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A B S T R A C T   

Current assessments of recovery following spinal cord injury (SCI) focus on clinical outcome measures. These 
assessments bear an inherent risk of bias, emphasizing the need for more reliable prognostic biomarkers to 
measure SCI severity. This study evaluated fluid biomarkers as an objective tool to aid with prognosticating 
outcomes following SCI. Using a 1H nuclear magnetic resonance (NMR)-based quantitative metabolomics 
approach of urine samples, the objectives were to determine (a) if alterations in metabolic profiles reflect the 
extent of recovery of individual SCI patients, (b) whether changes in urine metabolites correlate to patient 
outcomes, and (c) whether biological pathway analysis reflects mechanisms of neural damage and repair. An 
inception cohort exploratory pilot study collected morning urine samples from male SCI patients (n=6) following 
injury and again at 6-months post-injury. A 700 MHz Bruker Avance III HD NMR spectrometer was used to 
acquire the metabolic signatures of urine samples, which were used to derive metabolic pathways. Multivariate 
statistical analyses were used to identify changes in metabolic signatures, which were correlated to clinical 
outcomes in the Spinal Cord Independence Measure (SCIM). Among SCI-induced metabolic changes, biomarkers 
which significantly correlated to patient SCIM scores included caffeine (R = -0.76, p < 0.01), 3-hydroxymandelic 
acid (R= -0.85, p < 0.001), L-valine (R = 0.90, p < 0.001; R = -0.64, p < 0.05), and N-methylhydantoin (R =
-0.90, p < 0.001). The most affected pathway was purine metabolism. These findings indicate that urinary 
metabolites reflect SCI lesion severity and recovery and provide potentially prognostic biomarkers of SCI 
outcome in precision medicine approaches.   

1. Introduction 

Spinal cord injuries (SCIs) can have long-term consequences for 
survivors and their families. In Canada, there are approximately 4300 
cases annually (Noonan et al., 2012), generating a significant economic 
burden to society. Rehabilitation represents the primary approach to 
promote long-term functional recovery after SCI, which can occur due to 
compression, incision, or contusion (Nas et al., 2015). Nevertheless, 
there is an urgent need to promote evidence-based rehabilitation 

therapies to optimize the potential for recovery. Currently, the American 
Spinal Cord Injury Association (ASIA) Impairment Scale serves as a 
measure of prognostic outcomes following SCI (Spiess et al., 2009). 
Additionally, computerized tomography and magnetic resonance im-
aging remain important imaging modalities for diagnosing and deter-
mining SCI severity (Metz et al., 2000); however, the large expenses and 
low throughput are major pitfalls associated with these technologies 
(Goeree et al., 2005; Krueger et al., 2013; Tator et al., 2016). Currently, 
there is no single “gold standard” prognostic biofluid marker to 
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objectively determine if a patient has suffered an SCI and if so, the extent 
of physical and functional disability. This results in the demand for a 
high-throughput method that can rapidly diagnose SCI severity and 
optimize the potential for subsequent recovery. 

The present study utilized metabolomics as a powerful approach to 
provide quantitative assessment of endogenous small molecules within 
biological fluids, such as urine (Nicholson and Lindon, 2008). NMR has 
the most number of detectable (209) and unique (180) metabolites in 
human urine when compared to chromatography and mass spectrom-
etry techniques (Bouatra et al., 2013). Previous work from our labora-
tories has demonstrated that levels of metabolic compounds in bio-fluids 
can be used to effectively predict recovery following brain injury (λ) and 
stress due to a natural disaster (Paxman et al., 2018). Similar changes in 
metabolism may also accompany SCI. Metabolic changes are accompa-
nied by severe atrophy of denervated musculature, which leads to 
marked changes in body composition (Baumann and Spungen, 2000; 
Gorgey et al., 2013). Metabolic rates decline due to the loss of meta-
bolically active lean body mass below the level of the lesion and a cor-
responding increase in adiposity (Giangregorio and McCartney, 2016). 
Accordingly, SCI diminishes whole body glucose transport, which is 

proportional to the reduction in muscle mass (Spungen et al., 2003) and 
can provoke disorders in carbohydrate and lipid metabolism (Baumann 
and Spungen, 1994). Following cervical SCI, disrupted glucose homeo-
stasis may downregulate gene expression related to lipid oxidation and 
glycogen storage in skeletal muscle (Long et al., 2011). SCI is also 
accompanied by insidious delayed secondary tissue damage that can 
persist for months of years (Popovich et al., 2002; Donnelly and Popo-
vich, 2007; Allan and Rothwell, 2003; Schwab and Bartholdi, 1996). 
Thus, knowledge of the biochemical pathways altered by SCI will inform 
about the natural changes following initial injury throughout the re-
covery process. A robust prognostic metabolic biomarker that reflects 
these changes would be valuable to improving SCI treatment and patient 
outcome. 

Here, we identified a metabolic fingerprint in urine of SCI patients 
within 1 month of injury and at 6 months post-injury using nuclear 
magnetic resonance (NMR) spectroscopy. Using both univariate statis-
tics and a machine learning multivariate approach, the present study 
determined (1) the metabolomics profile of SCI patients initially and 
long-term after injury; (2) which metabolites lead to the observed dif-
ferences; (3) which biochemical pathways contribute to these 

Fig. 1. Pearson R correlations showing the correlation between both initial metabolite concentration (A-C) and delta in the metabolite concentration (D, E) to the 
percentage difference in the patient SCIM scores. Improved patient recovery corresponds to a higher percentage difference in the SCIM score. The R and P-values for 
each correlation are provided in the top right of each figure. 
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metabolomic alterations; (4) the accuracy of the identified metabolites 
as diagnostic SCI biomarkers; and (5) the prognostic value of the 
biomarker profiles in predicting personal clinical outcome. 

2. Results 

2.1. Metabolic biomarkers related to functional improvement 

Clinical improvement was evident amongst the SCI patients at 6- 
months post-injury compared to the initial scores (1 month post- 
injury) for the SCIM. The average improvement was 10.8 ± 10.4 
points. To determine if initial metabolite concentrations can predict this 
functional improvement, Pearson R correlations, were computed be-
tween initial metabolite levels and % difference in SCIM scores, 
revealing three urinary metabolites with significant correlations: 
caffeine (R = -0.76, p < 0.01; Fig. 1A), 3-hydroxymandelic acid (R =
-0.85, p < 0.001; Fig. 1B), and L-valine (R = 0.90, p < 0.001; Fig. 1C). To 
determine if the change in metabolite concentration served as a proxy 
measure of the degree of recovery, Pearson R correlations were also 
computed between the difference in metabolite concentrations and % 
difference in SCIM scores, revealing significant correlations for L-valine 
(R= -0.64, p < 0.05; Fig. 1D) and N-methylhydantoin (R= -0.90, p <
0.001; Fig. 1E). 

2.2. Metabolomic profiles are robust predictors of recovery following SCI 

The bins found to be significant by either the paired T-test/Wilcoxon 
Mann–Whitney test (n = 44 bins) or the VIAVC best subset (n = 3 bins) 
were used for subsequent analysis. The VIAVC best subset consisted of 
dopamine, Sumiki’s acid, and caffeine. PCA and heat map illustration 
demonstrated a partial degree of unsupervised group separation (Fig. 2A 
and B). The OPLS-DA plot (Fig. 3) illustrates significant group separation 
at 1 month and 6 months (R2Y = 0.991, p < 0.05; Q2 = 0.808, 
p < 0.01). This supervised model indicated a change in the metabolic 
profiles over the course of patient recovery in repeated samples. Me-
tabolites that contributed the most to the group separation are shown in 

Appendix 1, ranked in order of significance according to the paired T- 
test/Wilcoxon Mann–Whitney test. 

A ROC curve was also generated for the SCI patients. An area-under- 
the-curve equal to 1 was achieved, with a 95% confidence interval of 1-1 

Fig. 2. Principal Components Analysis (PCA) scores plot (left) and heat map (right) representing unsupervised separation and hierarchical clustering analysis of male 
SCI patients’ metabolic profiles. The legend indicates the class label: initially one week after SCI and 6 months post-injury. The heat maps illustrate up-regulation 
versus down-regulation of metabolites significant by the VIAVC best subset (n = 3 bins) and paired T-test/Wilcoxon Mann–Whitney Test (n = 44 bins). Supple-
mentary Table 1 provides the name of the metabolite corresponding to each of the numbers provided to the right of the heat map. 

Fig. 3. Orthogonal Projections to Latent Structures Discriminant Analysis 
(OPLS-DA) score plot showing supervised separation between male SCI patients 
initially (red/squares) and 6 months post-injury (indigo/triangles). This anal-
ysis was carried out using a list of urinary metabolites found to be statistically 
significant by either the paired T-test/Mann–Whitney or VIAVC testing. The 
95% confidence interval is indicated by the shaded ellipses. The x- and y-axis 
show the predictive (between group) and orthogonal (within group) variation, 
respectively. The following are the cross-validation and permutation measures 
for the OPLS-DA figures: R2Y = 0.991, p = 0.011; Q2 

= 0.808, p = 0.002. 
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(Fig. 4). The predictive accuracy for this curve when 2 bins were 
included was 92% and when all 3 bins were included was 100%. This 
analysis was based on the 3 bins significant by the VIAVC best-subset. 

Pathway topology analysis (Fig. 5) illustrated the impact of urinary 
metabolites on changes to the SCI patients’ metabolic profiles, presented 
in increasing order of impact. Metabolic pathways significantly affected 
amongst the patients were purine metabolism (p < 0.01), followed by 
tyrosine metabolism (p < 0.01). Pathway analysis was based on bins 
significant by the VIAVC best subset, paired T-test, and Wilcox-
on–Mann–Whitney test. 

3. Discussion 

Here we show that metabolomic profiles in urine change throughout 
recovery following SCI, and positively relate to SCIM scores. The most 
significant change occurred in metabolites that were part of the VIAVC 
best subset (dopamine, Sumiki’s acid, and caffeine), suggesting that 
these metabolites present the most robust indicators of successful re-
covery in SCI. Their value as metabolic biomarkers of SCI severity was 
confirmed by a predictive accuracy of 100%. The main metabolic 
pathways altered by recovery following SCI included purine metabolism 
and tyrosine metabolism. Moreover, we showed that the degree of 
functional recovery is best predicted by caffeine, 3-hydroxymandelic 
acid, and L-valine. Thus, a metabolomics approach combined with ma-
chine learning is able to provide clinically accessible biomarkers with 
prognostic potential for SCI recovery. 

Purine metabolism presented as the most significantly affected 
pathway in SCI recovery. This follows from our previous work 
(Bykowski et al., 2021), which indicated that urinary purines and their 
derivatives may play a role in pathology arising from traumatic brain 
injury. Purines are known for their neuroprotective roles in the nervous 
system, with the ability to mitigate inflammatory responses (Jackson 
et al., 2016). Although it is well known that purine metabolism is dis-
rupted in the wake of head trauma (Clark et al., 1997; Cronstein, 1994), 
there is less evidence for their dysregulation following SCI. However, a 
recent study in which hypoxia was induced in a SCI rat model led to an 
increase in extracellular purine derivatives, specifically adenosine and 
inosine (Takahashi et al., 2010). Inosine, which is implicated within the 
purine pathway in our study, was also shown to be present at ten-fold 
higher concentrations than adenosine. The excretion of this purine in 
the urine reflects its presence within the body as an endogenous neu-
roprotective agent against inflammation. Furthermore, levels of purine 
derivatives were also shown to vary with intracellular calcium concen-
tration within the spinal cord, whereby increased calcium activity pro-
moted purine release (Liu et al., 2006). Increased osteoclast activity 
associated with bone fracture following SCI may a play a role in calcium 
fluctuations which influence purine release. 

An alternative mechanism for purine release is associated with the 
inflammatory response following SCI, which is mediated by microglia. 
As the main active immune defense in the central nervous system, 
microglia respond to sites of injury via release of ATP (a purine deriv-
ative) from the injured area (Dou et al., 2012). This mechanism may also 
explain dysregulation of the purine pathway in the present study. Thus, 
urinary metabolites implicated in purine metabolism may be indicative 
of their neuroprotective action or their role in initiating immune system 
activation. 

Evidence for tyrosine metabolites in the urine suggests low cellular 
uptake and excessive excretion of catecholamines produced along this 
pathway, including dopamine which was part of the VIAVC best subset. 
Although there have been few studies relating the role of dopamine to 
spinal cord functioning in humans, evidence in model systems such as 
the rodents, lamprey and C. elegans showed sources of dopamine in the 
spinal cord which modulate movement patterns (Sharples et al., 2014). 
Although this area of study is in its infancy, extrapolation of this finding 
to humans is plausible. The loss of dopaminergic as well as noradren-
ergic inputs to the spinal cord following SCI may contribute to the loss of 

Fig. 4. The Receiver Operator Characteristic (ROC) curve represents a high 
sensitivity and specificity of the group separation between initial and post- 
injury samples. The corresponding area under the curve (AUC) and confi-
dence interval are indicated on each figure. The ROC curve was constructed 
using the metabolites determined to be significantly altered based on the VIAVC 
best subset, which corresponds to 3 bins. 

Fig. 5. Metabolic pathway analysis, conducted based on spectral bins that are 
significant by either the VIAVC best subset or the paired T-test/Wilcoxon Mann- 
Whitney test. A higher value on the y-axis indicates a lower p-value for the 
pathway and the x-axis provides the pathway impact, which is a measure of 
how affected each pathway is by the metabolites identified as significantly 
altered. The color of each circle is an indication of the p-value, with darker 
colors being more significant. The size of the circle is proportional to the 
pathways impact factor. Only pathways with a p-value less than 0.05 are 
labeled. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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rhythmic and autonomic movements(Han et al., 2007; Acton et al., 
2018). Additionally, it was shown that sources of dopamine in the dorsal 
horn of the rat spinal cord modulate the bladder reflex, and underlies 
micturition following SCI (Hou et al., 2016). Thus, spinally derived 
dopamine in animal models increases the possibility of a similar 
mechanism in human patients. 

Caffeine presented as a clinically significant metabolite, with a 
negative correlation to patient SCIM scores. The role of caffeine in injury 
to the central nervous system is still not fully understood and is subject 
to debate. A recent review indicated that caffeine may be utilized as an 
adenosine receptor antagonist and have therapeutic, neuroprotective, 
and pain relief roles (Rivera-Olive and Diaz-Rios, 2014). However, a 
more recent study of spinal cord injury in a rat model has shown that 
caffeine may have a neurotoxic role associated with reduced neural 
repair and increase inflammation (Yang and Jou, 2016). Changes in 
caffeine levels may also be related to patient mobility and metabolic 
rates. For example, SCI patients experience a reduced metabolic rate as a 
result of skeletal muscle atrophy and lower levels of activity (Gra-
ham-Paulson et al., 2017). Delayed caffeine absorption was found to be 
greater for tetraplegic than for paraplegic SCI patients, owing to a 
greater loss of skeletal muscle and subsequent reduction in resting 
metabolic rate (Graham-Paulson et al., 2017). In tetraplegia, gastroin-
testinal emptying times are prolonged, with effects experienced as soon 
as three days after sustaining an SCI injury (Qualls-creekmore et al., 
2009). Therefore, caffeine likely serves as a biomarker of metabolic 
slowing, and a higher risk of adiposity associated with a reduced 
decreased metabolic rate due to the loss of metabolically active lean 
body mass. Clinical intervention requires ways to boost the metabolic 
state of patients to prevent this downstream effect. With rehabilitation 
and an increase in patient mobility, increase muscle strength may 
out-weigh atrophy, and with improved metabolism and absorption of 
nutrients, the ensuing decrease in urinary caffeine levels may indicate 
recovery. Further studies of caffeine in human cohorts of SCI patients 
should focus on metabolomic changes in both urine and blood, as this 
would provide a more wholistic view of how caffeine is being utilized 
and processed in the body. It is also important to note that dietary intake 
is the only source of caffeine in the metabolome, as it is not endogenous 
to the human body. Although this study made use of a paired univariate 
test, it did not account for patient diet. Future studies into the role of 
urinary caffeine levels as a biomarker for SCI recovery should control for 
dietary intake of caffeine to eliminate this possible confounding factor. 

In correlation with functional recovery, 3-hydroxymandelic acid 
revealed a negative relationship to improved recovery, as its levels 
decreased. In a previous study, it was found that elevated excretion of 3- 
hydroxymandelic acid is associated with tyrosine intake (Fell et al., 
1979). Excretion of this catecholamine metabolite is additional evidence 
supporting dysregulation of the tyrosine metabolic pathway as indicated 
in the pathway analysis for this study. This suggests a corresponding 
decrease in excretion of tyrosine derivatives as recovery progresses, as 
inferred from the negative correlation. 

Lastly, L-valine, an essential amino acid, is a building block for 
muscle tissue, presented with a positive correlation to % difference 
measurements at the SCIM. Muscle atrophy is a cardinal feature of SCI 
(Giangregorio and McCartney, 2016); it is likely that excretion of 
L-valine in the urine is indicative of muscle breakdown following SCI, 
and overall liberation of its constituent amino acids. The fact that an 
initial increase in its levels is associated with recovery likely underlies 
the body’s subsequent demands for protein building blocks to restore 
muscle tissue. 

This study also aimed to determine if the change in metabolite 
concentration could serve as a proxy measure of the degree of recovery. 
L-valine again presented as a significant metabolite for this comparison, 
but with a negative correlation. Neuronal death following SCI is trig-
gered by an elevation in intracellular calcium levels (Tymianski et al., 
1993), and L-valine is postulated to be a part of this pathway (Simpson 
et al., 1990). As an excitatory, branched chain amino acid implicated in 

the cascade that leads to calcium-induced neuronal cell death, it follows 
that a decrease in its levels is associated with an improvement in patient 
recovery. 

A negative correlation was also observed for N-methylhydantoin 
levels compared to the % difference SCIM scores. N-methylhydantoin is 
a by-product of the degradation of creatinine by bacteria (Seifter, 2014). 
Creatinine is a breakdown product of creatine phosphate in the muscle, 
and therefore indicates muscle atrophy. Unlike most polar substances, 
creatinine is not reabsorbed by the kidneys, and is filtered out to be 
excreted in the urine (Levey et al., 1998). Decreased levels of N-meth-
ylhydantoin post-injury may indicate a decrease in skeletal muscle at-
rophy, via reduced creatinine levels. 

Although the sample size of the present study was limited, the 
pairing of spinal cord injured subjects within this pilot study ensures 
that the regulation of metabolite concentrations is significant across the 
initial and post-injury groups. Identification of unique urinary metabolic 
signatures is validated via this paired analysis, which increases statis-
tical power of this pilot study. Another limitation to this pilot study is 
that patients’ diets were not controlled while in hospital or following 
release. Lastly, the effects of body mass index, drug treatments, and 
medical history were not controlled for in this study due to the small size 
of the available patient cohort. A recent study of human serum samples 
has shown that diet, along with several other lifestyle factors, can be 
predictive of 76% of the metabolome (Bar et al., 2020); however, this 
study utilized liquid chromatography-mass spectrometry, instead of 
NMR, and did not investigate urine. In the present study, the effects of 
these confounding factors are minimized by the fact that two urine 
samples were collected from each patient allowing for a paired univar-
iate analysis; thus, significant changes to metabolite levels reflect a 
global change across all paired urine samples. 

The identified biomarkers and metabolic pathways may represent 
attractive therapeutic targets and have potential for clinical translation. 
Metabolites with statistically significant correlations to SCIM outcomes 
represent a window of opportunity for neurotherapeutic intervention 
amongst spinal cord injured patients. Caffeine, 3-hydroxymandelic acid, 
and L-valine may have the ability to predict recovery outcomes, whereas 
N-methylhydantoin and L-valine have potential to serve as measures of 
the change in metabolic profiles over time. 

4. Experimental procedure 

4.1. Patient characteristics and sample collection 

This study was embedded in a larger study entitled the UCAN study, 
which follows patients with SCI, stroke, and traumatic brain injury 
throughout their recovery from one month to 6 months post-injury. Male 
patients with incomplete (n = 4) and complete SCI (n = 2) were 
recruited through the Foothills Medical Centre, University of Calgary 
(average age 55 ± 20 years; Table 1). Pairs of fasting morning urine 
samples (acquired between 6 a.m. and 9 a.m.) were collected at two 
different time points: one month following injury and again at 6 months 
post-injury. Pairing the samples for this within-subject study reduced the 
influence of confounding factors, such as diet, lifestyle, body mass index, 
medical history, and drug treatments, to raise the validity of the anal-
ysis. Urine samples were stored at -80 ℃ until further processing. 

We initially received seven pairs of urine samples, of which one was a 
female. To remove the effect of sex as a confounding factor, we removed 
this female from the multivariate/univariate statistical analysis pre-
sented in this pilot study. The present research was approved by the 
University of Calgary Conjoint Health Research Ethics Board (CHREB) 
and the University of Lethbridge Human Participant Research Com-
mittee in accordance to the standards set forth by the Tri-Council Policy 
Statement: Ethical Conduct for Research Involving Humans. 
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4.2. Clinical assessments 

The Spinal Cord Independence Measure (SCIM) was completed for 
each patient at 1 month following injury and at 6 months follow-up. The 
SCIM, based on patient self-reports, includes the following areas of 
function: self-care (sub-score 0–20), respiration and sphincter manage-
ment (0–40), and mobility (0–40) (Catz et al., 1997). The final score 
ranges from 0 (total dependence) to 100 (total independence). We also 
collected information on SCI type (complete or incomplete), ASIA score, 
sex, lesion location, co-morbidities, and age (see Table 1). 

4.3. NMR sample preparation, data acquisition, and processing 

To control for pH and reduce positional noise within NMR-generated 
datasets (Gil et al., 2016; Smelter et al., 2017), urine samples were 
combined with buffer consisting of 4:1 ratio of dibasic potassium 
phosphate (K2HPO4) to monobasic potassium phosphate (KH2PO4) with 
a combined concentration of 0.625 M in dH2O (pH 7.4), containing 
3.75 mM NaN3 anti-microbial agent and 0.375 M potassium fluoride 
(KF). For sample preparation, 400 µL of urine, 160 µL of buffer, and 
40 µL of 0.02709% weight/volume D2O with trimethylsilyl propanoic 
acid (TSP) were pipetted into a microfuge tube. Each sample was 
centrifuged at 12,000 rpm for 5 min at 4 ℃ to eliminate insoluble 
matter. 550 µL of supernatant was then transferred to an NMR tube, 
vortexed and loaded into the spectrometer. All final NMR samples were 
pH checked to 7.4 ± 0.05 with an NMR pH meter. 

A 700 MHz Bruker Avance III HD NMR spectrometer and a room- 
temperature TBO probe were used to acquire the NMR data. Three- 
dimensional and one-dimensional shimming experiments were con-
ducted prior to NMR data acquisition to correct for any inhomogeneities 
in the static magnetic field. The data were acquired using a one- 
dimensional 1H Nuclear Overhauser Effect Spectroscopy experiment 
with water suppression, 128k points, and 128 scans. The data were 
processed using zero filling to 256k points, line broadening to 0.3 Hz, 
and automatic phase and baseline correction. The spectra were then 
imported into MATLAB where they underwent dynamic adaptive 
binning (Anderson et al., 2011), followed by manual inspection and 
correction of the bins, and recursive segment-wise peak alignment 
(Veselkov et al., 2009). In total, 505 bins were created for this analysis. 

Metabolites were identified using a combination of resources: Che-
nomx 8.2 NMR Suite (Chenomx Inc., Edmonton, Alberta, Canada), the 
Human Metabolome Database (HMBD) (Wishart et al., 2018), and the 
Human Urine Metabolome (Bouatra et al., 2013) containing a list of 
NMR-derived urinary metabolites and their concentrations. 

4.4. Statistical analysis 

Metabolic pathway and multivariate testing and visualization was 
carried out using MetaboanalystR version 2.0.4 package running inside 
R version 3.5.3 (Pang et al., 2020). Pathway topology analysis was 
conducted by selecting the hypergeometric test for the 
over-representation analysis, relative-betweenness centrality for the 
topology analysis and using the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) database for Homo sapiens as the pathway library 
(Wishart et al., 2018; Xia and Wishart, 2010). Only the metabolites 

identified as significantly altered in this study (Supplementary table 1) 
were listed when carrying out pathway topology analysis. Multivariate 
statistical analysis was used to determine if urinary metabolite profiles 
could be used to distinguish between the 1 month and 6 
month-post-injury samples. Prior to modeling, the data were normalized 
to the total metabolome (excluding the regions corresponding to water 
and urea), log transformed, and pareto-scaled (Craig et al., 2006; 
Wiklund et al., 2008; van den Berg et al., 2006; Box and Cox, 1964). Bins 
containing significant metabolites were sorted according to the F-ranked 
Variable Importance Analysis based on random Variable Combination 
(VIAVC) analysis (Yun et al., 2015) to identify significant metabolites 
based on the Receiver Operator Characteristic (ROC) and the subsequent 
Area-Under-the-Curve (AUC) analysis (Fawcett, 2005). It also employs a 
binary matrix resampling method as a robust method for random data 
sampling data, and all multivariate supervised models underwent dou-
ble ten-fold cross-validation (DCV) and permutation testing using 2000 
permutations (Szymanska et al., 2012). The DCV algorithm utilized by 
VIAVC sets aside an independent test set that is used to validate the 
model. This process of model validation is repeated multiple times, with 
a different randomly selected test set used each time, until every sample 
has been included in the test set at least once. Univariate statistical tests 
were also conducted; either a paired T-test or paired 
Wilcoxon-Mann-Whitney test was used in the case of parametric or 
non-parametric data, respectively. A Shapiro-Wilk test was used to 
determine if the data for each bin was parametric or not (Goodpaster 
et al., 2010). 

An orthogonal projection to latent structures discriminant analysis 
(OPLS-DA) was conducted to visualize between-group separation as a 
function of within-group separation (Wiklund et al., 2008). This was 
complemented by a Principal Components Analysis (PCA), which 
demonstrated the degree of separation between the groups without the 
presence of an algorithm, as well as unsupervised hierarchical clustering 
illustrated by the accompanying heat map. 

Pearson R correlations were computed between the percent differ-
ence of the patients’ SCIM scores and both the initial and delta of the 
normalized urinary metabolite concentrations (Fig. 1). Significance was 
based on the Bonferroni corrected p-value, obtained by dividing 
alpha< 0.05 by the number of VIAVC F-ranked bins tested for this 
analysis (n = 19), to obtain a rigorous set of clinically relevant metab-
olites (Goodpaster et al., 2010). The delta for the urinary metabolites 
was calculated by subtracting the post-injury normalized concentrations 
from the initial normalized concentrations. The % difference for SCIM 
scores at the two different time points were computed as follows, based 
on the clinical data provided in Table 1: 
⎛

⎜
⎜
⎝

PostRecoveryScore − InitialScore
(

PostRecoveryScore+InitalScore
2

)

⎞

⎟
⎟
⎠*100%  
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Table 1 
Patient characteristics table indicating the age, lesion location, co-morbidities, and SCI type, as well as both the initial and post-injury SCIM scores.  

Patient Code SCI Type ASIA Score Lesion Location Co-Morbidities Age Pre SCIM Post SCIM 

SCI_01 Incomplete D Central Cord  80 84 89 
SCI_02 Complete A T7  29 70 70 
SCI_05 Incomplete D C4  38 72 92 
SCI_06 Complete A T6  50 49 66 
SCI_08 Incomplete D C6-C7  59 100 100 
SCI_11 Incomplete B C2-C4 UTI, C2-C3 spinal artery infarct 73 77 100  
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