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Abstract: Medicinal plants are a vital source of natural products (NPs) that can cure cancer

through modulation of different pathways, including oxidative stress, extrinsic and intrinsic

apoptosis, cell cycle, inflammation, NF-kB, PI3K/AKT/mTOR, AMPK (JNK), MEK/ERK

(Raf)-MEK-ERK and autophagy. Puerarin (Pue), an important NP belonging to the isofla-

vone glycoside group, is derived from Pueraria lobata (Willd.) Ohwi, Pueraria thomsonii

Benth, and Pueraria tuberosa (Willd.). This NP was approved by the Chinese Ministry of

Health for the treatment of different diseases in 1993, but it was also later reported to exhibit

anticancer activity. Pue causes cancer cells death through modulation of different mechan-

isms including oxidative stress, intrinsic and extrinsic, Survivin and XIAP, PI3K/AKT/

mTOR, Ras-Raf-MEK-ERK, JNK, cell cycle, AMPK, NF-kB, inflammation and autophagy

pathways. Therefore, this review compiles for the first time the studies about the anticancer

mechanism of Pue and provides comprehensive information about the anticancer effects of

Pue. This review may serve as a basis for future research and clinical treatment.

Keywords: medicinal plants, natural products, Puerarin, Pueraria lobata, Pueraria

thomsonii, Pueraria tuberosa

Introduction
Cancer is a major cause of mortality worldwide; therefore, the development of cancer

treatment is highly important. Natural products (NPs) are widely used in cancer

treatment because of their low toxicity and high level of success.1 Medicinal plants

proven to get active compounds contain NPs.2 In the recent era, medicinal plants have

been explored for the treatment of a wide spectrum of physiological diseases.3–8

Common medicinal plant-derived NPs are isoflavones with a 3-phenylchroman

skeleton.9 Legumes of the Leguminosae and Fabaceae families, including lupine,

kudzu, barley, cauliflower, soy, and fava beans, are a major source of plant-based

isoflavones.9,10 Puerarin (Pue), depicted in Figure 1, is an important bioactive isofla-

vone glycoside.11,12 Pue has been isolated from several leguminous plants of the genus

Pueraria, including Pueraria tuberosa (Willd.),13–15 Pueraria lobata (Willd.) Ohwi

(Gegen in Chinese),16,17 and Pueraria thomsoniiBenth.13,18,19 Pueraria plants have

been interlinked with Asian culture because of their use in decoration, cooking, and

disease treatment.13 Systematic biology is an emerging approach that focuses on

molecular interactions with biological systems.20 Pue has molecular weight 416,21

possesses several pharmacological activities against osteoporosis,22 cardiovascular

diseases,23 fever,24 neurological dysfunction,25 liver injury,26 and hangover, and they

have been used in clinical treatments and experimental research.27 Pue injections are

used extensively in China,16,28,29 but their effects on human health remain unclear to
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date.16 Pue was approved for clinical treatment in 1993 by

the Chinese Ministry of Health, and it was initially used for

the treatment of cardiovascular diseases; however, Pue was

later reported to have anticancer activity.30 Furthermore, Li

et al (2006) reported the tissue distribution and pharmacoki-

netics after oral administration of high dose of Pue and

a complex of Pue and phospholipids (400 mg/kg) through

high-performance liquid chromatography (HPLC). Although

Pue in high dose has effects of saturation and change meta-

bolism, but have no evidence for the presence in tissue.31 The

excretion of Pue also remains unclear, whether they excrete

with bile, following enterohepatic circulation32 or excreted

through urine. Recently, it is reported that the Pue eliminated

very rapidly from the body.33 Although the level of Pue was

very low after 6 h of administration, the excretion in feces

and urine remained unchanged till 24 h (45.33%).33,34 These

studies also clear that the Pue excrete through urine and

feces. Pue is an NP against cancer, and a number of reviews

about this topic are available. However, a review of its antic-

ancer activity remains lacking. Therefore, this review sum-

marizes the available studies on the anticancer activity of Pue

to encourage future research and clinical trials on Pue. The

following are the mainly reported mechanisms through

which Pue inhibits cancer cell proliferation and induces

death.

Pue Anticancer Molecular
Mechanisms
Pue possesses anticancer effect through different molecu-

lar mechanisms which are listed below.

Oxidative Stress
Multiple studies show that the high oxidative stress in

cancer cells increases cell proliferation, survival, metasta-

sis, and angiogenesis; disrupts cell death signaling; and

promotes drug resistance.35–37 Increased generation of

reactive oxygen species (ROS) and inhibition of mitochon-

drial membrane potential (MMP) lead to oxidative

stress.13 ROS play a vital role in different types of cellular

processes, including gene expression, cell survival, prolif-

eration, differentiation, enzyme regulation, and eliminating

foreign particles and pathogens.38,39 ROS promote tumor

growth, but recent studies suggest that this property of

ROS can be beneficial for cancer therapy. Various

in vitro and in vivo experiments showed that phytochem-

icals induce exogenous ROS generation above a threshold

level in cancer cells and decrease the MMP40 that selec-

tively kills these cancer cells.35,37,41,42 Pue is a potential

NP that inhibits the proliferation and induces the apoptosis

of SMMC7721 cells through oxidative stress via ROS

generation and MMP dissipation.43 Oxidative stress acti-

vates the intrinsic apoptosis pathway as shown in Table 1

and Figure 2.

Intrinsic Apoptosis Pathway
Mitochondrial-dependent apoptosis is an important path-

way for the induction of apoptosis, and disturbance in this

pathway can inhibit apoptosis. The intrinsic pathway is

controlled by the B-cell lymphoma 2 (Bcl-2) family pro-

teins, which either increase or decrease the mitochondrial

membrane permeability for the release of cytochrome-c

and other apoptotic proteins.44 Furthermore, caspase acti-

vation and DNA fragmentation are the main features of

induced apoptosis.45–47 Plant-derived NPs induce apopto-

sis in cancer cells through the mitochondrial-dependent

pathway.48,49

Pue significantly induces apoptosis in HT-29 colon can-

cer cells,50 human mental cell lymphoma (MCL) Z138,51

SMMC7721,43 MDA-MB-231,52 MCF-7,52 NB4,53 A549

cells53 and HS578T52 cell lines through the intrinsic apopto-

sis pathway.43,50–55 In this pathway, Pue downregulates

Bcl-2,50,51,53–55 which causes Bax50–53,55 upregulation and

increases the permeability of the mitochondria to apoptosis-

inducing factor (AIF),43 which is then released from the

mitochondria to the cytosol. In the cytosol, AIF43 activates

caspase-3,43,50,52–55 −7,53 and −9,43,52,53 which trigger DNA

fragmentation and ultimately induce apoptosis,43,50–55 as

illustrated in Table 1 and Figure 2.

Figure 1 Chemical Structure of Puerarin.
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Survivin and X-Linked Inhibitor of

Apoptosis Protein (XIAP) Pathway
Survivin, which belongs to the inhibitor of apoptosis protein

(IAP) family, is one of the top 5 cancer-associated genes. In

different types of cancer, survivin is upregulated and is

associated with resistance to radiotherapy and chemotherapy

along with poor prognosis.56 Overexpression of survivin in

tumors decreases apoptosis and increases cell division. XIAP

also belongs to the family of IAP, and it is upregulated in

different cancers, including lung, breast, bladder, and renal

carcinoma.57–60 A variety of NPs reduce the expression

levels of survivin and XIAP in different cancers.61,62 Pue

Table 1 Potential Mechanisms of Puerarin in Different Cancer Cell Lines Through Different Pathways

Cancer Name Cell Lines Genes/Proteins Involved Mode of Action Ref

Leukemic cancer NB4, Kasumi-1,

U93, HL-60 cells

G1/G0 phase cell cycle arrest 101

NB4 cells Bcl-2↓, survivin↓, pml/RAR alpha↓, caspase-3↑, caspase-8↑, JNK↑ and

FasL↑

Apoptosis 54

HL-60 cells DNA ladder formation Apoptosis, cell cycle 102

THP1 macrophages TLR4↓, phospho-IκBα↓/IκBα↓, CD36↓ Inhibition 126

Non-small cell lung

cancer

Xenograft model,

NSCLC

macrophages

iNOS+↑, CD197+↑, CD40+↑, (TNF)-α↑, (IFN)-γ↑, (IL)-12↑, CD163

+↓, Arg-1↓+, CD206+↓ TGF)-β↑, IL-4 ↓, IL-10↓, MEK/ERK1/2↓

Inhibition, migration,

invasion, angiogenesis

86

NCI-H441 cells Akt↓, ERK↓, Atg5↑ Autophagy 55

A549 cells, in vivo Caspase-3,7,9↑, Bax↑, Bcl2↓ Apoptosis, tumour inhibition 53

Oesophageal

cancer

Eca-109 cells Apoptosis, reduce tumour

volume

19

Human colon

cancer

HT-29 cells DNA fragmentation, BAX↑, cleave caspase-3↑, c-myc↓, bcl2↓ Apoptosis, cell growth

inhibition

50

SMMC-7721 cells MAPK↑. p- MAPK↑ Apoptosis 85

Hepatocellular

carcinoma

SMMC7721 cells ROS↑, MMP↓, AIF ↑, caspase-3,8,9↑, ERK1↑, P38↑, c-Jun↑ Apoptosis/growth inhibition 43

RL95-2, Ishikawa

cell

P450(arom) ↓ Expression 94

Ovarian cancer MCF-7/Adriamycin

cells

MDR1↓, Nf-KB↓, IkkappaB↓, AMPK↑, ACC↑, GSK-3b↑, CRE↓ Inhibition 110

Breast cancer MDA-MB-231,

MCF-7 cells

CXCR4↓, CCR7↓, MMP-9↓, MMP-2↓, VCAM↓, ICAM↓, TNF-α↓ and

IL-6↓, NF-kB↓, p65↓, p- IκBα↓, p- Erk↓.

Inhibit adhesion, migration

and invasion

124

MDA-MB-231,

MCF-7, HS578T

cells

p53↑, p21↑, Bax↑, caspase-9↑ Apoptosis/G-M phase cell

cycle arrest, growth

inhibition

52

Vascular smooth

muscles cells

cancer

Vascular smooth

muscles cells

p-ERK ½ ↓, PCNA↓ G1/S-interphase cell cycle

arrest

87

Human mental cell

lymphoma

Z138 cells p-akt↓, PI3K↓, p-NF-kB↓, Bcl-2↓, XIAP↓, cyclin D1↓ Apoptosis, inhibit

proliferation

51

Bladder cancer Bladder cancer cells p-p70S6K↓, p-mTOR↓, G0/G1 phase cell cycle arrest 76

T24 cells NF-kB↓, COX-2↓ Apoptosis/inhibit

proliferation

125
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inhibits the expression of survivin in NB4 cells54 and XIAP51

in Z13851 cells, which further activate caspase-3 and −9, as

shown in Table 1 and Figure 2.

Extrinsic Apoptosis Pathway
The extrinsic pathway is activated through the tumor

necrosis factor (TNF) family proteins, including Fas or

TNF receptor-1 (TNFR1).63 Fas or TNFR1 activates

caspase-8 via Fas-associated death domain protein,

creating a death-inducing signaling complex that trig-

gers caspase-3 activation and cell death.64,65 The NPs

also modulate the extrinsic apoptosis pathway in differ-

ent cancers.66,67

Pue induces the extrinsic apoptosis pathway in NB4

and SMMC772143 cells through activation of Fasl,54

which further activates caspase-8;43,54 activated cas-

pase-8 then activates caspase-338,54 and causes apoptotic

cell death.43,54 This pathway is further summarized in

Table 1 and Figure 2.

Figure 2 Schematic model of Pue through different pathways. Pue increases ROS generation, which leads to MPP dissipation and modulation of mitochondrial protein,

causing the release of Cyt-c into the cytoplasm. In the cytoplasm, Cyt-c activates AIF and caspase-3, −7, and −9. Pue also activates extrinsic apoptosis pathway by activating

Fasl and caspase-8 and inhibiting survivin and XIAP pathway, which further activate caspase-3, −7, and −9. Activated caspase-3 causes DNA damage and induces cell

apoptosis. The DNA damage causes the Pue-induced activation of p-53 and p21, which cause the arrest of the cell cycle at the G2/M phase. Pue also causes the arrest of the

cell cycle at the G0G1 and S phases with unknown mechanism. In the PI3K/AKT/mTOR pathway, Pue inhibits PI3K, AKT, mTOR, and p70S6K; in the MEK-ERK pathway, Pue

inhibits MEK and ERK1/2 as well as activates ERK through ROS generation and causes cell apoptosis. Furthermore, Pue activates P-38MAPK and JNK, which inhibit c-jun and

P450 and cause the apoptosis of cancer cells.
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Phosphatidylinositol-3-Kinase/Protein

Kinase B/Mammalian Target of Rapamycin

(PI3K/AKT/mTOR) Pathway
The PI3K/AKT/mTOR signaling pathway increases cell

growth and survival through various mechanisms.68,69

The PI3K/AKT/mTOR pathway is activated in a number

of human cancers through different mechanisms.70–73 For

example, phosphorylation of the two residues of AKT,

including threonine (Thr 308) and serine 473 (Ser 473),

leads to AKT activation.74 Following activation, AKT

enters the nucleus, where they affect the activity of tran-

scription-regulating factors. PI3K/AKT signaling increases

the expression of mTOR, and this expression of mTOR is

associated with poor prognosis. NPs reportedly inhibit the

PI3K/AKT/mTOR pathway in cancer cells.75

A natural Pue induces apoptosis in bladder cancer T24,

EJ cells and human mental lymphoma Z13851 cells through

the PI3K/AKT/mTOR51,76 pathway by downregulating

PI3K,51 Akt,76 p-mTOR,76 and p-p70S6K.51,76 This PI3K/

AKT/mTOR pathway is further summarized in Table 1 and

Figure 2.

MAPK/ERK (Ras-Raf-MEK-ERK) Pathway
The mitogen-activated protein kinase/extracellular sig-

nal-regulated kinases (MAPK/ERK) pathway are also

known as Rat Sarcoma (Ras)-Rapidly Accelerated

Fibrosarcoma (Raf)-MEK-ERK pathway.77 The MAPK/

ERK pathway possesses different cascades and is mostly

deregulated in human cancers.77 It regulates several

cellular processes, such as cell growth, proliferation,

differentiation, migration, senescence, and apoptosis.78

The molecules of the MAPK/ERK pathway become

activated through its phosphorylation. The activated

ERK enters the nucleus, where it activates transcription

factors. The activated transcription factors then bind to

various genes, including growth factors and cytokines.

Such genes are responsible for the increase in cell pro-

liferation and decrease in apoptosis.79 Disturbance of the

normal signaling of this pathway causes senescence,

drug resistance, and tumorigenesis.78,80,81 Failure of

this pathway has been detected in various cancers.82,83

NPs trigger the death of cancer cells through the

MAPK/ERK pathway.84 Pue induces apoptosis in

SMMC772143,85 cells through ROS43-mediated p-38

MAPK85 and ERK143 activation.43,85 In NSCLC cells,

Pue inhibits the IL-4-induced activation of MEK and

ERK1/2 and its nuclear translocation.86 In addition,

Pue reverses the oxidized low-density lipoprotein

(ox-LDL)-induced increase in VSM cell proliferation

through ERK1/2 and proliferating cell nuclear antigen

activation,87 as depicted in Table 1 and Figure 2.

c-Jun NH2 Terminal Kinase (JNK) Pathway
The JNK pathway controls different physiological processes,

such as cell survival, death, differentiation, proliferation,

inflammation, and protein expression. Dysregulation of the

JNK pathway is linked with different diseases, including

auto-immune disease, cardiac hyper therapy, asthma, dia-

betes, and cancer.88 JNK is involved in oncogenic changes.

The JNK signaling pathway is involved in apoptosis elim-

ination through suppression of Ras transformation.89

Aromatase P450 is an enzyme that is expressed in different

parts of the body, and changes in its level in the body cause

different diseases.90 Different NPs induce apoptosis in cancer

cells through the regulation of the JNK pathway.91–93

The oxidative stress generated in SMMC7721 cells with

Pue treatment due to ROS causes JNK activation, which

causes c-jun inhibition and cell apoptosis.43 Another study

revealed that Pue alone or in combination with arsenic

trioxide induces apoptosis in NB4 cells through JNK

activation.54 In endometriosis, uterine fibroblast and endo-

metrial cancer Aromatase P450 (P450 (arom)) is overex-

pressed, which is downregulated by Pue in RL95-2 and

Ishikawa cell lines at both protein and mRNA levels.94

Furthermore, with Pue treatment, c-jun regulates the P450

(arom) expression and activity, which was confirmed by

c-jun knockdown through siRNA. Therefore, inhibition of

P450 (arom) activity and expression with Pue may be linked

with transcription factor AP-1 or c-jun down-regulation,94

as shown in Table 1 and Figure 2.

Cell Cycle
Cell growth is controlled by the cell cycle. Cells are

regulated at different checkpoints by the interactions of

various cyclins with their exact cyclin-dependent kinases

(CDKs) to make active complexes. The process of each

checkpoint completes accurately before the progression to

the next phase of the cell cycle.95 Among CDKs, p21

regulates cell cycle at different checkpoints.96,97 In cell

cycle regulation, p53 plays a key component role. It is

activated in a wide range of damage and stresses.98,99

Recently, NPs have attracted the attention of researchers

because of their potential to reverse cancer through the cell

cycle.100
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Pue induces cell cycle arrest in T24,76 EJ,76 NB4,101

Kasumi-1,101 U937,101 HL-60,101,102 MDA-MB-231,52

MCF-7,52 HS578T,52 vascular smooth muscle cells

(VSMCs)87 and bladder cancer cells at the G1/G0,76,101

sub-G1,103 G1S1,87 and G2/M52 phases through p5352

upregulation, which further increases p2152 expression

and triggers cell apoptosis,52,76,87,102 as illustrated in

Table 1 and Figure 2.

AMP-Activated Protein Kinase (AMPK)

Pathway
AMPK plays a role as a key sensor for cellular energy

because it phosphorylates and activates enzymes, including

acetyl-CoA carboxylase (ACC).103 The glycogen synthase

kinase-3beta (GSK-3b) causes the phosphorylation of

cAMP-responsive element-binding protein (CREB),104,105

and inhibition of GSK-3b increases multi-drug resistance 1

(MDR1) gene expression.106 The overexpression of MDR1,

which has been reported in several cancers, lowers drug

efficacy.107 A variety of anticancer natural compounds

derived from vegetables, fruits, herbs, and oilseed107 reg-

ulate MDR1 activity.108,109

In the human breast cancer cell line MCF-7/adriamycin

(MCF-7/adr), plant-derived Pue activates AMPK, ACC,

and GSK-3b, which lead to the inhibition of CREB and

MDR1.110 Pue-induced suppression of MDR1 can be

reversed by inhibitor of AMPK (compound C).110

Furthermore, both protein kinase A/CRE inhibitor (H89)

and Pue inhibit the transcriptional activities of both cAMP-

responsive element (CRE) and MDR1 protein.110 These

results show that Pue inhibits the expression of MDR1

through CRE transcriptional activity-dependent upregula-

tion of AMPK in MCF-7/adr cells,110 as depicted in Table 1

and Figure 3A.

Nuclear Factor kB (NF-kB) Pathway
NF-kB is a transcription factor complex consisting of hetero-

and homodimers of five members of a Reticuloenotheliosis

oncogene cellular homolog (Rel) family, including RelA

(p65), RelB, c-Rel, NF-kB1 (p50/p105), and NF-kB2 (p52/

p100).111 In cancer, the functions of NF-kB are mostly

dysregulated.112 Active NF-kB has been reported in several

cancers, including colon, liver, breast, pancreas, prostrate,

ovarian, leukemia, and lymphoma cancers.113–115 NF-kB

becomes activated when the DNA becomes damaged, which

consequently activates a number of NF-kB-targeted genes,

including inducible nitric oxide synthase (iNOS)116 and

COX-2.117 Furthermore, binding of TNFα to TNFR leads to

homotrimerization of receptors and adaptor proteins, resulting

in cell proliferation and survival by increasing the expression

of NF-kB and activator protein 1 target genes, including

vascular cell adhesion molecule-1 (VCAM-1).118–120 NF-kB

activation triggers the activation of chemokines and its related

receptors, including C-X-C chemokine receptor 4

(CXCR4)121 and CCR7,122 which play important roles in the

migration of cancer cells to target organs.118 These genes play

pivotal roles in pro-survival anti-apoptosis. Therefore, NF-kB

is a candidate for therapeutic resistance in different cancers.

Different NPs have potential therapeutic efficacy against can-

cer by inhibiting NF-kB pathway activation in cancer cells.123

In lipopolysaccharide-induced MDA-MB-231,124

MCF-7/adriamycin (MCF-7/adr),110 MCF-7124 cells,

Z138 cells,51 T24,125 and THP1126 cells, Pue inhibits

proliferation51 and negates adhesion,124 migration,124 and

invasion124 by regulating the NF-kB51,110,124,125

pathway.51,110,124–126 In the NF-kB pathway, Pue inhibits

the expression of inflammatory factors TNF-α and IL-6124

and abolishes NF-kB activation through inhibition of

Phospho-IκBα/IκBα110,124,126 IkkappaB,110,124 and p65124

and upregulation of miR16.125 Pue also inhibits the NF-kB

nuclear translocation,125 which leads to the inhibition of

COX-2, MMP-2,9 CXCR4, CCR7, VCAM, and ICAM at

the mRNA and protein levels,124 as shown in Table 1 and

Figure 3A.

Inflammation Pathway
Inflammation is often associated with the progression and

development of cancer. Inflammation leads to tumorigen-

esis via two basic ways, including extrinsic and

intrinsic.127 There are many factors which cause tumor-

extrinsic inflammation, including viral and bacterial infec-

tions, obesity, autoimmune diseases, asbestos exposure,

excessive alcohol consumption and tobacco smoking.127

On the other hand, cancer intrinsic inflammation can be

triggered through cancer-initiating mutations and increase

tumor growth through the activation of inflammatory

cells.127 These information show that both the extrinsic

and intrinsic inflammations are providing a good back-

ground for cancer progression.127 Those cells which are

responsible for cancer-causing inflammation are stable

genetically and did not cause rapid emergence of drug

resistance, therefore targeting of inflammation represents

a good strategy for cancer prevention and therapy.127 Here,

we focus on cancer-elicited intrinsic inflammation.
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Macrophages play important roles in different types of

inflammatory diseases and cancer progression.128 M1 and

M2 are markers of inflammation, in which M1 macro-

phages intimate tumorigenesis through reactive oxygen

and intermediates of nitrogen, while M2 macrophages

increase tumor progression.129,130 Next, NF-kB is consid-

ered a central mediator in inflammation process while

identification of its kinship with v-Rel oncogene, shows

that the NF-kB is involved in cancer development.131 The

dual role of Macrophages and NF-kB has made its ther-

apeutic targeting a challenge. Therefore, the understanding

of such interaction between immune signaling pathways

and cellular metabolism can provide us the clues to

develop potential therapeutic strategies for the treatment

of inflammatory diseases, including cancer. Recent studies

have reported that NPs target both cancer and

inflammation.132

Pue inhibits the tumor volume and its growth in the

NSCLC xenograft model by upregulating M1 markers

(such as iNOS+, cluster of differentiation 197, and CD40+)

and decreasing M2 markers (including CD163+, Arginase 1,

and CD206+).86 Furthermore, Pue increases TNF-α, pro-

inflammatory cytokine interferon-γ, and interleukin-12

while reducing pro-tumor cytokines IL-4, IL-10 and

Figure 3 Schematic of Pue for different pathways. (A) Pue inhibits cancer cell proliferation, migration, and adhesion through the NF-kB and AMPK pathways. In NF-kB, Pue

inhibits TNF-α, TRL-4, IKKβ, IkBα, and NF-kB translocation from the cytoplasm to the nucleus, which further inhibits COX-2, MMP-2,9, CXCR4, CCR7, VCAM, and ICAM.

In the AMPK pathway, Pue activates AMPK, ACC, and GSK-3b, which further inhibit CRE and MDR1. (B) Pue inhibits tumor growth and inflammation through activation of

M1 markers, including iNOS, CD197+, and CD40+, inhibit M2 markers, including CD163+, Arg-1+, and CD206+. Furthermore, Pue activates IFN-g, TNF-α, and IL-12 and

inhibits IL-10, IL-4, and TGF-β. (C) Pue inhibits the Akt and ERK expression, increases the Atg-5 expression, and LC3I conversion to LC3II, as a result induces autophagy.
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transforming growth factor-β.86 Pue inhibits the change of

pure macrophages from polarized to M2 phenotype without

other auxiliary cell involvement.86 In THP1 macrophages,

Pue dose-dependently inhibits the expression of oxLDL-

activated pro-inflammatory genes, including toll-like recep-

tor 4, and the ratio of Phospho-IκBα/IκBα.126 Furthermore,

Pue inhibits the formation of foam cells and lipid deposition

induced by oxLDL, which are associated with scavenger

receptor CD36 downregulation. Therefore, these results

reveal that Pue acts as an antiatherogenic and anti-

inflammatory agent by downregulating CD36 expression

and inhibiting the TLR4/NF-κB pathway.126 All these results

show that the Pue inhibits the cancer progression through

inhibition of inflammation. The inflammation pathway is

summarized further in Table 1 and Figure 3B.

Autophagy Pathway
In normal cells, autophagy suppresses tumor growth by

maintaining genomic stability. Once the tumor forms, the

unbalance in autophagy contributes to tumor growth. In the

complexity of autophagy, the ERK/MAPK, PI3K/MAPK,

and other signaling pathways play important roles.133

Furthermore, the light chain 3 (LC3) and autophagy protein

5 (Atg5) are considered essential for autophagy.134 The NP

modulates autophagy in different diseases, including

cancer.135 In NCI-H441 cells, Pue induces autophagy

through the PI3K/Akt and ERK pathway via extreme inhi-

bition of Akt and ERK phosphorylation, which was further

inhibited through BEZ235, an inhibitor of PI3K/Akt.

Activation of the PI3K/Akt pathway further increases

Atg5 expression, but no obvious effect was observed in

LC3I conversion to LC3II. However, rapamycin, an inhibi-

tor of mTOR, increases the expression of Atg5 and LC3II,55

as depicted in Table 1 and Figure 3C.

Conclusion
Pue has potential anticancer activity. Available studies show

that Pue might be a very good therapeutic drug for the

treatment of different cancers because it is a good inducer

of apoptosis. Additional preclinical and clinical studies must

be designed and conducted to determine the definite dose of

Pue for each type of cancer and establish a specific pathway

or gene. The available anticancer information about Pue is

summarized in Table 1 and Figures 2 and 3.
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