate (NAD-linked substrates). Time-points when mitochondria (mito, 0.05 mg/mL) or rotenone (1 μM) were
added are indicated. Cerebral nonsynaptic mitochondria were isolated and mitochondrial H2O2 fluorescence was measured using Amplex-
ultra-red and horse radish peroxidase assay as described in [31]. (b–e), a schematic mechanism for ROS generation in MRC fueled with
NAD-linked substrate, before (b) and after inhibition of complex I with rotenone (c), or FAD-linked substrate, before (d) and after rotenone
supplementation (e). RET: reverse electron trasport, FET: forward electron transport.

support only forward electron transport flow (FET), from
complex I—to membrane-dissolved ubiquinone—to Com-
plex III—to cytochrome c and finally to oxygen through
complex IV (cytochrome c oxidase). During this FET,
low levels of superoxide can be generated at unspecified
MRC sites (likely at complex I and complex III), because
some electrons accidentally escape from MRC electron
carriers onto O2 (Figure 2(b)). Rotenone, pyridaben, thio-
barbiturates and other complex I inhibitors interrupt FET
between the complex I electron carriers and membrane-
dissolved ubiquinone. This interruption of FET increases
ROS emission from complex I (Figure 2(c)) secondary to
over-reduction of electron carriers (flavin and/or FeS-center

N2 and complex I-bound ubiquinone) within this complex
(reviewed in [40]). It also stimulates ROS emission from
other sources located in the mitochondrial matrix such as
for example, dihydrolipoamide dehydrogenase [41, 42], a
subcomponent of pyruvate dehydrogenase and ketoglutarate
dehydrogenase. This stimulation in ROS production is
caused by a decrease in mitochondrial NAD/NADH ratio
(as a result of inability of compelx I to oxidize NADH). On
the other hand, in the mitochondria fueled with FAD-linked
substrates (e.g., succinate) the main electrons flow bypasses
Complex I and proceeds from the succinate dehydrogenase
(Complex II) to membrane-dissolved ubiquinone, Complex
III, cytochrome c, and cytochrome c oxidase. Under specific
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conditions, such as moderately elevated membrane potential
and abundance of FAD-linked substrate, electron flux can—
and does—proceed back from complex II, ubiquinone to
complex I and further to the matrix-located NAD. This is
called reverse electron transport (RET) flow (Figure 2(d)). It
was found that RET is associated with very high rates of ROS
emission, about 100 folds greater than that obtained with
NAD-linked substrates (reviewed in [39]). The major sites
of ROS emission in mitochondria fueled with FAD-linked
substrate are thought to be complex I and matrix-located
enzymes pyruvate dehydrogenase and alpha-ketoglutarate
dehydrogenase. Inhibition of complex I with rotenone
or similar inhibitors interrupts RET flow and, therefore,
substantially diminishes the rate of ROS emission (5–8 folds)
(Figures 2(a) and 2(d)) [39]. The RET flow represents the
major mechanism for ROS production by mitochondria
fueled with succinate, especially in the brain and the heart
[43]. It should be noted, that both FET and RET generate
proton-motive force and support oxidative phosphorylation
of ADP; with RET being about 30% less efficient in terms of
energy production but generating tremendously more ROS.

In vivo, under non-pathological conditions the pri-
mary electron donor for MRC in brain mitochondria are
NAD-linked substrates for example, pyruvate generated in
glycolysis. During ischemia-reperfusion, however, substrate
availability significantly differs from that in normal cells.
There are several lines of evidence to consider that at the
onset of reperfusion postischemic mitochondria actively
metabolize succinate. Complex I is the most sensitive among
all five complexes to the reduction of the cerebral blood
flow, and at the end of ischemia the activity of this complex
is significantly reduced [44, 45]. In the immature brain HI
resulted in slightly (9% on malate-glutamate) to moderately
(21% on pyruvate-malate) greater inhibition of mitochon-
drial respiration tested on NAD-linked substrates compared
to that tested on the FAD-oriented substrate, succinate [46].
In mature rats, forebrain ischemia and six hours of reper-
fusion resulted in a significant inhibition of mitochondrial
respiration tested on NAD-linked substrates. However, no
significant differences from the control values were detected
when the same mitochondria respired on succinate [47]. This
suggests, that after brain ischemia the activity of complex
II— is better preserved compared to complex I. This favors a
succinate-supported respiration upon reintroduction of O2.
Indeed, in the rat brain, ischemia resulted in a profound
(8–10 fold) depletion of all NAD-linked substrates: pyru-
vate, citrate, alpha-ketoglutarate, oxaloacetate, fumarate, and
malate. In contrast, the concentration of the succinate
increased by ∼300% [48] and remained elevated at 15
minutes of reperfusion [49]. Following an acute systemic
hypoxemia an oxidation of succinate and glutamate by
isolated rat brain mitochondria was significantly (>60%)
increased [50, 51]. Furthermore, it is known that succinate
oxidation inhibits an oxidation of pyruvate and other NAD-
linked respiratory substrates, an event associated with over-
reduction of mitochondrial pyridine nucleotides [52]. In the
heart, the level of succinate also is markedly elevated during
ischemia followed by normalization within 30–60 minutes of
reperfusion [53, 54], the time-point associated with near-full

restoration of mitochondrial metabolic activity in neonatal
HI reperfusion [31]. Thus, if at the initial stage of reperfusion
mitochondria actively utilize succinate, then interruption of
RET flow by complex I inhibiting agents should reduce ROS
generation without significant changing ATP-production
rate. If the RET flow-dependent production of ROS causes an
oxidative damage following HI, then inhibition of complex I
recovery upon reperfusion should reduce an oxidative injury.
Indeed, in rats with global cerebral ischemia an inhibition of
complex I by rotenone or haloperidol significantly reduced
tissue accumulation of hydroxyl radicals, resulting in near-
complete abrogation of the reperfusion-driven surge in
lipid peroxidation products [27]. Ambrosio et al. reported
that inhibition of complex I with the thio-barbiturate
amytal resulted in significant reduction in the level of free
radicals associated with attenuation of lipid peroxidation in
isolated rabbit hearts subjected to ischemia-reperfusion [25].
Our data demonstrated that inhibition of complex I with
pyridaben significantly reduced cerebral infarct volume and
signs of oxidative injury to the brain tissue and mitochondria
following HI in neonatal mice [55]. In the model of cardiac
arrest and reperfusion, complex I was proposed as a primary
generator of ROS [56]. Taken together, these data suggest that
ROS generated in complex I participate in oxidative damage
to the postischemic brain and heart, making this complex a
reasonable therapeutic target against oxidative stress in the
early stages of reperfusion.

In addition to the complex I, complex III has been
recognized as an important source for emission of ROS
in ischemia and reperfusion [30, 57]. However, experi-
ments with isolated nerve terminals revealed that only very
high level of complex III inhibition (70–80%) resulted in
detectable elevation in generation of H2O2 [58]. Given, that
after brain ischemia mitochondrial respiration on succinate
was shown to be markedly better preserved compared to that
tested on complex I linked substrates [47], the rationale to
consider complex III as a therapeutic target in reperfusion
is weak. Indeed, in mitochondria respiring on succinate
the RET flow (complex I) contribute the most to ROS
production. Finally, it is unrealistic to inhibit complex III
without robust reduction in production of ATP which could
be detrimental for the tissue recovery.

5. The Pathogenic Mechanisms Targeted by
Mitochondrial ROS in HI Reperfusion.

Traditionally, a detrimental effect of oxidative stress is
supported by evidence of structural oxidative alterations to
the post-HI brain. However, it is also important to determine
what specific mechanism of injury could be targeted by
ROS during reperfusion. In the design of neuroprotective
strategies, it is not only a source of injurious ROS, but also
a particular mechanism of damage triggered/exacerbated
by these ROS is important to consider. Logistically, if an
oxidative stress is one of the earliest reperfusion-driven
damaging events, the mechanism targeted by ROS should be
in close temporal proximity to the index event.

In the ischemic brain, cells experience glutamate-
receptors over-stimulation and cellular Ca++ overload, which
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occurs to a markedly greater extent in the neonatal brain
than in the mature CNS [59, 60]. Mitochondria actively
participate in preservation of cellular Ca++ homeostasis by
up take of Ca++ from the cytosol into mitochondrial matrix
space (reviewed in [61]). However, if mitochondrial Ca++

load exceeds mitochondrial capacity to hold Ca++, then
mitochondrial membranes loose their integrity via opening
a channel in the inner membrane, termed the mitochon-
drial permeability transition pore (mPTP). Transient and
permanent opening of mPTP has been strongly considered
as one of the leading mechanisms of necrotic and apoptotic
cell death in the brain and other organs following ischemia-
reperfusion injury ([62, 63], reviewed in [64]). It has been
shown, that mitochondrial ROS can initiate an opening
of mPTP during ischemia [22] and reperfusion [65, 66]
even in the absence of cyclophilin-D (the only known
structural component of mPTP) or Ca++ overload [67, 68].
Mitochondria-targeted antioxidant, mitoTEMPO, partially
prevented mPTP opening and attenuated necrosis and
apoptosis following simulated ischemia-reperfusion injury
in cultured renal tubular cells [69]. Taken together these
data suggest, that regardless of the type of the organ, ROS
originating from mitochondria upon reperfusion can trigger
a loss of integrity in mitochondrial inner membrane, the
event suggested as the ”point of no return” in propagation
of cell death following HI insult.

6. The Role of Mitochondrial Membrane
Permeabilization in the HI Brain Injury

6.1. Inner Mitochondrial Membrane Permeability Transition
Pore (mPTP) and HI Injury in the Developing Brain. Inde-
pendent of the developmental stage, HI insult severely
inhibits mitochondrial oxidative phosphorylation. It has
been shown that in immature brain, at the end of HI insult
mitochondrial phosphorylating respiration was significantly
suppressed [31, 70, 71]. Reoxygenation/reperfusion restores
mitochondrial ADP-phosphorylating capacity, normalizing
ATP content in the post-HI brain. However, following several
hours of reperfusion mitochondria exhibit a profound
decline in their ADP-phosphorylating respiration rates [31,
46], the event known as a secondary energy failure. The
molecular mechanism proposed to explain the pathogenesis
of secondary energy failure is opening of mPTP. mPTP
renders organelles incapable of ATP production due to a loss
of proton-motive force and NAD. This bioenergetics failure
results in mitochondrial swelling, leading to a permeabi-
lization of the outer mitochondrial membrane and release
of pro-apoptotic proteins which eventuates in necrotic and
apoptotic cell death [72–74]. It has been shown that in
neonatal rats inner mitochondrial membrane opens mPTP
at 0–1.5 hours and at 6–8 hours after HI [75]. However,
the pathogenic significance of mPTP in the reperfusion
injury in the developing HI brain remains uncertain. For
example, as opposite to adult mice, neonatal cyclophilin-
D knock-out mice were found to be susceptible to HI
injury [76]. Earlier the same group has reported that
antagonist of cyclophilin-D, cyclosporin-A did not attenuate
the extent of HI brain damage in neonatal rats [77]. In

contrast, using the same model Hwang et al. reported
that cyclosporin-A, injected immediately after HI insult
significantly protected developing brain, attenuating both
necrotic and apoptotic cell death in neonatal rats [78].
Similar results were obtained in neonatal rats subjected to
a mild focal cerebral ischemia-reperfusion [79]. In neonatal
rats and mice subjected to a global hypoxia-ischemia-
reperfusion injury, a post-treatment with cyclosporine A
markedly potentiated the neuroprotective effect of Ca++

channel antagonist, nimodipine [80]. Given, that in mature
animal models of ischemia-reperfusion injury a pathogenic
role for mPTP has been strongly suggested, more extensive
research is needed to clarify the contribution of mPTP
opening to cerebral HI reperfusion injury in the developing
brain.

6.2. Outer Mitochondrial Membrane Pore (OMMP) and HI
Injury to the Developing Brain. Following an ischemic insult
mitochondrial membrane permeabilization can occur via
opening of outer mitochondrial membrane pore (OMMP)
induced by Bak/Bax translocation into mitochondria. This
pore is thought to be primarily responsible for a release
of pro-apoptotic proteins from the mitochondrial inter-
membrane space, leading to an apoptotic cell death [81,
82], including that induced by an oxidative stress ([83],
reviewed in [84]). Importantly, in HI reperfusion injury
to the developing brain Bax dependent OMMP has been
suggested as a primary mechanism of injury ([76], reviewed
in [85]). Developmental shift toward a priority of the Bax-
dependent OMMP over the cyclophylin-D dependent mPTP
opening in the HI brain damage has been supported by the
data obtained in cyclophilin D knock-out neonatal mice [76],
as well as by neuroprotective effect of Bax-inhibiting peptide
[86]. However, in contrast to a better understanding of events
leading to secondary energy failure and necrotic cell death
following an opening of mPTP, it is less clear how Bax/Bak
mediated OMMP opening affects oxidative phosphorylation
and results in secondary energy failure and necrosis. One
possibility is that postischemic opening of OMMP results
in a massive loss of cytochrome c from the inter-membrane
mitochondrial space which results in secondary inhibition of
oxidative phosphorylation. However, this loss of cytochrome
c was not mediated by mPTP opening, and was not asso-
ciated with changes in mitochondrial Bax, Bad, Bak or Bid
[87]. Although, mitochondrial ROS appeared to be critical
for the execution of Bax/Bak dependent apoptosis induced by
anti-cancer drugs [88, 89], we have not found data that ROS
originating in mitochondria are involved in the Bax/Bak-
induced apoptosis in HI brain injury. Interestingly, oxidative
stress-induced cell apoptosis clearly required the presence of
ROS originating from MRC to signal mPTP opening, but
this apoptosis was independent of Bax translocation [90].
The existence of two relatively independent mechanisms of
mitochondrial membrane permeabilization does not exclude
the contribution of each of these mechanisms in HI damage
to the developing brain. Indeed, there is evidence for
involvement of cyclophilin D dependent mPTP opening
in the Bax-driven cytochrome c release in the isolated
mitochondria [91].
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In conclusion, the analysis of current data supports
the hypothesis that in the developing HI brain reoxygena-
tion/reperfusion causes not only recovery of cell bioener-
getics, but also accelerates ROS generation in mitochondrial
respiratory chain (Figures 3(a) and 3(b)). These ROS can
cause an oxidative damage to mitochondrial membranes.
This damage occurs in the forms of mPTP and Bax/Bak
dependent outer membrane pores, both of which are con-
sidered as a “point of no return” in the evolution of HI
injury. With data that complex I contributes to accelerated

generation of ROS during reperfusion, a novel neuroprotec-
tive strategy against reperfusion-driven mitochondrial mem-
brane permeabilization may consist of reversible pharmaco-
logical inhibition of complex I recovery following HI insult
(Figure 3(c)).
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