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Opinion
Glossary

EDEM1–3 [Htm1p (Mnl1p) and Htm2p]: ER-degradation-enhancing mannosi-

dase-like proteins. Their intraluminal concentration is regulated by ERAD

tuning and by UPR. They determine the rate of glycoproteins disposal. The

catalytic residues in EDEM1, EDEM2, and EDEM3 are conserved.

ERAD: endoplasmic reticulum-associated protein degradation. Clearance of

proteins from the ER by their dislocation to the cytoplasm and subsequent

degradation using the ubiquitin–proteasome system.

ERAD tuning: selective removal of ERAD factors from the ER that sets the level of

ERAD activity. When defective, ERAD activity is enhanced to levels that might

interfere with protein biogenesis [45].

ER mannosidase I (Mns Ip): an ER a1,2-exomannosidase that cleaves the first

mannose from the B-branch of the glycan to generate Man8B glycoforms,

regardless of the conformation of the polypeptide [2].

HRD1 (Hrd1p): ER membrane-localized, RING finger-containing E3 ubiquitin

ligase that participates in dislocation across the ER membrane and polyubiqui-

tylation of ERAD substrates [56].

LC3-I (Atg8p): cytoplasmic form of the autophagic marker LC3. LC3-I is also non-

covalently associated with membranes of ERAD tuning vesicles (via direct or

indirect interaction with the type I membrane protein SEL1L) and with corona-

virus replication and transcription platform vesicles [45].

Mannosidase-like domain: structural domain of EDEM proteins conserved

among all members of the glycosyl hydrolase 47 family of a1,2 exomannosi-

dases comprising ER mannosidase I and several Golgi mannosidases [57].

MRH domain: mannose 6-phosphate receptor homology domain, which is

conserved in few sugar-binding and -modifying proteins. It consists of a

flattened b-barrel containing three conserved disulfide bonds. The substrate

recognition loop between the fifth and sixth cysteines is well conserved in

sequence and precisely conserved in length [58].

OS-9 (Yos9p): ERAD lectin that contains a single MRH domain for which a variety

of splice variants are expressed in the mammalian ER. OS-9 recognizes proteins

possessing oligosaccharides that expose a terminal a1,6-mannose residue

[19,29]. The intraluminal concentration of OS-9 is regulated by ERAD tuning

and can be substantially increased on UPR activation [37,49].

SEL1L (Hrd3p): type I membrane glycoprotein with dual activity in cellular

proteostasis as both a component of the dislocation machinery built around

the membrane-embedded E3 ubiquitin ligase HRD1 and, at least in mammalian

cells, a component of an ERAD tuning receptor that segregates luminal ERAD

factors in ERAD tuning vesicles, thereby regulating their constitutive clearance

from the ER [38,51].

UPR: unfolded protein response. An evolutionarily conserved response to ER

stress that reduces global protein translation and enhances biosynthesis of
Nascent polypeptides entering the endoplasmic reticu-
lum (ER) are covalently modified with pre-assembled
oligosaccharides. The terminal glucose and mannose
residues are immediately removed after transfer of the
oligosaccharide onto newly synthesized polypeptides.
This processing determines whether the polypeptide
will be retained in the ER, transported along the secre-
tory pathway, or dislocated across the ER membrane for
destruction. New avenues of research and some issues
of controversy have recently been opened by the discov-
ery that lectin–oligosaccharide interactions stabilize su-
pramolecular complexes between regulators of ER-
associated degradation (ERAD). In this Opinion article,
we propose a unified model that depicts carbohydrates
acting both as flags signaling the fitness of a maturing
protein and as docking sites that regulate the assembly
and stability of the ERAD machinery.

N-Linked glycans
Proteins that pass through the eukaryotic secretory path-
way are glycosylated on Asn residues (at Asn-Xxx-Ser/Thr
or more rarely Asn-Xxx-Cys, Asn-Xxx-Val, or Asn-Gly
sequons) on emergence into the ER [1]. Pre-assembled
N-acetylglucosamine2-mannose9-glucose3 moieties are
transferred en bloc from a lipid donor onto nascent poly-
peptide chains by the oligosaccharyltransferase complex.
N-Linked oligosaccharides are hydrophilic and therefore
they increase the solubility and inhibit the aggregation of
unstructured nascent chains [2]. The processing of these
added glycans determines the fate of the associated cargo
protein by influencing which folding, quality control, or
degradation factors will be engaged. These factors are
present in the ER at delicately balanced and highly con-
trolled concentrations. How N-glycan modifications retain
immature or aberrant cargo proteins in the folding envi-
ronment, control the incorporation of native glycoproteins
into secretory vesicles, or select terminally misfolded pro-
teins for ERAD (see Glossary) has been widely covered in
recent reviews [3–6]. By contrast, the focus of this Opinion
article is discussion of a newly discovered role of N-glycans
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in cellular proteostasis: the involvement of oligosacchar-
ides on ER-resident members of quality control and ERAD
machineries in promoting the assembly of supramolecular
complexes. These complexes play crucial roles in inspect-
ing the content of the ER lumen to aid in the clearance of
defective gene products, orphan subunits of oligomeric
membrane lipids, folding chaperones, and ERAD factors. It can eventually result

in cell death [59].

XTP3-B/erlectin: mammalian ERAD lectin containing two MRH domains that is

expressed as two splice variants [41].
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Figure 1. N-Linked glycan structure. The Asn-linked glycan is composed of three

glucoses (orange triangles), nine mannoses (blue circles) and two N-

acetylglucosamines (green squares). The types of linkage between sugars are

denoted and each residue is assigned a letter.
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complexes, and metabolically regulated proteins. The
intraluminal concentration of misfolded polypeptides
might modulate their formation and stability in a sub-
strate-dependent feedback mechanism that eventually
determines cellular ERAD activity.

N-Glycans on cargo proteins: maturation, quality
control, and sorting signals
Cycles of glucose removal and re-addition, which begin
shortly after a glycan is transferred to a nascent chain,
or delayed trimming of mannose residues determine
whether associated polypeptides will be retained by the
folding machinery or selected for ERAD, respectively.

The role of glucose processing in folding promotion

The A-branch or glucose-containing arm of N-linked gly-
cans (Figure 1) recruits molecular chaperones that assist in
efficient folding of glycoproteins [2,7]. Terminal glucose
residue n of the transferred triglucosylated glycan is rap-
idly removed by a-glucosidase I, which is associated with
the translocon complex. Malectin, a Glc2-binding protein,
might then intervene to retain immature and/or misfolded
polypeptides in the ER [8,9]. Removal of glucose m by a-
glucosidase II, a luminal heterodimeric enzyme, supports
co- or post-translational association of folding polypeptides
with the ER lectins calnexin and calreticulin [2,7]. The
oxidoreductase ERp57 and the peptidyl-prolyl isomerase
cyclophilin B are associated with calnexin and calreticulin,
and they catalyze rate-limiting folding reactions to facili-
tate attainment of the native structure [10,11]. Removal of
innermost glucose residue l by a-glucosidase II dissociates
the polypeptide from the calnexin–calreticulin chaperone
system. At this stage, UDP-glucose: glycoprotein glucosyl-
transferase 1 (UGT1) inspects the structure of the released
proteins. Non-native polypeptides are re-glucosylated by
UGT1, which initiates rebinding to the lectin chaperones
and their associated folding factors. Native polypeptides
are not recognized by UGT1 and are secreted [12]. Depend-
ing on the glycoprotein substrate, one or more bind-and-
release events might be required to attain the correct
conformation [13–15].

Mannose processing and the mannose timer model of

glycoprotein quality control

Studies in Saccharomyces cerevisiae revealed that Mns1p
(mannosidase 1) removes mannose residue i from the B-
branch of protein-linked oligosaccharides (Figure 1) [5].
For properly folded secretory proteins, this allows binding
of cargo lectin sorting receptors, which regulate the export
of native conformers from the ER [16]. For folding-defective
polypeptides, removal of mannose i is followed by removal
of at least one additional a1,2-linked mannose residue
(mannose k, branch C) by Htm1p, which forms a functional
complex with the oxidoreductase Pdi1p [17]. This trim-
ming event exposes a1,6-linked mannose j, which is recog-
nized by the mannose-6-phosphate receptor homology
(MRH) domain of the ERAD lectin Yos9p [17–19].

In mammalian cells, de-mannosylation of folding-defec-
tive polypeptides might be more extensive, with removal of
up to four a1,2-linked mannose residues. As in budding
yeast, ER mannosidase I (Mns1p ortholog) catalyzes
removal of mannose residue i. If misfolding persists, N-
linked glycans are further processed by EDEM1 and
EDEM3 (ER-degradation enhancing mannosidase-like
proteins, Htm1p and Htm2p orthologs) or by other resident
a1,2 mannosidase (Figure 2, steps 1 and 2, respectively).
Demonstration of mannosidase activity with purified
EDEM1 and EDEM3 is still lacking, and the role of a third
EDEM variant, EDEM2, in ERAD is even less well char-
acterized [20–25]. It should therefore be considered that
proteins of the EDEM family could operate as mannose-
binding lectins that associate with de-mannosylated oligo-
saccharides generated by extensive processing in a sub-
region of the ER that is populated by high ER mannosidase
I concentrations (i.e., the ER quality control compartment
or ERQC [3,5]).

In the mannose timer model of glycoprotein quality
control [26], extensive substrate de-mannosylation pro-
vides two signals that flag misfolded proteins for disposal.
Removal of mannose g, the acceptor for the re-glucosylat-
ing activity of UGT1 (which is absent in budding yeast),
irreversibly extracts the folding-defective polypeptide from
the calnexin–calreticulin cycle to mark the end of the
folding phase for maturing nascent chains (Figure 2, step
2; note that mannose f can also eventually be removed)
[22]. Removal of mannose k exposes the a1,6-linked man-
nose j, thereby recruiting the ERAD MRH-containing lec-
tins OS-9 and XTP3-B, which are expressed in several
splice variants in the mammalian ER (Figure 2, steps 2–
6) [27–30].

Accumulating evidence reveals that de-mannosylating
and mannose-binding ERAD factors reside in complexes
with other luminal ER-resident proteins. For example,
EDEM1 associates with BiP (immunoglobulin binding
protein), which possibly contributes to the recognition of
405
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Figure 2. Models of glycoprotein endoplasmic reticulum-associated degradation (ERAD). Various models of the delivery of ERAD substrates to an ER membrane ERAD

complex are depicted. Letters A–D designate the different routes for a misfolded substrate. The glycan attached to an ERAD substrate (black sinuous line) is trimmed of a

mannose residue by ER mannosidase I (ER Man I, step 1). This is followed by ER-degradation enhancing mannosidase-like protein (EDEM)1 recognition. EDEM1 is present

in a complex with ERdj5 and immunoglobulin binding protein (BiP). In the mannose timer model, EDEM1 acts as a mannosidase to trim additional mannose residues (step

2). In route A, ERAD substrates are directly recognized by type I membrane glycoprotein (SEL1L) (step 3). OS-9 and XTP3-B associate with SEL1L to act as ERAD gatekeepers

by querying the ERAD substrate for exposed a1,6-linked mannose residues. If the protein possesses the proper glycans, it is passed along the ERAD pathway (step 4). In

route B, alternatively, trimmed ERAD substrates are recognized by OS-9 and XTP3-B (step 5) and delivered to the ERAD membrane complex (step 6). Routes C and D depict

glycan docking models for OS-9–XTP3-B and EDEM1, respectively. In route C, OS-9 and XTP3-B recognize the misfolded substrates through protein–protein interactions

(step 7). This can involve associated co-factors such as GRP94. OS-9 and XTP3-B then deliver the ERAD substrate to the ER membrane ERAD complex by binding to the

glycans on the adapter SEL1L (step 8) or on a glycosylated SEL1L associated protein. In route D, the EDEM1 complex associates with ERAD substrates (step 9). EDEM1

employs its mannosidase-like domain to deliver the ERAD substrate to the ER membrane ERAD complex (step 10). The models depicted are not necessarily mutually

exclusive. Hybrid models that use multiple pathways are possible. Note that although glycans trimmed to Man7–5 can signal for ERAD in metazoans, the Man6 composition

is displayed for simplicity.
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non-native polypeptides, and with ERdj5, which might fa-
cilitate ERAD by reducing inter- and intramolecular dis-
ulfides of ERAD candidates (Figure 2) [31]. Interactions
between OS-9 or XTP3-B and BiP or GRP94, respectively,
have also been reported [27,32]. Participation in such multi-
protein complexes might explain the findings that EDEM
proteins and OS-9 and XTP3-B variants also associate or
regulate ER retention and disposal of non-glycosylated
folding-defective polypeptides [22,24,25,27,28,33].

EDEM1, EDEM3, OS-9, and XTP3-B also interact with
the type I membrane glycoprotein SEL1L (Hrd3p in yeast)
[24,27,34–37]. SEL1L nucleates interactions between
these luminal ERAD components and a supramolecular
membrane complex containing the E3 ubiquitin ligase
406
HRD1, which regulates dislocation across the ER mem-
brane and polyubiquitylation of ERAD substrates
(Figure 2, steps 3, 6, 8, and 10) [24,27,34–38]. In the next
section, we explain how the glycan-mediated interactions
between EDEM1, EDEM3, OS-9, or XTP3-B and SEL1
regulate cellular proteostasis in metazoans by modulating
clearance of misfolded polypeptides (ERAD) and removal of
ERAD factors from the ER lumen (ERAD tuning).

N-Glycans on ER-resident proteins: regulating ERAD
and ERAD tuning
Glycosylation of ER-resident quality control factors

Although the proteins that act early in the secretory
pathway tend to be non-glycosylated (e.g., the nascent
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Figure 3. Endoplasmic reticulum-associated degradation (ERAD) tuning model. The receptor-mediated removal of ER-degradation enhancing mannosidase-like protein

(EDEM1) and OS-9 from the ER lumen is shown. In the absence of misfolded proteins, type I membrane glycoprotein (SEL1L) is disengaged from the HRD1 dislocation

machinery. The penta-glycosylated ectodomain of SEL1L associates with EDEM1 and OS-9 (step 1). The cytosolic tail of SEL1L or a SEL1L-associated protein binds the

cytosolic ubiquitin-like protein LC3-I. The complex is released from the ER in vesicles (steps 3 and 4) that may eventually fuse with an ill-defined degradative compartment.

ERAD tuning vesicles are co-opted by coronaviruses as replication and transcription platform vesicles.
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chain-interacting proteins Sec61a, BiP, PDI, malectin,
calnexin, and ERp57), several factors that function post-
translationally for quality control and ERAD (e.g., EDEM
proteins, OS-9, XTP3-B, and SEL1L) are glycosylated.
Whether glycosylation plays a role in the segregation or
organization of ER factors into specialized complexes or
subregions within the ER is unknown. With the exception
of EDEM1, for which N-glycans mediate the transient
association with calnexin required for efficient maturation
[39], the role of N-linked oligosaccharides in the biogenesis
of ER-resident chaperones has not been studied. By con-
trast, several recent studies have revealed the crucial role
of oligosaccharides displayed on ER-resident quality con-
trol factors in the formation of functional supramolecular
complexes [24,27,34–37].

Glycans as docking signals in ERAD

Affinity-tagged ERAD factors have been used as bait to
characterize interacting components of multimeric ERAD
complexes [38,40]. Christianson et al. used this approach to
confirm that a prominent interactor of the type I mem-
brane protein SEL1L is the membrane-embedded E3 ubi-
quitin ligase HRD1 [27]. These studies also revealed an
association between SEL1L and the luminal MRH-contain-
ing proteins OS-9 and XTP3-B. Additional studies have
revealed that the mannosidase-like domain-containing
proteins EDEM1 and EDEM3 also interact with SEL1L
[24,25,27,35,37]. Disruption of the EDEM1, EDEM3, OS-9,
or XTP3-B oligosaccharide-binding motifs, or cell treat-
ment with kifunensine (an inhibitor of de-mannosylation
of protein-bound oligosaccharides), decreases the associa-
tion of these ERAD factors with the penta-glycosylated
protein SEL1L [24,27,29,30,34,35,41,42]. Taken together,
these data reveal that EDEM1, EDEM3, OS-9, and XTP3-
B activity is not restricted to oligosaccharides displayed on
folding-defective polypeptides as described in the mannose
timer model of glycoprotein quality control (Figure 2,
routes A and B). Rather, these luminal ERAD factors might
also engage SEL1L oligosaccharides to dock at the HRD1
dislocation complex (Figure 2, routes C and D; docking
model). This facilitates delivery of ERAD substrates to
dislocation sites and their transport across the ER mem-
brane for their eventual proteasomal degradation. Several
studies also revealed oligosaccharide-independent associ-
ation of EDEM proteins, OS-9, and XTP3-B with misfolded
proteins (Figure 2, routes C and D) [22,24,25,27–
29,33,43,44], or with SEL1L (Figure 2, routes A and B)
[36]. This shows that the mode of binding of these ER
lectins might be affected by the presence of associated
partners such as BiP and GRP94.
407



Box 1. Outstanding questions

� Are the processes of protein folding, quality control, and

degradation segregated into separate domains within the ER? If

so, how are folding, quality control, and ERAD factors segregated

and retained in sub-compartments (e.g., the ER quality control

compartment, ERQC)? How are cargo proteins delivered to

functionally distinct regions within the ER?

� How are non-native on-pathway folding intermediates that should

be retained in the folding environment distinguished from

terminally misfolded proteins that should be degraded?

� How many different ERAD pathways exist and what are the

misfolded determinants of cargo proteins that elicit intervention

of components of specific ERAD pathways?

� How are misfolded proteins delivered to and dislocated across the

ER membrane? For example, is unfolding of ERAD substrates

(e.g., reduction of disulfides, or cis to trans isomerization of

peptidyl–prolyl bonds) required? What is the nature of the

dislocation channel?

� Do members of the EDEM family of proteins act as mannosidases

or lectins? How do they recognize substrates?

� Are EDEM2 and EDEM3 also found in complexes with chaper-

ones?

� What is the composition of the individual glycans of ERAD factors

such as SEL1L/Hrd3p, EDEMs, OS-9/Yos9p, and XTP3-B? Is their

glycan composition regulated?

� How are ERAD tuning pathways regulated at the molecular level?

� How are ERAD tuning pathways hijacked by pathogens?

� What is the complete composition of ERAD tuning vesicles?

� Is there crosstalk between ERAD and autophagy, the two major

cellular degradative pathways?
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Glycans as docking signals for ERAD tuning

Control of the luminal concentration and activity of ERAD
factors is important for maintenance of cellular proteos-
tasis. Misregulated ERAD might select on-pathway folding
intermediates for degradation before they are given a
sufficient opportunity to reach their native structure
[45]. For example, aberrantly high levels of the ER E3
ligases HRD1 and gp78 cause the inappropriate degrada-
tion of individual gene products and are associated with
rheumatoid arthritis and highly metastatic sarcoma, re-
spectively [46,47]. The concept of ERAD tuning [45] is
based on emerging evidence showing that an increasing
number of ERAD factors, including ER mannosidase I,
HERP, gp78, JAMP, EDEM1, OS-9, and SEL1L, are con-
stitutively removed from the unstressed ER [3,37,48–54].
Luminal expression of misfolded proteins might inactivate
constitutive removal of select ERAD factors from the ER
and stabilize complexes between ERAD regulatory compo-
nents. This might enhance ERAD in the absence of unfold-
ed protein response (UPR) activation. This implies the
existence of ERAD substrate-dependent feedback mecha-
nisms that rapidly adapt ERAD activity to the misfolded
protein load [37].

Association of EDEM1 and OS-9 with SEL1L regulates
delivery of ERAD substrates to the HRD1 dislocon
(Figure 2). However, in the absence of ERAD substrates,
the ERAD tuning pathways are activated. SEL1L is disen-
gaged from inactive dislocons. Under these circumstances,
the cytosolic tail of SEL1L (or a SEL1L-associated protein)
recruits the ubiquitin-like protein LC3-I to build a mem-
brane-bound receptor that regulates selective and constitu-
tive clearance of SEL1L-associated OS-9 and EDEM1 from
the unstressed ER (Figure 3) [37]. These receptor:ligand
complexes enter so-called ERAD tuning vesicles, which lack
a coatomer coat and are larger than the COPII vesicles that
ferry cargo proteins from the ER to the Golgi [37,48,49,55].
ERAD tuning vesicles contain up to 80% of the cellular
EDEM1 in unstressed cells [33,48,55], but much less in cells
expressing ERAD substrates, which substantially inhibit
removal of ERAD factors from the ER [37]. They eventually
deliver OS-9, EDEM1, possibly the short-living ER manno-
sidase I, and other SEL1L-interacting ERAD factors such as
XTP3-B and EDEM3 to an ill-defined endolysosomal degra-
dative organelle. In summary, the ER load of misfolded
polypeptides might determine whether the lectin–glycan
association with SEL1L drives ERAD substrate progression
downstream through the ERAD pathway or directs the
removal of ERAD lectins from the ER.

Concluding remarks
The role of oligosaccharides as folding and quality control
tags that regulate protein biogenesis in the ER of eukary-
otic cells has been studied extensively over the past two
decades. The glycosidases and glycosyltransferases that
process protein-bound oligosaccharides, the lectins en-
gaged by the different oligosaccharide structures, and
the role of each trimming intermediate in protein quality
control have been characterized. In this Opinion article, we
propose a new unified model for the role of glycans in
protein quality control that combines components of the
mannose timer and docking models.
408
The mannose timer model shows how N-linked glycans
can act as flags that signal terminally misfolded polypep-
tides for degradation by recruiting ERAD lectins. N-Linked
glycans can also support lectin–oligosaccharides interac-
tions between components of the ERAD machinery, as
demonstrated in the docking model [24,27,34–37]. These
associations drive progression of substrates along the
ERAD pathway or promote removal of ERAD factors from
the ER lumen for ERAD tuning in the absence of misfolded
polypeptides. On accumulation of terminally misfolded
polypeptides and under stress conditions in which the
UPR is activated, the formation and stability of active
dislocation machineries would be favored to ensure rapid
turnover of aberrant cargo. This implies a model of N-
glycoprotein processing in the ER that includes regulatory
tuning of ERAD components by a substrate-dependent
feedback mechanism. A substrate-dependent feedback
mechanism has been proposed in yeast, in which the
activity of the EDEM1 ortholog Htm1p is enhanced on
misfolded polypeptide-induced formation of a functional
complex between the mannosidase and Pdi1p [17].

A unified carbohydrate quality control model explains
the recognition of oligosaccharides as flags and docking
sites by ERAD lectins. With the exception of XTP3-B
(which has two separate MRH domains), all other ERAD
lectins or lectin-like proteins have only one oligosaccha-
ride-binding domain and therefore cannot simultaneously
recognize the flag that indicates the folding state of cargo
and the glycosylated docking site on a protein such as
SEL1L. It will be important to determine the quaternary
structure of the ERAD lectin complexes. If organized in
oligomers, the presence of multiple glycan-binding sites
would support the recognition of oligosaccharide flags on
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misfolded polypeptides and of docking oligosaccharides on
the dislocation machinery at the ER membrane by individ-
ual ERAD lectin complexes. Resolution of this issue and
other open questions (Box 1) might aid in the design of
approaches to support interventions in protein misfolding
diseases and in the optimization of the production of
ectopic proteins used in clinics or industry.
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