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Abstract: The present study investigates Mg (0 ÷ 17.5 wt %), Cu (0 ÷ 21 wt %) and Ni (0 ÷
20.2 wt %) dopants (M-doped) influence on photocatalytic activity of amorphous TiO2 thin films.
Magnetron sputtering was used for the deposition of M-doped TiO2 thin films. According to SEM/EDS
surface analysis, the magnetron sputtering technique allows making M-doped TiO2 thin films with
high uniformity and high dopant dispersion. Photocatalysis efficiency analysis was set in oxalic acid
under UV irradiation. In accordance with the TOC (total organic carbon) measurements followed by
the apparent rate constant (kapp) results, the dopants’ concentration peak value was dopant-dependent;
for Mg/TiO2, it is 0.9% (kapp—0.01866 cm−1), for Cu/TiO2, it is 0.6% (kapp—0.02221 cm−1), and for
Ni/TiO2, it is 0.5% (kapp—0.01317 cm−1). The obtained results clearly state that a concentration of
dopants in TiO2 between 0.1% and 0.9% results in optimal photocatalytic activity.

Keywords: amorphous materials; titanium dioxide thin films; sputtering; catalytic
properties; photocatalysis

1. Introduction

Photocatalysis and photocatalytic materials based on semiconductors have been studied for
more than a decade [1–3]. By reason of higher efficiency and future potential in water treatment [4],
air purification [5] and even hydrogen production [6], photocatalysis interest increased significantly.
The number of articles related to photocatalysis has risen thousands of times over the past 20 years.
Additionally, research based on TiO2 as a photocatalyst among other semiconductors also increased [7].
TiO2 manufacturing is affordable, which makes it economically favorable, especially when compared
with materials having similar properties, such as SnO2, CeO2, CdS, and WO3. These semiconductors are
also used for photocatalysis research because of their biocompatibility, stability in various conditions,
and capability to generate excitons [8,9]. TiO2 achieves better photocatalytic activity than ZnO [10] or
CdS [11] and under the same conditions; not only does it have better photochemical stability, but TiO2

is superior photocatalyst compared to WO3 [12]. TiO2 has great potential in energy and environmental
research, such as uses in lithium-ion batteries, self-cleaning coatings, water purification, or as a catalyst
for photocatalytic reactions [13–16]. As a result of its unique dielectric and optical properties, TiO2 is
considered as a non-hazardous material and could be modified, depending on the requirements for
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specific applications [17]. It is known that the TiO2 band gap is approximately 3–3.2 eV (depending on
phase) and its conduction band minimum (CBM) is almost as same as hydrogen potential, while the
valence band maximum (VBM) is slightly lower than oxygen potential, at approximately 1.6 eV [18–20].

The efficiency and photocatalysis properties depend on the crystal structure of TiO2. TiO2 has
three common phases: rutile, anatase, and brookite (least studied because of its instability). Rutile is
the most thermodynamically stable phase, as demonstrated when anatase and brookite slowly change
phases to rutile at 550–750 ◦C [21]. Both anatase and rutile have a tetragonal structure, which can be
distinguished from one another because of their crystal habit. Anatase differs from rutile in that its
octahedrons share four crystal edges, forming a four-fold axis. The TiO2 anatase phase particle surface
possesses a triangular arrangement, which creates a reaction condition with the adsorbed molecules
and achieves a slightly higher reduction rate and absorption of organic molecules. Studies show
that the photocatalysis process is more efficient with rutile and anatase phases than brookite [22–24],
and it is best with a mixture of anatase and rutile (70% and 30% respectively, called Degussa
P25) [25–27]. Even though the chemical structure of the anatase or rutile phase seems to be more
favorable for photocatalysis, it is still inefficient in its pure phase [26,28,29]. Nevertheless, based on
research and interest, amorphous TiO2 stands alongside crystalline TiO2 as an alternative to crystalline
structures [30–32]. According to Kaur et al. (2012), the electronic structure of amorphous TiO2 is
similar to that of crystalline TiO2 but with a larger band gap [33]. Nonetheless, the energy band gap
can be controlled with dopants. The study of Khramov et al. shows that the modification of Degussa
P25 with other metals can lead to the amorphization of TiO2 structure [34]. Based on that, it appears
that not only do the dopants change the electrical structure of TiO2 (by modifying the band gap) and
increasing the photocatalytic efficiency, but this could also lead to changes in the TiO2 phase structure
(amorphization), which would therefore decrease the photocatalytic efficiency because an amorphous
structure has a higher number of recombination centers. According to Shu et al., the amorphous TiO2

films have many defects, which increases their conductivity. However, those defects appear mostly
inside the film, which leaves TiO2 as a semiconductor with an energy band gap nearly to the dielectric.
Despite that, doping the TiO2 with another metal can increase the surface conductivity, which allows
easily transfering charge carriers [35]. This constructs the potential of amorphous TiO2 as a low-cost
competitor to crystalline phase TiO2. Controversially, another study declares that amorphous TiO2 has
negligible photocatalytic activity, due to its defective states [36]. Over the last two decades, studies of
crystalline and amorphous TiO2 show debatable results when comparing the photocatalysis efficiency
based on the TiO2 structure [31,37], which leaves this field of study open for further research.

The electrical properties are the main parameters for the semiconductor in the photocatalysis
process. The efficiency of the process can be influenced by particle size, phase composition,
crystal structure, or even purity of the samples [38,39]. Electrical properties can vary depending on the
deposition technique and parameters [40–42]. Moreover, the photocatalytic properties can be modified
by adding dopants to the film or on the surface [43,44], and/or by changing the surface/bulk structure
of TiO2. Thus, metal ions act as electron trappers, generators of excitons, and/or as photosensitizers,
raising light absorbance under visible light. Transition metal ions change the conduction band
minimum (CBM) or valence band maximum (VBM) energy levels, which reduce the energy band gap
or create additional levels in reducing exciton recombination time [45–47]. Furthermore, the electron
work function of metal dopants must be considered beforehand. Metal dopants with an electron work
function (Φm) similar to the amorphous TiO2 Fermi energy level (EF) could enhance the photocatalysis
process significantly, and vice versa.

The aim of this research is to find an optimal concentration of Cu, Ni, and Mg dopants in
amorphous TiO2 thin films, and to investigate the photocatalytic activity of the formed thin-film
structures. Thin-film formation and analysis were done under the same conditions for a better
comparison. TiO2 thin films with different concentrations of Mg, Cu, and Ni dopants were formed
using the magnetron sputtering deposition method, and photocatalytic activity was tested using an
oxalic acid solution.
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2. Experimental Method

2.1. Films Preparation

Thin films were deposited using the Kurt J. Lesker PVD 75 vacuum system with four magnetron
sputtering stages. Argon and oxygen gases (with 99.999% purity) were used during the plasma
activation and deposition processes. Two titanium (Ti) targets (99.995% purity), a copper (Cu) target
(99.99% purity), a magnesium (Mg) target (99.95% purity), and a nickel (Ni) target (99.995% purity),
all purchased from Sigma Aldrich®, were used for thin-film formation. Power sources including
direct current (DC), pulsed DC, and radio frequency (RF) were used. The DC source was used for the
Ti and Ni targets, pulsed DC was used for the Mg target, and RF was used for the Cu target. TiO2 and
Cu, Ni, and Mg-doped TiO2 films were deposited on stainless steel plates (304 series). The substrate
was cleaned in pure acetone (for 10 min) using an ultrasonic bath in order to avoid any organic
contamination. Thin films were deposited at 300 ◦C maintaining the ratio of oxygen and argon at 20/80.
M-doped TiO2 were produced using two titanium cathodes (DC source) and one metal cathode (DC,
pulsed DC, or RF source) target. Different output power and shutter open/close ratios were used to
achieve different concentrations of M in TiO2 films. The total thickness of the formed thin films was
around 100 nm; the structure based on the deposition procedure is shown in Figure 1. Different Cu,
Ni, and Mg concentrations in TiO2 thin films were achieved (Table 1), i.e., Mg, 0 ÷ 17.5 wt %; Cu, 0
÷ 21 wt %; and Ni, 0 ÷ 20.2 wt %. The concentration of dopants in TiO2 was analyzed via X-ray
photoelectron spectrometer (XPS) and energy-dispersive X-ray spectroscopy (EDS).
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Figure 1. M-doped TiO2 thin film structure.

Table 1. Dopants concentration in samples and apparent rate constant kapp (where OA is an oxalic
acid solution). Dopants concentration was analyzed via X-ray photoelectron spectrometer (XPS) and
energy-dispersive X-ray spectroscopy (EDS).

Mg/TiO2 Cu/TiO2 Ni/TiO2 TiO2 OA

Conc., % kapp, min−1 Conc., % kapp, min−1 Conc., % kapp, min−1 kapp, min−1 kapp, min−1

0.9 0.01866 0.3 0.01373 0.5 0.01317

0.01160 0.00080

1 0.01015 0.6 0.02221 1.4 0.00519
4.1 0.00474 3.4 0.00631 3.6 0.00214
14.1 0.00227 4.5 0.00646 11.6 0.00170
17.5 0.00092 8.4 0.00432 17.9 0.00152

13.5 0.00111 20.2 0.00114
21 0.00073

2.2. The Morphology and Structural Analysis

The structure of the TiO2 phase was determined using an X-ray diffractometer (XRD) “Bruker D8
Discover” at 2Θ angle in a 20◦ to 70◦ range using Cu Kα (λ = 0.154059 nm) radiation, 0.01◦ step, and a
Lynx eye position-sensitive detector (PSD).

The surface topography images were obtained via scanning electron microscope (FE-SEM; JEOL,
SM-71010) using 8 kV accelerating voltage.
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The distribution of elements (mapping) and a high concentration of dopants were measured
using an energy-dispersive X-ray spectroscope “BrukerXFlash Quad 5040” (EDS) with an accelerating
voltage of 10 kV.

The low concentration of dopants in TiO2 was determined by the X-ray photoelectron spectrometer
(XPS, PHI Versaprobe 5000). Measurements were performed using monochromatic X-ray radiation
(Al Kα, 1486.6 eV), 25 W power, 100 µm beam size, and the measurement angle was 45◦ during the
experiments. The sample charging effect was compensated using the radiation of low energy electrons
and ions. The resolution was 1 eV for Survey Spectrum and 0.1 eV for detailed chemical analysis.
The pass energy was 187.580 eV. Thin films were sputtered in order to achieve the depth profile of the
samples [48].

2.3. Photocatalysis Efficiency Evaluation

To maximize the efficiency of the photocatalysis process, a transparent solution must be chosen.
There are many types of research where methylene blue (MB) [49,50], rhodamine B (RhB), [51,52]
or other organic dyes were selected as a solution for this process. In that case, the light absorption
of the solution itself and the degradation process happening without the photocatalyst should be
considered as an extraneous effect, which could cause slightly inaccurate results of the semiconductor
as a photocatalyst [53–55]. For this reason, measurements were set in oxalic acid solution (which is
as well a product of RhB during the photodegradation process) made from water and oxalic acid
powder (with an initial concentration of 100 mg/l) under UV light (light peak at 254 nm, 18 W power).
According to the light source used in the experiment, absorption spectra were measured but not
analyzed in this manuscript because of the same absorbance at 254 nm for all the samples. In this range
of light, metal dopants do not have an effect on the absorption characteristics of TiO2. The samples
(surface area—1600 mm2) were immersed in the solution and set for 30 min in the dark before every
experiment. After that, the samples were irradiated for 80 min, and the solution was continuously
stirred using a magnetic stirrer. The distance between the UV lamp and the sample was set to 50 mm,
while the distance between the surface of the solution and the sample was 20 mm. Samples of solution
were taken after 20, 40, 60, and 80 min of irradiation, and the degradation of the oxalic acid solution
was measured in a Shimadzu TOC-L (Shimadzu Corp. Japan) analyzer according to the EN 1484:2002
procedure. To minimize errors, there were three measurements for each sample taken from the solution,
and the average concentration was analyzed. The degradation steps of oxalic acid solution in water
are shown in Figure 2. Initially, C2H2O4 decomposes into formic acid, and with further degradation
into the innocuous compounds (H2O and CO2), through intramolecular dehydration.
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Figure 2. Dehydration of oxalic acid molecule.

The results were evaluated based on the thermodynamics and kinetics of the process. The driving
force of photocatalysis is an organic solution and oxygen molecules. Oxygen is constant in photocatalysis
because the experiment is set in the atmospheric ambient and the solution is surrounded by oxygen
molecules. The adsorption of organic compounds on the surface of the photocatalyst is the kinetic
driving force of the photocatalysis process. Adsorption and desorption equilibrium follows Langmuir
isotherm [56,57]. In this case, under UV irradiation, there is an equilibrium in adsorbed and
desorbed molecules.
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This evaluation is useful when adsorption and desorption are in equilibrium [58], but because the
photocatalysis efficiency is low, it could be applied as a universal equation for different solutions:

kapp =
1
t

ln
(C0

Ct

)
,

where kapp—apparent rate constant, CO—initial concentration, Ct—concentration in time, and t—time.
Keeping in mind that kapp depends on the time and concentration differences in time, average meanings
were calculated for the different concentrations of dopants in TiO2 (Table 1).

3. Results and Discussion

The main parameters for a dopant to be effective as a charge trapper are its concentration and
dispersion in TiO2 lattice, as well as its electron configuration. X-ray Diffraction (XRD) analysis shows
that deposited TiO2 thin films were amorphous (Figure 3).
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Figure 3. XRD pattern spectra of amorphous TiO2 without dopants.

According to elemental analysis (Figure 4), there is a high dispersity of dopant clusters in TiO2

thin films. Cluster dispersity defines photocatalysis efficiency, since dopant clusters act as electron
trappers. Based on the results (Table 1) and theory, cluster size and dispersity, as well as photocatalysis
efficiency, depend on dopant concentration. Thus, theoretically, the same efficiency could also have a
similar dependence on size and dispersity.
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Figure 4. Cu (0.6 wt %) doped TiO2 sample surface elemental analysis.

Additionally, XPS analysis was set for samples with a low concentration of dopant in TiO2.
The calibration of XPS spectra was done according to the standard value of C 1s peak at 284.8 eV BE
(binding energy). The reference data for XPS peaks were taken from the “Thermo Fisher” (Thermo
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Fisher Scientific Inc.) database. After the calibration, core level peaks of TiO2 (Figure 5c) and dopants
(Figure 5a) were measured. Ti 2p3/2 and Ti 2p1/2 peaks are at 458.5 eV and 464.5 eV BE (compared
to TiO2 Ti 2p3/2—458.5 eV BE and Ti 2p1/2—464.5 eV BE). The principal Mg KLL Auger peak is at
305 eV BE, accompanied with an Mg 1s peak at 1303 eV BE (ref. Mg 1s—1303 eV BE for Mg metal
and 1304.5 eV BE for Mg native oxide). Furthermore, it is hard to distinguish Cu/TiO2 spectra if a
Cu2O or Cu structure formed because of low concentration and low peak intensity. Cu 2p1/2 and Cu
2p3/2 peaks are at the same energy value of 933 eV BE and 955 eV BE (accordingly). There is also a
weak satellite at 945 eV BE, which helps to separate Cu metal and Cu2O. The Ni 2p3/2 peak is at 855 eV
BE (ref. Ni metal—852.6 eV BE; NiO at 853.7 eV BE). The depth profile of doped TiO2 thin films is
shown in Figure 5b. In agreement with XPS results, dopants clusters are not oxidized, while the main
dopant metal peaks are at the same energy value according to the reference. However, based on the
deposition parameters, where an oxygen and argon ratio at 20/80 was used, we consider that at some
points, the dopant material could be slightly oxidized.
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Figure 5. XPS spectra of formed M-doped TiO2 thin films: (a) survey; (b) depth profiling of Mg-doped
TiO2 thin films; and (c) Ti2p; dopant (i) Ni, (ii) Mg and (iii) Cu.

The evaluation results (Table 1) show that increasing the concentration of dopant above 1 wt %
in TiO2 thin films results in a decrease in the efficiency of the photocatalysis process. Although, if the
concentration of dopant is lower than 1 wt %, the efficiency increases in the first 20 min of irradiation,
while the optimal amount of concentration depends on the dopant itself. In this study, Cu-doped TiO2

reaches maximum efficiency at 0.6 wt %, Ni-doped TiO2 reaches maximum efficiency at 0.5 wt %,
and Mg-doped TiO2 reaches maximum efficiency at 0.9 wt %. Therefore, the optimal concentration
value suggests that there is an optimal cluster size for maximum efficiency.42 Efficiency dependence on
cluster dispersity and size has not been investigated in this study.
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The degradation of oxalic acid in time at different Mg wt % concentrations is shown in Figure 6a.
The integrated area under the curve (gray area) indicates the photocatalysis process efficiency as
well as apparent rate constant kapp. The smaller the area and the higher the constant, the higher the
process efficiency. The calculated values show that the higher efficiency of Mg/TiO2 as a photocatalyst
is achieved when the dopant concentration in the TiO2 sample is 0.9 wt % (kapp = 0.01866 min−1).
The photocatalysis process dependence on dopant concentration is shown in Figure 6b. Compared to
pure TiO2 thin films, kapp drops significantly when the concentration of Mg is increased by more than
1 wt %. There is a peak in concentration where the photocatalysis efficiency reaches maximum values.
It could be stated that there should be a peak with a lower concentration of Mg. As Manzanare’s
research shows, a small amount of Mg dopant in the TiO2 lattice increases the electron trap (Ti3+) and
hole trap (OS) concentration, providing a low recombination of electron–hole pairs [59]. On the other
hand, Mg clusters on the TiO2 surface can act as an electron donor for TiO2. In this way, oxygen can be
directly affected by injected electrons and followed by easily formed oxygen vacancies on the unstable
TiO2 surface [60]. Different concentrations of Mg were used; the most efficient concentration was
0.9 wt %, while 1 wt % was lower but still higher than pure TiO2.
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process dependence on Mg wt % dopant concentration.

Accordingly, the same measurements were set with Cu and Ni dopants as well. Depending on the
integrated area under the curve (Figure 7a), Cu (0.6 wt %) is more efficient as dopant compared to
Mg (0.9 wt %). Furthermore, comparing the same samples, after the first 20 min, 58% of solution
degraded with Cu/TiO2 and only 37% degraded with Mg/TiO2 (Figures 6b and 7b). Cu concentration
values between 0.5 and 0.7 are considered optimal concentrations where the degradation of oxalic acid
increases drastically. Decreasing or increasing the Cu concentration in the TiO2 lattice negatively affects
the efficiency of the process. The sample with 0.6 wt % of Cu reaches the maximum efficiency (kapp =

0.02221 min−1), while pure TiO2 reaches the maximum efficiency at kapp = 0.01160 min−1, and the
sample with 0.3 wt % of Cu reaches the maximum efficiency at kapp = 0.01373 (Table 1). Bensouici’s
studies show that the pure TiO2 reaction rate constant is kapp = 0.015 min−1, and it decreases to kapp =

0.001 min−1 for Cu 4 wt % and remains stable for 6–10 wt % Cu-doped TiO2 thin films [61]. In this
study, there was a quite huge change in concentration between 0.3 wt % and 2 wt %, while in
Minsu Jung’s research [62], a concentration of 0.5 wt % Cu in the TiO2 lattice reaches the highest
H2 production rate, and decreasing or increasing this value lowers the production of H2. However,
other research states that Cu is not an effective dopant for TiO2 modification. With the increased
concentration of Cu in TiO2, the yield of a product decreases, as compared to pure TiO2 [63]. However,
analyzing the dependency of dopant concentration on photocatalysis efficiency, low concentrations
must be tested by slowly increasing them. According to this statement, Tashibi et al. analyzed 0.2 wt %
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and 0.9 wt % of Cu in TiO2, skipping the crucial point of approximately 0.5 wt % where photocatalysis
efficiency reaches higher values when compared to pure TiO2. Despite that, this research explains the
inactivity of Cu-doped TiO2 by the formed CuO on the surface, which decreases the number of active
sites of TiO2 as well as becomes a recombination center and increases the rate of the charge carrier
recombination. However, the optimal amount of clusters results in the dispersion of them enough to
reduce recombination rates and act as charge trappers. The photodegradation of oxalic acid reaches
its maximum efficiency when the Cu concentration is 0.6 wt % in TiO2 films, and similar to other
studies, the efficiency drops when the concentration is raised or lowered. Different thin film deposition
techniques, preparation, and materials (solid, liquid, or gas phase) can cause slightly different results
in the experiment. Thin-film parameters such as the crystal size, purity, and surface area apart from
the crystal phase rely on deposition techniques, as described earlier in this article. However, a different
evaluation method can cause varied results in photocatalysis efficiency.
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Ni/TiO2 thin films as photocatalyst results analysis show that the photodegradation of oxalic
acid is efficient with 0.5 wt % of Ni in the TiO2 lattice (Figure 8a), but it is similar to pure TiO2 thin
films results. After 20 min, only 34% of oxalic acid solution degrades, which is similar to 0.9 wt %
Mg, but taking results after 40 min in comparison, for Mg, it is 67% (Figure 6b), and for Ni, it is 43%
(Figure 8b). Chen’s [64] studies show that the Ni/TiO2 photocatalyst exhibits the highest photocatalytic
activity when the optimal Ni concentration is 0.5 wt %. Experimental results, while using oxalic
acid as a solution for the examination of photocatalytic properties, and Ni/TiO2 as the photocatalytic
show the same results. Keeping in mind that the degradation process depends on the adsorption
of the solution on the surface, increasing the concentration of Ni on TiO2 can result in a decrease in
surface irrigation. Other research based on Ni concentration in crystal phase TiO2 shows that there is
an optimal concentration of Ni on crystal phase TiO2 as well, with which the photocatalytic efficiency
increases drastically. The decrease in efficiency based on the concentration is explained by decreasing
the number of active sites of TiO2 on the surface with increased Ni concentration [65]. With the right
amount of Ni clusters on the TiO2 surface, Ni acts as a co-catalyst by separating and transferring
photogenerated charge carriers, thus decreasing the recombination rates compared to those of pure
TiO2 [66].

Based on the results in Figures 6, 7 and 8a, the degradation rate of the oxalic acid solution,
while using optimal dopant concentration, drops exponentially. In the first 20–40 min, the degradation
rate is higher compared to degradation after 40 min, when the reaction almost stabilizes. After the
experiment with Cu (0.3 and 0.6 wt %), Mg (0.9 wt %) and Ni (0.5 wt %) doped TiO2 films,
visible surface area degradation was observed. The thin film degradation was not detected using
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TiO2 with higher dopant concentration. The reactivation of such catalysts has to be taken into account
considering the economic implications [67]. The strength of TiO2 films and adherence are relevant for
repetitive applications. Investigations on such parameters were done in previous reports [68–71].
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According to EDS mapping results (Figure 4), it can be stated that the PVD method is suitable for
the formation of doped TiO2. Figure 4 shows the dispersion uniformity of Cu in TiO2, which means
that active centers are dispersed evenly throughout the surface and in inside layers. The top M/TiO2

layer thickness (depending on the dopant) does not exceed 5 nm, and no annealing is done after
deposition in order to keep amorphous TiO2.

Since there are more charge trappers, a higher number of active centers lead to higher photocatalytic
efficiency. Nevertheless, too many active centers can lead to small gaps between them and high
recombination rates. It is known that the doping ratio depends on the particle size and cluster forming
due to a high number of particles. On the other hand, having too many empty spaces leads to a lack
of active centers, and recombination overcomes the charge-trapping process. Correlation between
particle size and doping concentration is discussed by Jonathan et al. [72]. The SEM images show that
the surface area of doped TiO2 has no defects, which emphasizes that high-quality films are formed via
the PVD method. Moreover, according to SEM pictures, it can be noticed that the roughness of doped
TiO2 is higher than that of pure TiO2 (Figure 9d). Moreover, the surface roughness of 0.6 wt % Cu/TiO2

(Figure 9c) is higher compared to others (Figure 9a,b), which can also lead to higher efficiency because
of the increased surface area. The alignment between the electron work function of metal dopants and
Fermi energy levels together with the CBM of TiO2 plays a big role in the photocatalysis mechanism.

The electron work function for dopants areΦMg = 3.66 eV;ΦNi = 5.04 ÷ 5.35 eV;ΦCu = 4.53 ÷ 5.10
eV; and the TiO2 electron work function is around 4.4 eV (EF − EC = 0.5 eV) [73]. Figure 10 shows a
visual representation of the alignment of energy values. The differences in the electron work function
work as a barrier and a certain amount of energy is required for an electron to overcome it. For Mg, it is
0.74 eV; for Ni, it is 0.64–0.82 eV; and for Cu, it is 0.13–0.5 eV. According to these results, the Mg dopant
works as an electron donor, while Ni acts as an acceptor, and Cu could be a donor and acceptor at the
same time, with Fermi energy almost aligned with the work function of Cu. These results coincide
with previously stated results of the apparent rate constant, which showed that with a certain amount
of Cu in TiO2, the photocatalytic activity was highest with the Cu dopant, followed by Mg and Ni [4].
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Figure 10. The alignment of the electron work function of metal dopants (Φm) and titanium
dioxide (ΦTiO2 ).

4. Conclusions

The present research suggests that the magnetron sputtering technique is suitable for doped TiO2

film deposition because of its high purity, dopant dispersity in films, and the ability to deposit on a
wide range of substrates. Mg-, Cu-, and Ni-doped TiO2 thin films were deposited as photocatalysts
on alloy substrate, and the photocatalytic activity was determined by oxalic acid degradation under
UV irradiation. Analysis revealed that based on the kapp, with an increased dopant concentration (Mg
0.9 wt %→ 4.1 wt %; Cu 0.6 wt %→ 3.4 wt %; Ni 0.5 wt %→ 3.6 wt %) process efficiency significantly
drops accordingly (Mg kapp 0.01866 min−1

→ 0.00474 min−1; Cu kapp 0.02221 min−1
→ 0.00631 min−1;

Ni kapp 0.01317 min−1
→ 0.00214 min−1). Equivalent results are with decreased dopant concentration:

Cu 0.6 wt %→ 0.3 wt %, efficiency drops kapp 0.02221 min−1
→ 0.01373 min−1. High photocatalysis

efficiency is achieved with low exciton recombination rates. Since high concentration leads to small
gaps between the active centers and the recombination process occurs, low concentration leads to a
few active centers formed in the sample. Nevertheless, according to the TOC results, followed by the
apparent rate constant, the Cu dopant achieved better photocatalysis efficiency compared to the Mg
and Ni dopants. This can be explained by the formation of impurity energy levels in the TiO2 band gap.
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